/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 2011 Wayne Stambaugh * Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include PCB_SHAPE::PCB_SHAPE( BOARD_ITEM* aParent, KICAD_T idtype ) : BOARD_ITEM( aParent, idtype ) { m_angle = 0; m_filled = false; m_flags = 0; m_shape = S_SEGMENT; m_width = Millimeter2iu( DEFAULT_LINE_WIDTH ); } PCB_SHAPE::~PCB_SHAPE() { } void PCB_SHAPE::SetPosition( const wxPoint& aPos ) { m_start = aPos; } wxPoint PCB_SHAPE::GetPosition() const { if( m_shape == S_POLYGON ) return (wxPoint) m_poly.CVertex( 0 ); else return m_start; } double PCB_SHAPE::GetLength() const { double length = 0.0; switch( m_shape ) { case S_CURVE: for( size_t ii = 1; ii < m_bezierPoints.size(); ++ii ) length += GetLineLength( m_bezierPoints[ ii - 1], m_bezierPoints[ii] ); break; case S_SEGMENT: length = GetLineLength( GetStart(), GetEnd() ); break; case S_POLYGON: for( int ii = 0; ii < m_poly.COutline( 0 ).SegmentCount(); ii++ ) length += m_poly.COutline( 0 ).CSegment( ii ).Length(); break; case S_ARC: length = 2 * M_PI * GetRadius() * ( GetAngle() / 3600.0 ); break; default: wxASSERT_MSG( false, "PCB_SHAPE::GetLength not implemented for shape" + ShowShape( GetShape() ) ); break; } return length; } void PCB_SHAPE::Move( const wxPoint& aMoveVector ) { // Move vector should not affect start/end for polygon since it will // be applied directly to polygon outline. if( m_shape != S_POLYGON ) { m_start += aMoveVector; m_end += aMoveVector; } switch ( m_shape ) { case S_POLYGON: m_poly.Move( VECTOR2I( aMoveVector ) ); break; case S_ARC: m_thirdPoint += aMoveVector; break; case S_CURVE: m_bezierC1 += aMoveVector; m_bezierC2 += aMoveVector; for( wxPoint& pt : m_bezierPoints) pt += aMoveVector; break; default: break; } } void PCB_SHAPE::Scale( double aScale ) { auto scalePt = [&]( wxPoint& pt ) { pt.x = KiROUND( pt.x * aScale ); pt.y = KiROUND( pt.y * aScale ); }; int radius = GetRadius(); scalePt( m_start ); scalePt( m_end ); // specific parameters: switch( m_shape ) { case S_CURVE: scalePt( m_bezierC1 ); scalePt( m_bezierC2 ); break; case S_ARC: scalePt( m_thirdPoint ); break; case S_CIRCLE: // ring or circle m_end.x = m_start.x + KiROUND( radius * aScale ); m_end.y = m_start.y; break; case S_POLYGON: // polygon { std::vector pts; for( const VECTOR2I& pt : m_poly.Outline( 0 ).CPoints() ) { pts.emplace_back( pt ); scalePt( pts.back() ); } SetPolyPoints( pts ); } break; default: break; } } void PCB_SHAPE::Rotate( const wxPoint& aRotCentre, double aAngle ) { switch( m_shape ) { case S_ARC: case S_SEGMENT: case S_CIRCLE: // these can all be done by just rotating the constituent points RotatePoint( &m_start, aRotCentre, aAngle ); RotatePoint( &m_end, aRotCentre, aAngle ); RotatePoint( &m_thirdPoint, aRotCentre, aAngle ); break; case S_RECT: if( KiROUND( aAngle ) % 900 == 0 ) { RotatePoint( &m_start, aRotCentre, aAngle ); RotatePoint( &m_end, aRotCentre, aAngle ); break; } // Convert non-cartesian-rotated rect to a diamond m_shape = S_POLYGON; m_poly.RemoveAllContours(); m_poly.NewOutline(); m_poly.Append( m_start ); m_poly.Append( m_end.x, m_start.y ); m_poly.Append( m_end ); m_poly.Append( m_start.x, m_end.y ); KI_FALLTHROUGH; case S_POLYGON: m_poly.Rotate( -DECIDEG2RAD( aAngle ), VECTOR2I( aRotCentre ) ); break; case S_CURVE: RotatePoint( &m_start, aRotCentre, aAngle); RotatePoint( &m_end, aRotCentre, aAngle); RotatePoint( &m_bezierC1, aRotCentre, aAngle); RotatePoint( &m_bezierC2, aRotCentre, aAngle); for( wxPoint& pt : m_bezierPoints ) RotatePoint( &pt, aRotCentre, aAngle); break; default: wxFAIL_MSG( "PCB_SHAPE::Rotate not implemented for " + PCB_SHAPE_TYPE_T_asString( m_shape ) ); break; } } void PCB_SHAPE::Flip( const wxPoint& aCentre, bool aFlipLeftRight ) { if( aFlipLeftRight ) { m_start.x = aCentre.x - ( m_start.x - aCentre.x ); m_end.x = aCentre.x - ( m_end.x - aCentre.x ); } else { m_start.y = aCentre.y - ( m_start.y - aCentre.y ); m_end.y = aCentre.y - ( m_end.y - aCentre.y ); } switch ( m_shape ) { case S_ARC: if( aFlipLeftRight ) m_thirdPoint.x = aCentre.x - ( m_thirdPoint.x - aCentre.x ); else m_thirdPoint.y = aCentre.y - ( m_thirdPoint.y - aCentre.y ); m_angle = -m_angle; break; case S_POLYGON: m_poly.Mirror( aFlipLeftRight, !aFlipLeftRight, VECTOR2I( aCentre ) ); break; case S_CURVE: { if( aFlipLeftRight ) { m_bezierC1.x = aCentre.x - ( m_bezierC1.x - aCentre.x ); m_bezierC2.x = aCentre.x - ( m_bezierC2.x - aCentre.x ); } else { m_bezierC1.y = aCentre.y - ( m_bezierC1.y - aCentre.y ); m_bezierC2.y = aCentre.y - ( m_bezierC2.y - aCentre.y ); } // Rebuild the poly points shape std::vector ctrlPoints = { m_start, m_bezierC1, m_bezierC2, m_end }; BEZIER_POLY converter( ctrlPoints ); converter.GetPoly( m_bezierPoints, m_width ); } break; case S_SEGMENT: case S_RECT: case S_CIRCLE: break; default: wxFAIL_MSG( "PCB_SHAPE::Flip not implemented for " + PCB_SHAPE_TYPE_T_asString( m_shape ) ); break; } SetLayer( FlipLayer( GetLayer(), GetBoard()->GetCopperLayerCount() ) ); } void PCB_SHAPE::RebuildBezierToSegmentsPointsList( int aMinSegLen ) { // Has meaning only for S_CURVE DRAW_SEGMENT shape if( m_shape != S_CURVE ) { m_bezierPoints.clear(); return; } // Rebuild the m_BezierPoints vertex list that approximate the Bezier curve m_bezierPoints = buildBezierToSegmentsPointsList( aMinSegLen ); } const std::vector PCB_SHAPE::buildBezierToSegmentsPointsList( int aMinSegLen ) const { std::vector bezierPoints; // Rebuild the m_BezierPoints vertex list that approximate the Bezier curve std::vector ctrlPoints = { m_start, m_bezierC1, m_bezierC2, m_end }; BEZIER_POLY converter( ctrlPoints ); converter.GetPoly( bezierPoints, aMinSegLen ); return bezierPoints; } wxPoint PCB_SHAPE::GetCenter() const { wxPoint c; switch( m_shape ) { case S_ARC: case S_CIRCLE: c = m_start; break; case S_SEGMENT: // Midpoint of the line c = ( GetStart() + GetEnd() ) / 2; break; case S_POLYGON: case S_RECT: case S_CURVE: c = GetBoundingBox().Centre(); break; default: wxFAIL_MSG( "PCB_SHAPE::GetCentre not implemented for " + PCB_SHAPE_TYPE_T_asString( m_shape ) ); break; } return c; } wxPoint PCB_SHAPE::GetArcEnd() const { wxPoint endPoint( m_end ); // start of arc switch( m_shape ) { case S_ARC: endPoint = m_thirdPoint; break; default: break; } return endPoint; // after rotation, the end of the arc. } wxPoint PCB_SHAPE::GetArcMid() const { wxPoint endPoint( m_end ); switch( m_shape ) { case S_ARC: // rotate the starting point of the arc, given by m_End, through half // the angle m_Angle to get the middle of the arc. // m_Start is the arc centre endPoint = m_end; // m_End = start point of arc RotatePoint( &endPoint, m_start, -m_angle / 2.0 ); break; default: break; } return endPoint; // after rotation, the end of the arc. } double PCB_SHAPE::GetArcAngleStart() const { // due to the Y axis orient atan2 needs - y value double angleStart = ArcTangente( GetArcStart().y - GetCenter().y, GetArcStart().x - GetCenter().x ); // Normalize it to 0 ... 360 deg, to avoid discontinuity for angles near 180 deg // because 180 deg and -180 are very near angles when ampping betewwen -180 ... 180 deg. // and this is not easy to handle in calculations NORMALIZE_ANGLE_POS( angleStart ); return angleStart; } double PCB_SHAPE::GetArcAngleEnd() const { // due to the Y axis orient atan2 needs - y value double angleStart = ArcTangente( GetArcEnd().y - GetCenter().y, GetArcEnd().x - GetCenter().x ); // Normalize it to 0 ... 360 deg, to avoid discontinuity for angles near 180 deg // because 180 deg and -180 are very near angles when ampping betewwen -180 ... 180 deg. // and this is not easy to handle in calculations NORMALIZE_ANGLE_POS( angleStart ); return angleStart; } void PCB_SHAPE::SetArcGeometry( const wxPoint& aStart, const wxPoint& aMid, const wxPoint& aEnd ) { SetArcStart( aStart ); SetArcEnd( aEnd ); // Sadly we currently store center and angle rather than mid. So we have to calculate // those. wxPoint center = GetArcCenter( aStart, aMid, aEnd ); VECTOR2D startLine = aStart - center; VECTOR2D endLine = aEnd - center; bool clockwise = GetAngle() > 0; double angle = RAD2DECIDEG( endLine.Angle() - startLine.Angle() ); if( clockwise && angle < 0.0 ) angle += 3600.0; else if( !clockwise && angle > 0.0 ) angle -= 3600.0; SetAngle( angle, false ); SetCenter( center ); } void PCB_SHAPE::SetAngle( double aAngle, bool aUpdateEnd ) { // m_Angle must be >= -360 and <= +360 degrees m_angle = NormalizeAngle360Max( aAngle ); if( aUpdateEnd ) { m_thirdPoint = m_end; RotatePoint( &m_thirdPoint, m_start, -m_angle ); } } FOOTPRINT* PCB_SHAPE::GetParentFootprint() const { if( !m_parent || m_parent->Type() != PCB_FOOTPRINT_T ) return NULL; return (FOOTPRINT*) m_parent; } void PCB_SHAPE::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) { EDA_UNITS units = aFrame->GetUserUnits(); ORIGIN_TRANSFORMS originTransforms = aFrame->GetOriginTransforms(); wxString msg; aList.emplace_back( _( "Type" ), _( "Drawing" ) ); if( IsLocked() ) aList.emplace_back( _( "Status" ), _( "locked" ) ); wxString shape = _( "Shape" ); switch( m_shape ) { case S_CIRCLE: aList.emplace_back( shape, _( "Circle" ) ); msg = MessageTextFromValue( units, GetLineLength( m_start, m_end ) ); aList.emplace_back( _( "Radius" ), msg ); break; case S_ARC: aList.emplace_back( shape, _( "Arc" ) ); msg.Printf( wxT( "%.1f" ), m_angle / 10.0 ); aList.emplace_back( _( "Angle" ), msg ); msg = MessageTextFromValue( units, GetLineLength( m_start, m_end ) ); aList.emplace_back( _( "Radius" ), msg ); break; case S_CURVE: aList.emplace_back( shape, _( "Curve" ) ); msg = MessageTextFromValue( units, GetLength() ); aList.emplace_back( _( "Length" ), msg ); break; case S_POLYGON: aList.emplace_back( shape, _( "Polygon" ) ); msg.Printf( "%d", GetPolyShape().Outline(0).PointCount() ); aList.emplace_back( _( "Points" ), msg ); break; case S_RECT: aList.emplace_back( shape, _( "Rectangle" ) ); msg = MessageTextFromValue( units, std::abs( m_end.x - m_start.x ) ); aList.emplace_back( _( "Width" ), msg ); msg = MessageTextFromValue( units, std::abs( m_end.y - m_start.y ) ); aList.emplace_back( _( "Height" ), msg ); break; case S_SEGMENT: { aList.emplace_back( shape, _( "Segment" ) ); msg = MessageTextFromValue( units, GetLineLength( m_start, m_end ) ); aList.emplace_back( _( "Length" ), msg ); // angle counter-clockwise from 3'o-clock const double deg = RAD2DEG( atan2( (double)( m_start.y - m_end.y ), (double)( m_end.x - m_start.x ) ) ); aList.emplace_back( _( "Angle" ), wxString::Format( "%.1f", deg ) ); } break; default: aList.emplace_back( shape, _( "Unrecognized" ) ); break; } aList.emplace_back( _( "Layer" ), GetLayerName() ); aList.emplace_back( _( "Width" ), MessageTextFromValue( units, m_width ) ); } const EDA_RECT PCB_SHAPE::GetBoundingBox() const { EDA_RECT bbox; bbox.SetOrigin( m_start ); switch( m_shape ) { case S_RECT: { std::vector pts = GetRectCorners(); bbox = EDA_RECT(); // re-init for merging for( wxPoint& pt : pts ) bbox.Merge( pt ); } break; case S_SEGMENT: bbox.SetEnd( m_end ); break; case S_CIRCLE: bbox.Inflate( GetRadius() ); break; case S_ARC: computeArcBBox( bbox ); break; case S_POLYGON: { if( m_poly.IsEmpty() ) break; FOOTPRINT* parentFootprint = GetParentFootprint(); bbox = EDA_RECT(); // re-init for merging for( auto iter = m_poly.CIterate(); iter; iter++ ) { wxPoint pt( iter->x, iter->y ); if( parentFootprint ) // Transform, if we belong to a footprint { RotatePoint( &pt, parentFootprint->GetOrientation() ); pt += parentFootprint->GetPosition(); } bbox.Merge( pt ); } } break; case S_CURVE: bbox.Merge( m_bezierC1 ); bbox.Merge( m_bezierC2 ); bbox.Merge( m_end ); break; default: wxFAIL_MSG( "PCB_SHAPE::GetBoundingBox not implemented for " + PCB_SHAPE_TYPE_T_asString( m_shape ) ); break; } bbox.Inflate( m_width / 2 ); bbox.Normalize(); return bbox; } bool PCB_SHAPE::HitTest( const wxPoint& aPosition, int aAccuracy ) const { int maxdist = aAccuracy + ( m_width / 2 ); switch( m_shape ) { case S_CIRCLE: { int radius = GetRadius(); int dist = KiROUND( EuclideanNorm( aPosition - GetCenter() ) ); if( IsFilled() ) // Filled circle hit-test { if( dist <= radius + maxdist ) return true; } else // Ring hit-test { if( abs( radius - dist ) <= maxdist ) return true; } } break; case S_ARC: { wxPoint relPos = aPosition - GetCenter(); int radius = GetRadius(); int dist = KiROUND( EuclideanNorm( relPos ) ); if( abs( radius - dist ) <= maxdist ) { // For arcs, the test point angle must be >= arc angle start // and <= arc angle end // However angle values > 360 deg are not easy to handle // so we calculate the relative angle between arc start point and teast point // this relative arc should be < arc angle if arc angle > 0 (CW arc) // and > arc angle if arc angle < 0 (CCW arc) double arc_angle_start = GetArcAngleStart(); // Always 0.0 ... 360 deg, in 0.1 deg double arc_hittest = ArcTangente( relPos.y, relPos.x ); // Calculate relative angle between the starting point of the arc, and the test point arc_hittest -= arc_angle_start; // Normalise arc_hittest between 0 ... 360 deg NORMALIZE_ANGLE_POS( arc_hittest ); // Check angle: inside the arc angle when it is > 0 // and outside the not drawn arc when it is < 0 if( GetAngle() >= 0.0 ) { if( arc_hittest <= GetAngle() ) return true; } else { if( arc_hittest >= ( 3600.0 + GetAngle() ) ) return true; } } } break; case S_CURVE: const_cast( this )->RebuildBezierToSegmentsPointsList( m_width ); for( unsigned int i= 1; i < m_bezierPoints.size(); i++) { if( TestSegmentHit( aPosition, m_bezierPoints[ i - 1], m_bezierPoints[i], maxdist ) ) return true; } break; case S_SEGMENT: if( TestSegmentHit( aPosition, m_start, m_end, maxdist ) ) return true; break; case S_RECT: { std::vector pts = GetRectCorners(); if( IsFilled() ) // Filled rect hit-test { SHAPE_POLY_SET poly; poly.NewOutline(); for( const wxPoint& pt : pts ) poly.Append( pt ); if( poly.Collide( VECTOR2I( aPosition ), maxdist ) ) return true; } else // Open rect hit-test { if( TestSegmentHit( aPosition, pts[0], pts[1], maxdist ) || TestSegmentHit( aPosition, pts[1], pts[2], maxdist ) || TestSegmentHit( aPosition, pts[2], pts[3], maxdist ) || TestSegmentHit( aPosition, pts[3], pts[0], maxdist ) ) { return true; } } } break; case S_POLYGON: if( IsFilled() ) { return m_poly.Collide( VECTOR2I( aPosition ), maxdist ); } else { SHAPE_POLY_SET::VERTEX_INDEX dummy; return m_poly.CollideEdge( VECTOR2I( aPosition ), dummy, maxdist ); } break; default: wxFAIL_MSG( "PCB_SHAPE::HitTest (point) not implemented for " + PCB_SHAPE_TYPE_T_asString( m_shape ) ); break; } return false; } bool PCB_SHAPE::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const { EDA_RECT arect = aRect; arect.Normalize(); arect.Inflate( aAccuracy ); EDA_RECT arcRect; EDA_RECT bb = GetBoundingBox(); switch( m_shape ) { case S_CIRCLE: // Test if area intersects or contains the circle: if( aContained ) return arect.Contains( bb ); else { // If the rectangle does not intersect the bounding box, this is a much quicker test if( !aRect.Intersects( bb ) ) { return false; } else { return arect.IntersectsCircleEdge( GetCenter(), GetRadius(), GetWidth() ); } } break; case S_ARC: // Test for full containment of this arc in the rect if( aContained ) { return arect.Contains( bb ); } // Test if the rect crosses the arc else { arcRect = bb.Common( arect ); /* All following tests must pass: * 1. Rectangle must intersect arc BoundingBox * 2. Rectangle must cross the outside of the arc */ return arcRect.Intersects( arect ) && arcRect.IntersectsCircleEdge( GetCenter(), GetRadius(), GetWidth() ); } break; case S_RECT: if( aContained ) { return arect.Contains( bb ); } else { std::vector pts = GetRectCorners(); // Account for the width of the lines arect.Inflate( GetWidth() / 2 ); return ( arect.Intersects( pts[0], pts[1] ) || arect.Intersects( pts[1], pts[2] ) || arect.Intersects( pts[2], pts[3] ) || arect.Intersects( pts[3], pts[0] ) ); } break; case S_SEGMENT: if( aContained ) { return arect.Contains( GetStart() ) && aRect.Contains( GetEnd() ); } else { // Account for the width of the line arect.Inflate( GetWidth() / 2 ); return arect.Intersects( GetStart(), GetEnd() ); } break; case S_POLYGON: if( aContained ) { return arect.Contains( bb ); } else { // Fast test: if aRect is outside the polygon bounding box, // rectangles cannot intersect if( !arect.Intersects( bb ) ) return false; // Account for the width of the line arect.Inflate( GetWidth() / 2 ); int count = m_poly.TotalVertices(); for( int ii = 0; ii < count; ii++ ) { auto vertex = m_poly.CVertex( ii ); auto vertexNext = m_poly.CVertex(( ii + 1 ) % count ); // Test if the point is within aRect if( arect.Contains( ( wxPoint ) vertex ) ) return true; // Test if this edge intersects aRect if( arect.Intersects( ( wxPoint ) vertex, ( wxPoint ) vertexNext ) ) return true; } } break; case S_CURVE: if( aContained ) { return arect.Contains( bb ); } else { // Fast test: if aRect is outside the polygon bounding box, // rectangles cannot intersect if( !arect.Intersects( bb ) ) return false; // Account for the width of the line arect.Inflate( GetWidth() / 2 ); unsigned count = m_bezierPoints.size(); for( unsigned ii = 1; ii < count; ii++ ) { wxPoint vertex = m_bezierPoints[ ii - 1]; wxPoint vertexNext = m_bezierPoints[ii]; // Test if the point is within aRect if( arect.Contains( ( wxPoint ) vertex ) ) return true; // Test if this edge intersects aRect if( arect.Intersects( vertex, vertexNext ) ) return true; } } break; default: wxFAIL_MSG( "PCB_SHAPE::HitTest (rect) not implemented for " + PCB_SHAPE_TYPE_T_asString( m_shape ) ); break; } return false; } wxString PCB_SHAPE::GetSelectMenuText( EDA_UNITS aUnits ) const { return wxString::Format( _( "%s on %s" ), ShowShape( m_shape ), GetLayerName() ); } BITMAPS PCB_SHAPE::GetMenuImage() const { return BITMAPS::add_dashed_line; } EDA_ITEM* PCB_SHAPE::Clone() const { return new PCB_SHAPE( *this ); } const BOX2I PCB_SHAPE::ViewBBox() const { // For arcs - do not include the center point in the bounding box, // it is redundant for displaying an arc if( m_shape == S_ARC ) { EDA_RECT bbox; bbox.SetOrigin( m_end ); computeArcBBox( bbox ); return BOX2I( bbox.GetOrigin(), bbox.GetSize() ); } BOX2I return_box = EDA_ITEM::ViewBBox(); return_box.Inflate( m_width ); // Technically m_width / 2, but it never hurts to be a // bit large to account for selection shadows, etc. return return_box; } std::vector PCB_SHAPE::GetRectCorners() const { std::vector pts; FOOTPRINT* parentFootprint = GetParentFootprint(); wxPoint topLeft = GetStart(); wxPoint botRight = GetEnd(); // Un-rotate rect topLeft and botRight if( parentFootprint && KiROUND( parentFootprint->GetOrientation() ) % 900 != 0 ) { topLeft -= parentFootprint->GetPosition(); RotatePoint( &topLeft, -parentFootprint->GetOrientation() ); botRight -= parentFootprint->GetPosition(); RotatePoint( &botRight, -parentFootprint->GetOrientation() ); } // Set up the un-rotated 4 corners pts.emplace_back( topLeft ); pts.emplace_back( botRight.x, topLeft.y ); pts.emplace_back( botRight ); pts.emplace_back( topLeft.x, botRight.y ); // Now re-rotate the 4 corners to get a diamond if( parentFootprint && KiROUND( parentFootprint->GetOrientation() ) % 900 != 0 ) { for( wxPoint& pt : pts ) { RotatePoint( &pt, parentFootprint->GetOrientation() ); pt += parentFootprint->GetPosition(); } } return pts; } void PCB_SHAPE::computeArcBBox( EDA_RECT& aBBox ) const { // Do not include the center, which is not necessarily // inside the BB of a arc with a small angle aBBox.SetOrigin( m_end ); wxPoint end = m_end; RotatePoint( &end, m_start, -m_angle ); aBBox.Merge( end ); // Determine the starting quarter // 0 right-bottom // 1 left-bottom // 2 left-top // 3 right-top unsigned int quarter = 0; // assume right-bottom if( m_end.x < m_start.x ) { if( m_end.y <= m_start.y ) quarter = 2; else // ( m_End.y > m_Start.y ) quarter = 1; } else if( m_end.x >= m_start.x ) { if( m_end.y < m_start.y ) quarter = 3; else if( m_end.x == m_start.x ) quarter = 1; } int radius = GetRadius(); int angle = (int) GetArcAngleStart() % 900 + m_angle; bool directionCW = ( m_angle > 0 ); // Is the direction of arc clockwise? // Make the angle positive, so we go clockwise and merge points belonging to the arc if( !directionCW ) { angle = 900 - angle; quarter = ( quarter + 3 ) % 4; // -1 modulo arithmetic } while( angle > 900 ) { switch( quarter ) { case 0: aBBox.Merge( wxPoint( m_start.x, m_start.y + radius ) ); break; // down case 1: aBBox.Merge( wxPoint( m_start.x - radius, m_start.y ) ); break; // left case 2: aBBox.Merge( wxPoint( m_start.x, m_start.y - radius ) ); break; // up case 3: aBBox.Merge( wxPoint( m_start.x + radius, m_start.y ) ); break; // right } if( directionCW ) ++quarter; else quarter += 3; // -1 modulo arithmetic quarter %= 4; angle -= 900; } aBBox.Inflate( m_width ); // Technically m_width / 2, but it doesn't hurt to have the // bounding box a bit large to account for drawing clearances, // etc. } void PCB_SHAPE::SetPolyPoints( const std::vector& aPoints ) { m_poly.RemoveAllContours(); m_poly.NewOutline(); for ( const wxPoint& p : aPoints ) m_poly.Append( p.x, p.y ); } std::vector PCB_SHAPE::MakeEffectiveShapes() const { std::vector effectiveShapes; switch( m_shape ) { case S_ARC: effectiveShapes.emplace_back( new SHAPE_ARC( GetCenter(), GetArcStart(), GetAngle() / 10.0, m_width ) ); break; case S_SEGMENT: effectiveShapes.emplace_back( new SHAPE_SEGMENT( GetStart(), GetEnd(), m_width ) ); break; case S_RECT: { std::vector pts = GetRectCorners(); if( IsFilled() ) { effectiveShapes.emplace_back( new SHAPE_SIMPLE( pts ) ); } if( m_width > 0 || !IsFilled() ) { effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[0], pts[1], m_width ) ); effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[1], pts[2], m_width ) ); effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[2], pts[3], m_width ) ); effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[3], pts[0], m_width ) ); } } break; case S_CIRCLE: { if( IsFilled() ) { effectiveShapes.emplace_back( new SHAPE_CIRCLE( GetCenter(), GetRadius() ) ); } if( m_width > 0 || !IsFilled() ) { // SHAPE_CIRCLE has no ConvertToPolyline() method, so use a 360.0 SHAPE_ARC SHAPE_ARC circle( GetCenter(), GetEnd(), 360.0 ); SHAPE_LINE_CHAIN l = circle.ConvertToPolyline(); for( int i = 0; i < l.SegmentCount(); i++ ) { effectiveShapes.emplace_back( new SHAPE_SEGMENT( l.Segment( i ).A, l.Segment( i ).B, m_width ) ); } } break; } case S_CURVE: { auto bezierPoints = buildBezierToSegmentsPointsList( GetWidth() ); wxPoint start_pt = bezierPoints[0]; for( unsigned int jj = 1; jj < bezierPoints.size(); jj++ ) { wxPoint end_pt = bezierPoints[jj]; effectiveShapes.emplace_back( new SHAPE_SEGMENT( start_pt, end_pt, m_width ) ); start_pt = end_pt; } break; } case S_POLYGON: { SHAPE_LINE_CHAIN l = GetPolyShape().COutline( 0 ); FOOTPRINT* parentFootprint = dynamic_cast( m_parent ); if( parentFootprint ) { l.Rotate( -parentFootprint->GetOrientationRadians() ); l.Move( parentFootprint->GetPosition() ); } if( IsFilled() ) { effectiveShapes.emplace_back( new SHAPE_SIMPLE( l ) ); } if( m_width > 0 || !IsFilled() ) { for( int i = 0; i < l.SegmentCount(); i++ ) effectiveShapes.emplace_back( new SHAPE_SEGMENT( l.Segment( i ), m_width ) ); } } break; default: wxFAIL_MSG( "PCB_SHAPE::MakeEffectiveShapes unsupported PCB_SHAPE shape: " + PCB_SHAPE_TYPE_T_asString( m_shape ) ); break; } return effectiveShapes; } std::shared_ptr PCB_SHAPE::GetEffectiveShape( PCB_LAYER_ID aLayer ) const { return std::make_shared( MakeEffectiveShapes() ); } const std::vector PCB_SHAPE::BuildPolyPointsList() const { std::vector rv; if( m_poly.OutlineCount() ) { if( m_poly.COutline( 0 ).PointCount() ) { for ( auto iter = m_poly.CIterate(); iter; iter++ ) rv.emplace_back( iter->x, iter->y ); } } return rv; } bool PCB_SHAPE::IsPolyShapeValid() const { // return true if the polygonal shape is valid (has more than 2 points) if( GetPolyShape().OutlineCount() == 0 ) return false; const SHAPE_LINE_CHAIN& outline = ( (SHAPE_POLY_SET&)GetPolyShape() ).Outline( 0 ); return outline.PointCount() > 2; } int PCB_SHAPE::GetPointCount() const { // return the number of corners of the polygonal shape // this shape is expected to be only one polygon without hole if( GetPolyShape().OutlineCount() ) return GetPolyShape().VertexCount( 0 ); return 0; } void PCB_SHAPE::SwapData( BOARD_ITEM* aImage ) { PCB_SHAPE* image = dynamic_cast( aImage ); assert( image ); std::swap( m_width, image->m_width ); std::swap( m_start, image->m_start ); std::swap( m_end, image->m_end ); std::swap( m_thirdPoint, image->m_thirdPoint ); std::swap( m_shape, image->m_shape ); std::swap( m_angle, image->m_angle ); std::swap( m_bezierC1, image->m_bezierC1 ); std::swap( m_bezierC2, image->m_bezierC2 ); std::swap( m_bezierPoints, image->m_bezierPoints ); std::swap( m_poly, image->m_poly ); std::swap( m_layer, image->m_layer ); std::swap( m_flags, image->m_flags ); std::swap( m_status, image->m_status ); std::swap( m_parent, image->m_parent ); std::swap( m_forceVisible, image->m_forceVisible ); } bool PCB_SHAPE::cmp_drawings::operator()( const BOARD_ITEM* aFirst, const BOARD_ITEM* aSecond ) const { if( aFirst->Type() != aSecond->Type() ) return aFirst->Type() < aSecond->Type(); if( aFirst->GetLayer() != aSecond->GetLayer() ) return aFirst->GetLayer() < aSecond->GetLayer(); if( aFirst->Type() == PCB_SHAPE_T ) { const PCB_SHAPE* dwgA = static_cast( aFirst ); const PCB_SHAPE* dwgB = static_cast( aSecond ); if( dwgA->GetShape() != dwgB->GetShape() ) return dwgA->GetShape() < dwgB->GetShape(); } return aFirst->m_Uuid < aSecond->m_Uuid; } static struct DRAWSEGMENT_DESC { DRAWSEGMENT_DESC() { PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance(); REGISTER_TYPE( PCB_SHAPE ); propMgr.InheritsAfter( TYPE_HASH( PCB_SHAPE ), TYPE_HASH( BOARD_ITEM ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Thickness" ), &PCB_SHAPE::SetWidth, &PCB_SHAPE::GetWidth, PROPERTY_DISPLAY::DISTANCE ) ); // TODO show certain properties depending on the shape //propMgr.AddProperty( new PROPERTY( _HKI( "Angle" ), // &PCB_SHAPE::SetAngle, &PCB_SHAPE::GetAngle, PROPERTY_DISPLAY::DECIDEGREE ) ); // TODO or may have different names (arcs) // TODO type? propMgr.AddProperty( new PROPERTY( _HKI( "End X" ), &PCB_SHAPE::SetEndX, &PCB_SHAPE::GetEndX, PROPERTY_DISPLAY::DISTANCE ) ); propMgr.AddProperty( new PROPERTY( _HKI( "End Y" ), &PCB_SHAPE::SetEndY, &PCB_SHAPE::GetEndY, PROPERTY_DISPLAY::DISTANCE ) ); } } _DRAWSEGMENT_DESC;