/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015-2016 Mario Luzeiro * Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file filled_circle_2d.cpp * @brief */ #include "filled_circle_2d.h" #include "../ray.h" #include FILLED_CIRCLE_2D::FILLED_CIRCLE_2D( const SFVEC2F& aCenter, float aRadius, const BOARD_ITEM& aBoardItem ) : OBJECT_2D( OBJECT_2D_TYPE::FILLED_CIRCLE, aBoardItem ) { wxASSERT( aRadius > 0.0f ); // If that happens, it should be handled before create this circle m_center = aCenter; m_radius = aRadius; m_radius_squared = aRadius * aRadius; m_bbox.Reset(); m_bbox.Set( m_center - SFVEC2F( aRadius, aRadius ), m_center + SFVEC2F( aRadius, aRadius ) ); m_bbox.ScaleNextUp(); m_centroid = m_bbox.GetCenter(); wxASSERT( m_bbox.IsInitialized() ); } bool FILLED_CIRCLE_2D::Overlaps( const BBOX_2D& aBBox ) const { // NOT IMPLEMENTED, why? return false; } bool FILLED_CIRCLE_2D::Intersects( const BBOX_2D& aBBox ) const { return aBBox.Intersects( m_center, m_radius_squared ); } bool FILLED_CIRCLE_2D::Intersect( const RAYSEG2D& aSegRay, float* aOutT, SFVEC2F* aNormalOut ) const { // This code used directly from Steve Marschner's CS667 framework // http://cs665pd.googlecode.com/svn/trunk/photon/sphere.cpp // Compute some factors used in computation const float qx = aSegRay.m_Start.x - m_center.x; const float qy = aSegRay.m_Start.y - m_center.y; const float qd = qx * aSegRay.m_Dir.x + qy * aSegRay.m_Dir.y; const float qq = qx * qx + qy * qy; // solving the quadratic equation for t at the pts of intersection // dd*t^2 + (2*qd)*t + (qq-r^2) = 0 const float discriminantsqr = ( qd * qd - ( qq - m_radius_squared ) ); // If the discriminant is less than zero, there is no intersection if( discriminantsqr < FLT_EPSILON ) return false; // Otherwise check and make sure that the intersections occur on the ray (t > 0) and // return the closer one. const float discriminant = sqrt( discriminantsqr ); const float t1 = ( -qd - discriminant ); const float t2 = ( -qd + discriminant ); float t; if( ( t1 > 0.0f ) && ( t1 < aSegRay.m_Length ) ) { t = t1; } else { if( ( t2 > 0.0f ) && ( t2 < aSegRay.m_Length ) ) t = t2; else return false; // Neither intersection was in the ray's half line. } wxASSERT( ( t > 0.0f ) && ( t <= aSegRay.m_Length ) ); // Convert the intersection to a normalized 0.0 .. 1.0 if( aOutT ) *aOutT = t / aSegRay.m_Length; const SFVEC2F hitPoint = aSegRay.at( t ); if( aNormalOut ) *aNormalOut = (hitPoint - m_center) / m_radius; return true; } INTERSECTION_RESULT FILLED_CIRCLE_2D::IsBBoxInside( const BBOX_2D& aBBox ) const { if( !m_bbox.Intersects( aBBox ) ) return INTERSECTION_RESULT::MISSES; SFVEC2F v[4]; v[0] = aBBox.Min() - m_center; v[1] = aBBox.Max() - m_center; v[2] = SFVEC2F( aBBox.Min().x, aBBox.Max().y ) - m_center; v[3] = SFVEC2F( aBBox.Max().x, aBBox.Min().y ) - m_center; float s[4]; s[0] = v[0].x * v[0].x + v[0].y * v[0].y; s[1] = v[1].x * v[1].x + v[1].y * v[1].y; s[2] = v[2].x * v[2].x + v[2].y * v[2].y; s[3] = v[3].x * v[3].x + v[3].y * v[3].y; bool isInside[4]; isInside[0] = s[0] <= m_radius_squared; isInside[1] = s[1] <= m_radius_squared; isInside[2] = s[2] <= m_radius_squared; isInside[3] = s[3] <= m_radius_squared; // Check if all points are inside the circle if( isInside[0] && isInside[1] && isInside[2] && isInside[3] ) return INTERSECTION_RESULT::FULL_INSIDE; // Check if any point is inside the circle if( isInside[0] || isInside[1] || isInside[2] || isInside[3] ) return INTERSECTION_RESULT::INTERSECTS; return INTERSECTION_RESULT::MISSES; } bool FILLED_CIRCLE_2D::IsPointInside( const SFVEC2F& aPoint ) const { const SFVEC2F v = m_center - aPoint; if( ( v.x * v.x + v.y * v.y ) <= m_radius_squared ) return true; return false; }