/* * This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 2010 Virtenio GmbH, Torsten Hueter, torsten.hueter virtenio.de * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 2012 Kicad Developers, see change_log.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifndef VECTOR2D_H_ #define VECTOR2D_H_ #include #include // For wxPoint definition /// Forward declaration for template friends //template class VECTOR2; /** * Class VECTOR2 * defines a general 2D-vector. * * This class uses templates to be universal. Several operators are provided to help easy implementing * of linear algebra equations. * */ template class VECTOR2 { public: T x, y; // Constructors /// Construct a 2D-vector with x, y = 0 VECTOR2(); /// Constructor with a wxPoint as argument VECTOR2( const wxPoint& aPoint ); /// Constructor with a wxSize as argument VECTOR2( const wxSize& aSize ); /// Construct a vector with given components x, y VECTOR2( T x, T y ); /// Destructor // virtual ~VECTOR2(); /** * Function Euclidean Norm * computes the Euclidean norm of the vector, which is defined as sqrt(x ** 2 + y ** 2). * It is used to calculate the length of the vector. * @return Scalar, the euclidean norm */ T EuclideanNorm(); /** * Function Perpendicular * computes the perpendicular vector * @return Perpendicular vector */ VECTOR2 Perpendicular(); /** * Function Angle * computes the angle of the vector * @return vector angle */ T Angle(); // Operators /// Assignment operator VECTOR2& operator=( const VECTOR2& aVector ); /// Vector addition operator VECTOR2 operator+( const VECTOR2& aVector ); /// Compound assignment operator VECTOR2& operator+=( const VECTOR2& aVector ); /// Vector subtraction operator VECTOR2 operator-( const VECTOR2& aVector ); /// Compound assignment operator VECTOR2& operator-=( const VECTOR2& aVector ); /// Negate Vector operator VECTOR2 operator-(); /// Scalar product operator T operator*( const VECTOR2& aVector ); /// Multiplication with a factor VECTOR2 operator*( const T& aFactor ); /// Cross product operator T operator^( const VECTOR2& aVector ); /// Equality operator const bool operator==( const VECTOR2& aVector ); /// Not equality operator const bool operator!=( const VECTOR2& aVector ); /// Smaller than operator bool operator<( const VECTOR2& aVector ); bool operator<=( const VECTOR2& aVector ); /// Greater than operator bool operator>( const VECTOR2& aVector ); bool operator>=( const VECTOR2& aVector ); /// Casting to int vector // operator VECTOR2(); /// Type casting operator for the class wxPoint //operator wxPoint(); // friend ostream& operator<< ( ostream &stream, const VECTOR2& vector ); }; // ---------------------- // --- Implementation --- // ---------------------- template VECTOR2::VECTOR2() { x = y = 0.0; } template VECTOR2::VECTOR2( wxPoint const& aPoint ) { x = T( aPoint.x ); y = T( aPoint.y ); } template VECTOR2::VECTOR2( wxSize const& aSize ) { x = T( aSize.x ); y = T( aSize.y ); } template VECTOR2::VECTOR2( T aX, T aY ) { x = aX; y = aY; } // Not required at the moment for this class //template VECTOR2::~VECTOR2() //{ // // TODO Auto-generated destructor stub //} template T VECTOR2::EuclideanNorm() { return sqrt( ( *this ) * ( *this ) ); } template T VECTOR2::Angle() { return atan2(y, x); } template VECTOR2 VECTOR2::Perpendicular() { VECTOR2 perpendicular(-y, x); return perpendicular; } /* template ostream &operator<<( ostream &aStream, const VECTOR2& aVector ) { aStream << "[ " << aVector.x << " | " << aVector.y << " ]"; return aStream; } */ template VECTOR2 &VECTOR2::operator=( const VECTOR2& aVector ) { x = aVector.x; y = aVector.y; return *this; } template VECTOR2 &VECTOR2::operator+=( const VECTOR2& aVector ) { x += aVector.x; y += aVector.y; return *this; } template VECTOR2& VECTOR2::operator-=( const VECTOR2& aVector ) { x -= aVector.x; y -= aVector.y; return *this; } //template VECTOR2::operator wxPoint() //{ // wxPoint point; // point.x = (int) x; // point.y = (int) y; // return point; //} // //// Use correct rounding for casting to wxPoint //template<> VECTOR2::operator wxPoint() //{ // wxPoint point; // point.x = point.x >= 0 ? (int) ( x + 0.5 ) : (int) ( x - 0.5 ); // point.y = point.y >= 0 ? (int) ( y + 0.5 ) : (int) ( y - 0.5 ); // return point; //} // Use correct rounding for casting double->int //template<> VECTOR2::operator VECTOR2() //{ // VECTOR2 vector; // vector.x = vector.x >= 0 ? (int) ( x + 0.5 ) : (int) ( x - 0.5 ); // vector.y = vector.y >= 0 ? (int) ( y + 0.5 ) : (int) ( y - 0.5 ); // return vector; //} template VECTOR2 VECTOR2::operator+( const VECTOR2& aVector ) { return VECTOR2 ( x + aVector.x, y + aVector.y ); } template VECTOR2 VECTOR2::operator-( const VECTOR2& aVector ) { return VECTOR2 ( x - aVector.x, y - aVector.y ); } template VECTOR2 VECTOR2::operator-() { return VECTOR2 ( -x, -y ); } template T VECTOR2::operator*( const VECTOR2& aVector ) { return aVector.x * x + aVector.y * y; } template VECTOR2 VECTOR2::operator*( const T& aFactor ) { VECTOR2 vector( x * aFactor, y * aFactor ); return vector; } template VECTOR2 operator*( const T& aFactor, const VECTOR2& aVector){ VECTOR2 vector( aVector.x * aFactor, aVector.y * aFactor ); return vector; } template T VECTOR2::operator^( const VECTOR2& aVector ) { return x * aVector.y - y * aVector.x; } template bool VECTOR2::operator<( const VECTOR2& aVector ) { // VECTOR2 vector( aVector ); // need a specialization for T = int because of overflow: // return (double( x ) * x + double( y ) * y) < (double( o.x ) * o.x + double( o.y ) * y); return ( *this * *this ) < ( aVector * aVector ); } template bool VECTOR2::operator<=( const VECTOR2& aVector ) { return ( *this * *this ) <= ( aVector * aVector ); } template bool VECTOR2::operator>( const VECTOR2& aVector ) { return ( *this * *this ) > ( aVector * aVector ); } template bool VECTOR2::operator>=( const VECTOR2& aVector ) { return ( *this * *this ) >= ( aVector * aVector ); } template bool const VECTOR2::operator==( VECTOR2 const& aVector ) { return ( aVector.x == x ) && ( aVector.y == y ); } template bool const VECTOR2::operator!=( VECTOR2 const& aVector ) { return ( aVector.x != x ) || ( aVector.y != y ); } /** * Class BOX2 * is a description of a rectangle in a cartesion coordinate system. */ template class BOX2 { public: BOX2() : x(0), y(0), width(0), height(0) {} BOX2( T aX, T aY, T aWidth, T aHeight ): x( aX ), y( aY ), width( aWidth ), height( aHeight ) {} BOX2( const VECTOR2& aPos, const VECTOR2& aSize ) : x( aPos.x ), y( aPos.y ), width( aSize.x ), height( aSize.y ) {} BOX2( const wxPoint& aPos, const wxSize& aSize ) : x( aPos.x ), y( aPos.y ), width( aSize.x ), height( aSize.y ) {} /* BOX2( const EDA_RECT& aRect ): x( aRect.x ), y( aRect.y ), width( aRect.width ), height( aRect.height ) {} */ /// Constructor with a wxPoint as argument? VECTOR2 GetSize() const { return VECTOR2 ( width, height ); } VECTOR2 GetPosition() const { return VECTOR2 ( x, y ); } T GetLeft() const { return x; } void SetLeft( T n ) { width += x - n; x = n; } void MoveLeftTo( T n ) { x = n; } T GetTop() const { return y; } void SetTop( T n ) { height += y - n; y = n; } void MoveTopTo( T n ) { y = n; } T GetBottom() const { return y + height; } void SetBottom( T n ) { height += n - ( y + height ); } void MoveBottomTo( T n ) { y = n - height; } T GetRight() const { return x + width; } void SetRight( T n ) { width += n - ( x + width ); } void MoveRightTo( T n ) { x = n - width; } VECTOR2 GetLeftTop() const { return VECTOR2( x , y ); } void SetLeftTop( const VECTOR2& pt ) { width += x - pt.x; height += y - pt.y; x = pt.x; y = pt.y; } void MoveLeftTopTo( const VECTOR2 &pt ) { x = pt.x; y = pt.y; } VECTOR2 GetLeftBottom() const { return VECTOR2( x, y + height ); } void SetLeftBottom( const VECTOR2& pt ) { width += x - pt.x; height += pt.y - (y + height); x = pt.x; } void MoveLeftBottomTo( const VECTOR2& pt ) { x = pt.x; y = pt.y - height; } VECTOR2 GetRightTop() const { return VECTOR2( x + width, y ); } void SetRightTop( const VECTOR2& pt ) { width += pt.x - ( x + width ); height += y - pt.y; y = pt.y; } void MoveRightTopTo( const VECTOR2& pt ) { x = pt.x - width; y = pt.y; } VECTOR2 GetRightBottom() const { return VECTOR2( x + width, y + height ); } void SetRightBottom( const VECTOR2& pt ) { width += pt.x - ( x + width ); height += pt.y - ( y + height); } void MoveRightBottomTo( const VECTOR2& pt ) { x = pt.x - width; y = pt.y - height; } VECTOR2 GetCentre() const { return VECTOR2( x + width/2, y + height/2 ); } void SetCentre( const VECTOR2& pt ) { MoveCentreTo( pt ); } void MoveCentreTo( const VECTOR2& pt ) { x += pt.x - (x + width/2), y += pt.y - (y + height/2); } /** * Function Normalize * ensures that the height ant width are positive. */ void Normalize() { if( height < 0 ) { height = -height; y -= height; } if( width < 0 ) { width = -width; x -= width; } } T x, y, width, height; }; typedef VECTOR2 DPOINT; typedef DPOINT DSIZE; typedef BOX2 DBOX; #endif // VECTOR2D_H_