/** * @file class_board.cpp * @brief BOARD class functions. */ #include #include #include "fctsys.h" #include "common.h" #include "pcbcommon.h" #include "wxBasePcbFrame.h" #include "build_version.h" // BOARD_FILE_VERSION #include "pcbnew.h" #include "colors_selection.h" #include "class_board.h" #include "class_module.h" #include "class_track.h" #include "class_zone.h" #include "class_marker_pcb.h" /* This is an odd place for this, but CvPcb won't link if it is * in class_board_item.cpp like I first tried it. */ wxPoint BOARD_ITEM::ZeroOffset( 0, 0 ); BOARD::BOARD() : BOARD_ITEM( (BOARD_ITEM*) NULL, PCB_T ), m_NetClasses( this ) { // we have not loaded a board yet, assume latest until then. m_fileFormatVersionAtLoad = BOARD_FILE_VERSION; m_Status_Pcb = 0; // Status word: bit 1 = calculate. SetColorsSettings( &g_ColorsSettings ); m_NbNodes = 0; // Number of connected pads. m_NbNoconnect = 0; // Number of unconnected nets. m_CurrentZoneContour = NULL; // This ZONE_CONTAINER handle the // zone contour currently in progress m_NetInfo = new NETINFO_LIST( this ); // handle nets info list (name, design constraints .. m_NetInfo->BuildListOfNets(); // prepare pads and nets lists containers. for( int layer = 0; layer < NB_COPPER_LAYERS; ++layer ) { m_Layer[layer].m_Name = GetDefaultLayerName( layer ); m_Layer[layer].m_Type = LT_SIGNAL; } // Initial parameters for the default NETCLASS come from the global // preferences within g_DesignSettings via the NETCLASS() constructor. // Should user eventually load a board from a disk file, then these // defaults will get overwritten during load. m_NetClasses.GetDefault()->SetDescription( _( "This is the default net class." ) ); m_ViaSizeSelector = 0; m_TrackWidthSelector = 0; // Initialize default values in default netclass. m_NetClasses.GetDefault()->SetParams(); SetCurrentNetClass( m_NetClasses.GetDefault()->GetName() ); } BOARD::~BOARD() { /* @todo NO! this has nothing to do with a BOARD Do this in the UI, not in the storage container please. if( m_PcbFrame && m_PcbFrame->GetScreen() ) m_PcbFrame->GetScreen()->ClearUndoRedoList(); */ while( m_ZoneDescriptorList.size() ) { ZONE_CONTAINER* area_to_remove = m_ZoneDescriptorList[0]; Delete( area_to_remove ); } m_FullRatsnest.clear(); m_LocalRatsnest.clear(); DeleteMARKERs(); DeleteZONEOutlines(); delete m_CurrentZoneContour; m_CurrentZoneContour = NULL; delete m_NetInfo; } void BOARD::SetDesignSettings( const BOARD_DESIGN_SETTINGS& aDesignSettings ) { // copy all members. m_designSettings = aDesignSettings; } void BOARD::chainMarkedSegments( wxPoint aPosition, int aLayerMask, TRACK_PTRS* aList ) { TRACK* segment; // The current segment being analyzed. TRACK* via; // The via identified, eventually destroy TRACK* candidate; // The end segment to destroy (or NULL = segment) int NbSegm; if( m_Track == NULL ) return; /* Set the BUSY flag of all connected segments, first search starting at * aPosition. The search ends when a pad is found (end of a track), a * segment end has more than one other segment end connected, or when no * connected item found. * * Vias are a special case because they must look for segments connected * on other layers and they change the layer mask. They can be a track * end or not. They will be analyzer later and vias on terminal points * of the track will be considered as part of this track if they do not * connect segments of an other track together and will be considered as * part of an other track when removing the via, the segments of that other * track are disconnected. */ for( ; ; ) { if( GetPadFast( aPosition, aLayerMask ) != NULL ) return; /* Test for a via: a via changes the layer mask and can connect a lot * of segments at location aPosition. When found, the via is just * pushed in list. Vias will be examined later, when all connected * segment are found and push in list. This is because when a via * is found we do not know at this time the number of connected items * and we do not know if this via is on the track or finish the track */ via = m_Track->GetVia( NULL, aPosition, aLayerMask ); if( via ) { aLayerMask = via->ReturnMaskLayer(); aList->push_back( via ); } /* Now we search all segments connected to point aPosition * if only 1 segment: this segment is candidate * if > 1 segment: * end of track (more than 2 segment connected at this location) */ segment = m_Track; candidate = NULL; NbSegm = 0; while( ( segment = ::GetTrace( segment, NULL, aPosition, aLayerMask ) ) != NULL ) { if( segment->GetState( BUSY ) ) // already found and selected: skip it { segment = segment->Next(); continue; } if( segment == via ) // just previously found: skip it { segment = segment->Next(); continue; } NbSegm++; if( NbSegm == 1 ) /* First time we found a connected item: segment is candidate */ { candidate = segment; segment = segment->Next(); } else /* More than 1 segment connected -> this location is an end of the track */ { return; } } if( candidate ) // A candidate is found: flag it an push it in list { /* Initialize parameters to search items connected to this * candidate: * we must analyze connections to its other end */ aLayerMask = candidate->ReturnMaskLayer(); if( aPosition == candidate->m_Start ) { aPosition = candidate->m_End; } else { aPosition = candidate->m_Start; } segment = m_Track; /* restart list of tracks to analyze */ /* flag this item an push it in list of selected items */ aList->push_back( candidate ); candidate->SetState( BUSY, ON ); } else { return; } } } void BOARD::PushHighLight() { m_hightLightPrevious = m_hightLight; } void BOARD::PopHighLight() { m_hightLight = m_hightLightPrevious; m_hightLightPrevious.Clear(); } bool BOARD::SetCurrentNetClass( const wxString& aNetClassName ) { NETCLASS* netClass = m_NetClasses.Find( aNetClassName ); bool lists_sizes_modified = false; // if not found (should not happen) use the default if( netClass == NULL ) netClass = m_NetClasses.GetDefault(); m_CurrentNetClassName = netClass->GetName(); // Initialize others values: if( m_ViasDimensionsList.size() == 0 ) { VIA_DIMENSION viadim; lists_sizes_modified = true; m_ViasDimensionsList.push_back( viadim ); } if( m_TrackWidthList.size() == 0 ) { lists_sizes_modified = true; m_TrackWidthList.push_back( 0 ); } /* note the m_ViasDimensionsList[0] and m_TrackWidthList[0] values * are always the Netclass values */ if( m_ViasDimensionsList[0].m_Diameter != netClass->GetViaDiameter() ) lists_sizes_modified = true; m_ViasDimensionsList[0].m_Diameter = netClass->GetViaDiameter(); if( m_TrackWidthList[0] != netClass->GetTrackWidth() ) lists_sizes_modified = true; m_TrackWidthList[0] = netClass->GetTrackWidth(); if( m_ViaSizeSelector >= m_ViasDimensionsList.size() ) m_ViaSizeSelector = m_ViasDimensionsList.size(); if( m_TrackWidthSelector >= m_TrackWidthList.size() ) m_TrackWidthSelector = m_TrackWidthList.size(); return lists_sizes_modified; } int BOARD::GetBiggestClearanceValue() { int clearance = m_NetClasses.GetDefault()->GetClearance(); //Read list of Net Classes for( NETCLASSES::const_iterator nc = m_NetClasses.begin(); nc != m_NetClasses.end(); nc++ ) { NETCLASS* netclass = nc->second; clearance = MAX( clearance, netclass->GetClearance() ); } return clearance; } int BOARD::GetCurrentMicroViaSize() { NETCLASS* netclass = m_NetClasses.Find( m_CurrentNetClassName ); return netclass->GetuViaDiameter(); } int BOARD::GetCurrentMicroViaDrill() { NETCLASS* netclass = m_NetClasses.Find( m_CurrentNetClassName ); return netclass->GetuViaDrill(); } wxString BOARD::GetLayerName( int aLayerIndex ) const { if( !IsValidLayerIndex( aLayerIndex ) ) return wxEmptyString; // copper layer names are stored in the BOARD. if( IsValidCopperLayerIndex( aLayerIndex ) && IsLayerEnabled( aLayerIndex ) ) { // default names were set in BOARD::BOARD() but they may be // over-ridden by BOARD::SetLayerName() return m_Layer[aLayerIndex].m_Name; } return GetDefaultLayerName( aLayerIndex ); } wxString BOARD::GetDefaultLayerName( int aLayerNumber ) { const wxChar* txt; // These are only default layer names. For Pcbnew the copper names // may be over-ridden in the BOARD (*.brd) file. // Use a switch to explicitly show the mapping more clearly switch( aLayerNumber ) { case LAYER_N_FRONT: txt = _( "Front" ); break; case LAYER_N_2: txt = _( "Inner2" ); break; case LAYER_N_3: txt = _( "Inner3" ); break; case LAYER_N_4: txt = _( "Inner4" ); break; case LAYER_N_5: txt = _( "Inner5" ); break; case LAYER_N_6: txt = _( "Inner6" ); break; case LAYER_N_7: txt = _( "Inner7" ); break; case LAYER_N_8: txt = _( "Inner8" ); break; case LAYER_N_9: txt = _( "Inner9" ); break; case LAYER_N_10: txt = _( "Inner10" ); break; case LAYER_N_11: txt = _( "Inner11" ); break; case LAYER_N_12: txt = _( "Inner12" ); break; case LAYER_N_13: txt = _( "Inner13" ); break; case LAYER_N_14: txt = _( "Inner14" ); break; case LAYER_N_15: txt = _( "Inner15" ); break; case LAYER_N_BACK: txt = _( "Back" ); break; case ADHESIVE_N_BACK: txt = _( "Adhes_Back" ); break; case ADHESIVE_N_FRONT: txt = _( "Adhes_Front" ); break; case SOLDERPASTE_N_BACK: txt = _( "SoldP_Back" ); break; case SOLDERPASTE_N_FRONT: txt = _( "SoldP_Front" ); break; case SILKSCREEN_N_BACK: txt = _( "SilkS_Back" ); break; case SILKSCREEN_N_FRONT: txt = _( "SilkS_Front" ); break; case SOLDERMASK_N_BACK: txt = _( "Mask_Back" ); break; case SOLDERMASK_N_FRONT: txt = _( "Mask_Front" ); break; case DRAW_N: txt = _( "Drawings" ); break; case COMMENT_N: txt = _( "Comments" ); break; case ECO1_N: txt = _( "Eco1" ); break; case ECO2_N: txt = _( "Eco2" ); break; case EDGE_N: txt = _( "PCB_Edges" ); break; default: txt = _( "BAD INDEX" ); break; } return wxString( txt ); } bool BOARD::SetLayerName( int aLayerIndex, const wxString& aLayerName ) { if( !IsValidCopperLayerIndex( aLayerIndex ) ) return false; if( aLayerName == wxEmptyString || aLayerName.Len() > 20 ) return false; // no quote chars in the name allowed if( aLayerName.Find( wxChar( '"' ) ) != wxNOT_FOUND ) return false; wxString NameTemp = aLayerName; // replace any spaces with underscores before we do any comparing NameTemp.Replace( wxT( " " ), wxT( "_" ) ); if( IsLayerEnabled( aLayerIndex ) ) { for( int i = 0; i < NB_COPPER_LAYERS; i++ ) { if( i != aLayerIndex && IsLayerEnabled( i ) && NameTemp == m_Layer[i].m_Name ) return false; } m_Layer[aLayerIndex].m_Name = NameTemp; return true; } return false; } LAYER_T BOARD::GetLayerType( int aLayerIndex ) const { if( !IsValidCopperLayerIndex( aLayerIndex ) ) return LT_SIGNAL; //@@IMB: The original test was broken due to the discontinuity // in the layer sequence. if( IsLayerEnabled( aLayerIndex ) ) return m_Layer[aLayerIndex].m_Type; return LT_SIGNAL; } bool BOARD::SetLayerType( int aLayerIndex, LAYER_T aLayerType ) { if( !IsValidCopperLayerIndex( aLayerIndex ) ) return false; //@@IMB: The original test was broken due to the discontinuity // in the layer sequence. if( IsLayerEnabled( aLayerIndex ) ) { m_Layer[aLayerIndex].m_Type = aLayerType; return true; } return false; } const char* LAYER::ShowType( LAYER_T aType ) { const char* cp; switch( aType ) { default: case LT_SIGNAL: cp = "signal"; break; case LT_POWER: cp = "power"; break; case LT_MIXED: cp = "mixed"; break; case LT_JUMPER: cp = "jumper"; break; } return cp; } LAYER_T LAYER::ParseType( const char* aType ) { if( strcmp( aType, "signal" ) == 0 ) return LT_SIGNAL; else if( strcmp( aType, "power" ) == 0 ) return LT_POWER; else if( strcmp( aType, "mixed" ) == 0 ) return LT_MIXED; else if( strcmp( aType, "jumper" ) == 0 ) return LT_JUMPER; else return LAYER_T( -1 ); } int BOARD::GetCopperLayerCount() const { return m_designSettings.GetCopperLayerCount(); } void BOARD::SetCopperLayerCount( int aCount ) { m_designSettings.SetCopperLayerCount( aCount ); } int BOARD::GetEnabledLayers() const { return m_designSettings.GetEnabledLayers(); } int BOARD::GetVisibleLayers() const { return m_designSettings.GetVisibleLayers(); } void BOARD::SetEnabledLayers( int aLayerMask ) { m_designSettings.SetEnabledLayers( aLayerMask ); } void BOARD::SetVisibleLayers( int aLayerMask ) { m_designSettings.SetVisibleLayers( aLayerMask ); } // these are not tidy, since there are PCB_VISIBLEs that are not stored in the bitmap. void BOARD::SetVisibleElements( int aMask ) { /* Call SetElementVisibility for each item, * to ensure specific calculations that can be needed by some items * just change the visibility flags could be not sufficient */ for( int ii = 0; ii < PCB_VISIBLE( END_PCB_VISIBLE_LIST ); ii++ ) { int item_mask = 1 << ii; SetElementVisibility( ii, aMask & item_mask ); } } // these are not tidy, since there are PCB_VISIBLEs that are not stored in the bitmap. void BOARD::SetVisibleAlls( ) { SetVisibleLayers( FULL_LAYERS ); /* Call SetElementVisibility for each item, * to ensure specific calculations that can be needed by some items */ for( int ii = 0; ii < PCB_VISIBLE(END_PCB_VISIBLE_LIST); ii++ ) SetElementVisibility( ii, true ); } int BOARD::GetVisibleElements() const { return m_designSettings.GetVisibleElements(); } bool BOARD::IsElementVisible( int aPCB_VISIBLE ) const { return m_designSettings.IsElementVisible( aPCB_VISIBLE ); } void BOARD::SetElementVisibility( int aPCB_VISIBLE, bool isEnabled ) { switch( aPCB_VISIBLE ) { case RATSNEST_VISIBLE: m_designSettings.SetElementVisibility( aPCB_VISIBLE, isEnabled ); // we must clear or set the CH_VISIBLE flags to hide/show ratsnet // because we have a tool to show hide ratsnest relative to a pad or a module // so the hide/show option is a per item selection if( IsElementVisible(RATSNEST_VISIBLE) ) { for( unsigned ii = 0; ii < GetRatsnestsCount(); ii++ ) m_FullRatsnest[ii].m_Status |= CH_VISIBLE; } else { for( unsigned ii = 0; ii < GetRatsnestsCount(); ii++ ) m_FullRatsnest[ii].m_Status &= ~CH_VISIBLE; } break; default: m_designSettings.SetElementVisibility( aPCB_VISIBLE, isEnabled ); } } int BOARD::GetVisibleElementColor( int aPCB_VISIBLE ) { int color = -1; switch( aPCB_VISIBLE ) { case VIA_THROUGH_VISIBLE: case VIA_MICROVIA_VISIBLE: case VIA_BBLIND_VISIBLE: case MOD_TEXT_FR_VISIBLE: case MOD_TEXT_BK_VISIBLE: case MOD_TEXT_INVISIBLE: case ANCHOR_VISIBLE: case PAD_FR_VISIBLE: case PAD_BK_VISIBLE: case RATSNEST_VISIBLE: case GRID_VISIBLE: color = GetColorsSettings()->GetItemColor( aPCB_VISIBLE ); break; default: wxLogDebug( wxT( "BOARD::GetVisibleElementColor(): bad arg %d" ), aPCB_VISIBLE ); } return color; } void BOARD::SetVisibleElementColor( int aPCB_VISIBLE, int aColor ) { switch( aPCB_VISIBLE ) { case VIA_THROUGH_VISIBLE: case VIA_MICROVIA_VISIBLE: case VIA_BBLIND_VISIBLE: case MOD_TEXT_FR_VISIBLE: case MOD_TEXT_BK_VISIBLE: case MOD_TEXT_INVISIBLE: case ANCHOR_VISIBLE: case PAD_FR_VISIBLE: case PAD_BK_VISIBLE: case GRID_VISIBLE: case RATSNEST_VISIBLE: GetColorsSettings()->SetItemColor( aPCB_VISIBLE, aColor ); break; default: wxLogDebug( wxT( "BOARD::SetVisibleElementColor(): bad arg %d" ), aPCB_VISIBLE ); } } void BOARD::SetLayerColor( int aLayer, int aColor ) { GetColorsSettings()->SetLayerColor( aLayer, aColor ); } int BOARD::GetLayerColor( int aLayer ) { return GetColorsSettings()->GetLayerColor( aLayer ); } bool BOARD::IsModuleLayerVisible( int layer ) { if( layer==LAYER_N_FRONT ) return IsElementVisible( PCB_VISIBLE(MOD_FR_VISIBLE) ); else if( layer==LAYER_N_BACK ) return IsElementVisible( PCB_VISIBLE(MOD_BK_VISIBLE) ); else return true; } void BOARD::Add( BOARD_ITEM* aBoardItem, int aControl ) { if( aBoardItem == NULL ) { wxFAIL_MSG( wxT( "BOARD::Add() param error: aBoardItem NULL" ) ); return; } switch( aBoardItem->Type() ) { // this one uses a vector case PCB_MARKER_T: aBoardItem->SetParent( this ); m_markers.push_back( (MARKER_PCB*) aBoardItem ); break; // this one uses a vector case PCB_ZONE_AREA_T: aBoardItem->SetParent( this ); m_ZoneDescriptorList.push_back( (ZONE_CONTAINER*) aBoardItem ); break; case PCB_TRACE_T: case PCB_VIA_T: TRACK* insertAid; insertAid = ( (TRACK*) aBoardItem )->GetBestInsertPoint( this ); m_Track.Insert( (TRACK*) aBoardItem, insertAid ); break; case PCB_ZONE_T: if( aControl & ADD_APPEND ) m_Zone.PushBack( (SEGZONE*) aBoardItem ); else m_Zone.PushFront( (SEGZONE*) aBoardItem ); aBoardItem->SetParent( this ); break; case PCB_MODULE_T: if( aControl & ADD_APPEND ) m_Modules.PushBack( (MODULE*) aBoardItem ); else m_Modules.PushFront( (MODULE*) aBoardItem ); aBoardItem->SetParent( this ); // Because the list of pads has changed, reset the status // This indicate the list of pad and nets must be recalculated before use m_Status_Pcb = 0; break; case PCB_DIMENSION_T: case PCB_LINE_T: case PCB_TEXT_T: case PCB_MODULE_EDGE_T: case PCB_TARGET_T: if( aControl & ADD_APPEND ) m_Drawings.PushBack( aBoardItem ); else m_Drawings.PushFront( aBoardItem ); aBoardItem->SetParent( this ); break; // other types may use linked list default: { wxString msg; msg.Printf( wxT( "BOARD::Add() needs work: BOARD_ITEM type (%d) not handled" ), aBoardItem->Type() ); wxFAIL_MSG( msg ); } break; } } BOARD_ITEM* BOARD::Remove( BOARD_ITEM* aBoardItem ) { // find these calls and fix them! Don't send me no stinking' NULL. wxASSERT( aBoardItem ); switch( aBoardItem->Type() ) { case PCB_MARKER_T: // find the item in the vector, then remove it for( unsigned i = 0; iNext() ) { if( aBoardEdgesOnly && (item->Type() != PCB_LINE_T || item->GetLayer() != EDGE_N ) ) continue; if( !hasItems ) area = item->GetBoundingBox(); else area.Merge( item->GetBoundingBox() ); hasItems = true; } if( !aBoardEdgesOnly ) { // Check modules for( MODULE* module = m_Modules; module; module = module->Next() ) { if( !hasItems ) area = module->GetBoundingBox(); else area.Merge( module->GetBoundingBox() ); hasItems = true; } // Check tracks for( TRACK* track = m_Track; track; track = track->Next() ) { if( !hasItems ) area = track->GetBoundingBox(); else area.Merge( track->GetBoundingBox() ); hasItems = true; } // Check segment zones for( TRACK* track = m_Zone; track; track = track->Next() ) { if( !hasItems ) area = track->GetBoundingBox(); else area.Merge( track->GetBoundingBox() ); hasItems = true; } // Check polygonal zones for( unsigned int i = 0; i < m_ZoneDescriptorList.size(); i++ ) { ZONE_CONTAINER* aZone = m_ZoneDescriptorList[i]; if( !hasItems ) area = aZone->GetBoundingBox(); else area.Merge( aZone->GetBoundingBox() ); area.Merge( aZone->GetBoundingBox() ); hasItems = true; } } m_BoundingBox = area; // save for BOARD::GetBoundingBox() return area; } // virtual, see pcbstruct.h void BOARD::DisplayInfo( EDA_DRAW_FRAME* frame ) { wxString txt; frame->ClearMsgPanel(); int viasCount = 0; int trackSegmentsCount = 0; for( BOARD_ITEM* item = m_Track; item; item = item->Next() ) { if( item->Type() == PCB_VIA_T ) viasCount++; else trackSegmentsCount++; } txt.Printf( wxT( "%d" ), GetPadsCount() ); frame->AppendMsgPanel( _( "Pads" ), txt, DARKGREEN ); txt.Printf( wxT( "%d" ), viasCount ); frame->AppendMsgPanel( _( "Vias" ), txt, DARKGREEN ); txt.Printf( wxT( "%d" ), trackSegmentsCount ); frame->AppendMsgPanel( _( "trackSegm" ), txt, DARKGREEN ); txt.Printf( wxT( "%d" ), GetNodesCount() ); frame->AppendMsgPanel( _( "Nodes" ), txt, DARKCYAN ); txt.Printf( wxT( "%d" ), m_NetInfo->GetCount() ); frame->AppendMsgPanel( _( "Nets" ), txt, RED ); /* These parameters are known only if the full ratsnest is available, * so, display them only if this is the case */ if( (m_Status_Pcb & NET_CODES_OK) ) { txt.Printf( wxT( "%d" ), GetRatsnestsCount() ); frame->AppendMsgPanel( _( "Links" ), txt, DARKGREEN ); txt.Printf( wxT( "%d" ), GetRatsnestsCount() - GetNoconnectCount() ); frame->AppendMsgPanel( _( "Connect" ), txt, DARKGREEN ); txt.Printf( wxT( "%d" ), GetNoconnectCount() ); frame->AppendMsgPanel( _( "Unconnected" ), txt, BLUE ); } } // virtual, see pcbstruct.h SEARCH_RESULT BOARD::Visit( INSPECTOR* inspector, const void* testData, const KICAD_T scanTypes[] ) { KICAD_T stype; SEARCH_RESULT result = SEARCH_CONTINUE; const KICAD_T* p = scanTypes; bool done = false; #if 0 && defined(DEBUG) std::cout << GetClass().mb_str() << ' '; #endif while( !done ) { stype = *p; switch( stype ) { case PCB_T: result = inspector->Inspect( this, testData ); // inspect me // skip over any types handled in the above call. ++p; break; /* Instances of the requested KICAD_T live in a list, either one * that I manage, or that my modules manage. If it's a type managed * by class MODULE, then simply pass it on to each module's * MODULE::Visit() function by way of the * IterateForward( m_Modules, ... ) call. */ case PCB_MODULE_T: case PCB_PAD_T: case PCB_MODULE_TEXT_T: case PCB_MODULE_EDGE_T: // this calls MODULE::Visit() on each module. result = IterateForward( m_Modules, inspector, testData, p ); // skip over any types handled in the above call. for( ; ; ) { switch( stype = *++p ) { case PCB_MODULE_T: case PCB_PAD_T: case PCB_MODULE_TEXT_T: case PCB_MODULE_EDGE_T: continue; default: ; } break; } break; case PCB_LINE_T: case PCB_TEXT_T: case PCB_DIMENSION_T: case PCB_TARGET_T: result = IterateForward( m_Drawings, inspector, testData, p ); // skip over any types handled in the above call. for( ; ; ) { switch( stype = *++p ) { case PCB_LINE_T: case PCB_TEXT_T: case PCB_DIMENSION_T: case PCB_TARGET_T: continue; default: ; } break; } ; break; #if 0 // both these are on same list, so we must scan it twice in order // to get VIA priority, using new #else code below. // But we are not using separate lists for TRACKs and SEGVIAs, because // items are ordered (sorted) in the linked // list by netcode AND by physical distance: // when created, if a track or via is connected to an existing track or // via, it is put in linked list after this existing track or via // So usually, connected tracks or vias are grouped in this list // So the algorithm (used in ratsnest computations) which computes the // track connectivity is faster (more than 100 time regarding to // a non ordered list) because when it searches for a connexion, first // it tests the near (near in term of linked list) 50 items // from the current item (track or via) in test. // Usually, because of this sort, a connected item (if exists) is // found. // If not found (and only in this case) an exhaustive (and time // consuming) search is made, but this case is statistically rare. case PCB_VIA_T: case PCB_TRACE_T: result = IterateForward( m_Track, inspector, testData, p ); // skip over any types handled in the above call. for( ; ; ) { switch( stype = *++p ) { case PCB_VIA_T: case PCB_TRACE_T: continue; default: ; } break; } break; #else case PCB_VIA_T: result = IterateForward( m_Track, inspector, testData, p ); ++p; break; case PCB_TRACE_T: result = IterateForward( m_Track, inspector, testData, p ); ++p; break; #endif case PCB_MARKER_T: // MARKER_PCBS are in the m_markers std::vector for( unsigned i = 0; iVisit( inspector, testData, p ); if( result == SEARCH_QUIT ) break; } ++p; break; case PCB_ZONE_AREA_T: // PCB_ZONE_AREA_T are in the m_ZoneDescriptorList std::vector for( unsigned i = 0; i< m_ZoneDescriptorList.size(); ++i ) { result = m_ZoneDescriptorList[i]->Visit( inspector, testData, p ); if( result == SEARCH_QUIT ) break; } ++p; break; case PCB_ZONE_T: result = IterateForward( m_Zone, inspector, testData, p ); ++p; break; default: // catch EOT or ANY OTHER type here and return. done = true; break; } if( result == SEARCH_QUIT ) break; } return result; } /* now using PcbGeneralLocateAndDisplay(), but this remains a useful example * of how the INSPECTOR can be used in a lightweight way. * // see pcbstruct.h * BOARD_ITEM* BOARD::FindPadOrModule( const wxPoint& refPos, int layer ) * { * class PadOrModule : public INSPECTOR * { * public: * BOARD_ITEM* found; * int layer; * int layer_mask; * * PadOrModule( int alayer ) : * found(0), layer(alayer), layer_mask( g_TabOneLayerMask[alayer] ) * {} * * SEARCH_RESULT Inspect( EDA_ITEM* testItem, const void* testData * ) * { * BOARD_ITEM* item = (BOARD_ITEM*) testItem; * const wxPoint& refPos = *(const wxPoint*) testData; * * if( item->Type() == PCB_PAD_T ) * { * D_PAD* pad = (D_PAD*) item; * if( pad->HitTest( refPos ) ) * { * if( layer_mask & pad->m_layerMask ) * { * found = item; * return SEARCH_QUIT; * } * else if( !found ) * { * MODULE* parent = (MODULE*) pad->m_Parent; * if( IsModuleLayerVisible( parent->GetLayer() ) ) * found = item; * } * } * } * * else if( item->Type() == PCB_MODULE_T ) * { * MODULE* module = (MODULE*) item; * * // consider only visible modules * if( IsModuleLayerVisible( module->GetLayer() ) ) * { * if( module->HitTest( refPos ) ) * { * if( layer == module->GetLayer() ) * { * found = item; * return SEARCH_QUIT; * } * * // layer mismatch, save in case we don't find a * // future layer match hit. * if( !found ) * found = item; * } * } * } * return SEARCH_CONTINUE; * } * }; * * PadOrModule inspector( layer ); * * // search only for PADs first, then MODULES, and preferably a layer match * static const KICAD_T scanTypes[] = { PCB_PAD_T, PCB_MODULE_T, EOT }; * * // visit this BOARD with the above inspector * Visit( &inspector, &refPos, scanTypes ); * * return inspector.found; * } */ NETINFO_ITEM* BOARD::FindNet( int aNetcode ) const { // the first valid netcode is 1 and the last is m_NetInfo->GetCount()-1. // zero is reserved for "no connection" and is not used. // NULL is returned for non valid netcodes NETINFO_ITEM* net = m_NetInfo->GetNetItem( aNetcode ); #if defined(DEBUG) if( net ) // item can be NULL if anetcode is not valid { if( aNetcode != net->GetNet() ) { printf( "FindNet() anetcode %d != GetNet() %d (net: %s)\n", aNetcode, net->GetNet(), TO_UTF8( net->GetNetname() ) ); } } #endif return net; } NETINFO_ITEM* BOARD::FindNet( const wxString& aNetname ) const { // the first valid netcode is 1. // zero is reserved for "no connection" and is not used. if( aNetname.IsEmpty() ) return NULL; int ncount = m_NetInfo->GetCount(); // Search for a netname = aNetname #if 0 // Use a sequential search: easy to understand, but slow for( int ii = 1; ii < ncount; ii++ ) { NETINFO_ITEM* item = m_NetInfo->GetNetItem( ii ); if( item && item->GetNetname() == aNetname ) { return item; } } #else // Use a fast binary search, // this is possible because Nets are alphabetically ordered in list // see NETINFO_LIST::BuildListOfNets() and // NETINFO_LIST::Build_Pads_Full_List() int imax = ncount - 1; int index = imax; while( ncount > 0 ) { int ii = ncount; ncount >>= 1; if( (ii & 1) && ( ii > 1 ) ) ncount++; NETINFO_ITEM* item = m_NetInfo->GetNetItem( index ); if( item == NULL ) return NULL; int icmp = item->GetNetname().Cmp( aNetname ); if( icmp == 0 ) // found ! { return item; } if( icmp < 0 ) // must search after item { index += ncount; if( index > imax ) index = imax; continue; } if( icmp > 0 ) // must search before item { index -= ncount; if( index < 1 ) index = 1; continue; } } #endif return NULL; } MODULE* BOARD::FindModuleByReference( const wxString& aReference ) const { struct FindModule : public INSPECTOR { MODULE* found; FindModule() : found( 0 ) {} // implement interface INSPECTOR SEARCH_RESULT Inspect( EDA_ITEM* item, const void* data ) { MODULE* module = (MODULE*) item; const wxString& ref = *(const wxString*) data; if( ref == module->GetReference() ) { found = module; return SEARCH_QUIT; } return SEARCH_CONTINUE; } } inspector; // search only for MODULES static const KICAD_T scanTypes[] = { PCB_MODULE_T, EOT }; // visit this BOARD with the above inspector BOARD* nonconstMe = (BOARD*) this; nonconstMe->Visit( &inspector, &aReference, scanTypes ); return inspector.found; } // Sort nets by decreasing pad count static bool s_SortByNodes( const NETINFO_ITEM* a, const NETINFO_ITEM* b ) { return b->GetNodesCount() < a->GetNodesCount(); } int BOARD::ReturnSortedNetnamesList( wxArrayString& aNames, bool aSortbyPadsCount ) { if( m_NetInfo->GetCount() == 0 ) return 0; // Build the list std::vector netBuffer; netBuffer.reserve( m_NetInfo->GetCount() ); for( unsigned ii = 1; ii < m_NetInfo->GetCount(); ii++ ) { if( m_NetInfo->GetNetItem( ii )->GetNet() > 0 ) netBuffer.push_back( m_NetInfo->GetNetItem( ii ) ); } // sort the list if( aSortbyPadsCount ) sort( netBuffer.begin(), netBuffer.end(), s_SortByNodes ); for( unsigned ii = 0; ii < netBuffer.size(); ii++ ) aNames.Add( netBuffer[ii]->GetNetname() ); return netBuffer.size(); } void BOARD::RedrawAreasOutlines( EDA_DRAW_PANEL* panel, wxDC* aDC, int aDrawMode, int aLayer ) { if( !aDC ) return; for( int ii = 0; ii < GetAreaCount(); ii++ ) { ZONE_CONTAINER* edge_zone = GetArea( ii ); if( (aLayer < 0) || ( aLayer == edge_zone->GetLayer() ) ) edge_zone->Draw( panel, aDC, aDrawMode ); } } void BOARD::RedrawFilledAreas( EDA_DRAW_PANEL* panel, wxDC* aDC, int aDrawMode, int aLayer ) { if( !aDC ) return; for( int ii = 0; ii < GetAreaCount(); ii++ ) { ZONE_CONTAINER* edge_zone = GetArea( ii ); if( (aLayer < 0) || ( aLayer == edge_zone->GetLayer() ) ) edge_zone->DrawFilledArea( panel, aDC, aDrawMode ); } } ZONE_CONTAINER* BOARD::HitTestForAnyFilledArea( const wxPoint& aRefPos, int aStartLayer, int aEndLayer ) { if( aEndLayer < 0 ) aEndLayer = aStartLayer; if( aEndLayer < aStartLayer ) EXCHG( aEndLayer, aStartLayer ); for( unsigned ia = 0; ia < m_ZoneDescriptorList.size(); ia++ ) { ZONE_CONTAINER* area = m_ZoneDescriptorList[ia]; int layer = area->GetLayer(); if( (layer < aStartLayer) || (layer > aEndLayer) ) continue; // In locate functions we must skip tagged items with BUSY flag set. if( area->GetState( BUSY ) ) continue; if( area->HitTestFilledArea( aRefPos ) ) return area; } return NULL; } int BOARD::SetAreasNetCodesFromNetNames( void ) { int error_count = 0; for( int ii = 0; ii < GetAreaCount(); ii++ ) { if( !GetArea( ii )->IsOnCopperLayer() ) { GetArea( ii )->SetNet( 0 ); continue; } if( GetArea( ii )->GetNet() != 0 ) // i.e. if this zone is connected to a net { const NETINFO_ITEM* net = FindNet( GetArea( ii )->m_Netname ); if( net ) { GetArea( ii )->SetNet( net->GetNet() ); } else { error_count++; // keep Net Name and set m_NetCode to -1 : error flag. GetArea( ii )->SetNet( -1 ); } } } return error_count; } TRACK* BOARD::GetViaByPosition( const wxPoint& aPosition, int aLayerMask ) { TRACK* track; for( track = m_Track; track; track = track->Next() ) { if( track->Type() != PCB_VIA_T ) continue; if( track->m_Start != aPosition ) continue; if( track->GetState( BUSY | IS_DELETED ) ) continue; if( aLayerMask < 0 ) break; if( track->IsOnLayer( aLayerMask ) ) break; } return track; } D_PAD* BOARD::GetPad( const wxPoint& aPosition, int aLayerMask ) { D_PAD* pad = NULL; for( MODULE* module = m_Modules; module && ( pad == NULL ); module = module->Next() ) { if( aLayerMask ) pad = module->GetPad( aPosition, aLayerMask ); else pad = module->GetPad( aPosition, ALL_LAYERS ); } return pad; } D_PAD* BOARD::GetPad( TRACK* aTrace, int aEndPoint ) { D_PAD* pad = NULL; wxPoint aPosition; int aLayerMask = GetLayerMask( aTrace->GetLayer() ); if( aEndPoint == START ) { aPosition = aTrace->m_Start; } else { aPosition = aTrace->m_End; } for( MODULE* module = m_Modules; module; module = module->Next() ) { pad = module->GetPad( aPosition, aLayerMask ); if( pad != NULL ) break; } return pad; } D_PAD* BOARD::GetPadFast( const wxPoint& aPosition, int aLayerMask ) { for( unsigned i=0; iGetPad(i); if( pad->m_Pos != aPosition ) continue; /* Pad found, it must be on the correct layer */ if( pad->m_layerMask & aLayerMask ) return pad; } return NULL; } D_PAD* BOARD::GetPad( std::vector& aPadList, const wxPoint& aPosition, int aLayerMask ) { // Search the aPoint coordinates in aPadList // aPadList is sorted by X then Y values, and a fast binary search is used int idxmax = aPadList.size()-1; int delta = aPadList.size(); if( delta & 1 && delta > 1 ) delta += 1; delta /= 2; int idx = delta; // Starting index is the middle of list while( delta ) { if( (delta & 1) && ( delta > 1 ) ) delta++; delta /= 2; D_PAD* pad = aPadList[idx]; if( pad->m_Pos == aPosition ) // candidate found { // The pad must match the layer mask: if( (aLayerMask & pad->m_layerMask) != 0 ) return pad; // More than one pad can be at aPosition // search for a pad at aPosition that matched this mask // search next for( int ii = idx+1; ii <= idxmax; ii++ ) { pad = aPadList[ii]; if( pad->m_Pos != aPosition ) break; if( (aLayerMask & pad->m_layerMask) != 0 ) return pad; } // search previous for( int ii = idx-1 ;ii >=0; ii-- ) { pad = aPadList[ii]; if( pad->m_Pos != aPosition ) break; if( (aLayerMask & pad->m_layerMask) != 0 ) return pad; } // Not found: return 0; } if( pad->m_Pos.x == aPosition.x ) // Must search considering Y coordinate { if(pad->m_Pos.y < aPosition.y) // Must search after this item { idx += delta; if( idx > idxmax ) idx = idxmax; } else // Must search before this item { idx -= delta; if( idx < 0 ) idx = 0; } } else if( pad->m_Pos.x < aPosition.x ) // Must search after this item { idx += delta; if( idx > idxmax ) idx = idxmax; } else // Must search before this item { idx -= delta; if( idx < 0 ) idx = 0; } } return NULL; } /** * Function SortPadsByXCoord * is used by GetSortedPadListByXCoord to Sort a pad list by x coordinate value. */ static bool sortPadsByXthenYCoord( D_PAD* const & ref, D_PAD* const & comp ) { if( ref->m_Pos.x == comp->m_Pos.x ) return ref->m_Pos.y < comp->m_Pos.y; return ref->m_Pos.x < comp->m_Pos.x; } void BOARD::GetSortedPadListByXthenYCoord( std::vector& aVector ) { aVector.insert( aVector.end(), m_NetInfo->m_PadsFullList.begin(), m_NetInfo->m_PadsFullList.end() ); sort( aVector.begin(), aVector.end(), sortPadsByXthenYCoord ); } TRACK* BOARD::GetTrace( TRACK* aTrace, const wxPoint& aPosition, int aLayerMask ) { for( TRACK* track = aTrace; track; track = track->Next() ) { int layer = track->GetLayer(); if( track->GetState( BUSY | IS_DELETED ) ) continue; if( m_designSettings.IsLayerVisible( layer ) == false ) continue; if( track->Type() == PCB_VIA_T ) /* VIA encountered. */ { if( track->HitTest( aPosition ) ) return track; } else { if( (GetLayerMask( layer ) & aLayerMask) == 0 ) continue; /* Segments on different layers. */ if( track->HitTest( aPosition ) ) return track; } } return NULL; } TRACK* BOARD::MarkTrace( TRACK* aTrace, int* aCount, int* aTraceLength, int* aDieLength, bool aReorder ) { int NbSegmBusy; TRACK_PTRS trackList; if( aCount ) *aCount = 0; if( aTraceLength ) *aTraceLength = 0; if( aTrace == NULL ) return NULL; // Ensure the flag BUSY of all tracks of the board is cleared // because we use it to mark segments of the track for( TRACK* track = m_Track; track; track = track->Next() ) track->SetState( BUSY, OFF ); /* Set flags of the initial track segment */ aTrace->SetState( BUSY, ON ); int layerMask = aTrace->ReturnMaskLayer(); trackList.push_back( aTrace ); /* Examine the initial track segment : if it is really a segment, this is * easy. * If it is a via, one must search for connected segments. * If <=2, this via connect 2 segments (or is connected to only one * segment) and this via and these 2 segments are a part of a track. * If > 2 only this via is flagged (the track has only this via) */ if( aTrace->Type() == PCB_VIA_T ) { TRACK* Segm1, * Segm2 = NULL, * Segm3 = NULL; Segm1 = ::GetTrace( m_Track, NULL, aTrace->m_Start, layerMask ); if( Segm1 ) { Segm2 = ::GetTrace( Segm1->Next(), NULL, aTrace->m_Start, layerMask ); } if( Segm2 ) { Segm3 = ::GetTrace( Segm2->Next(), NULL, aTrace->m_Start, layerMask ); } if( Segm3 ) // More than 2 segments are connected to this via. the track" is only this via { if( aCount ) *aCount = 1; return aTrace; } if( Segm1 ) // search for others segments connected to the initial segment start point { layerMask = Segm1->ReturnMaskLayer(); chainMarkedSegments( aTrace->m_Start, layerMask, &trackList ); } if( Segm2 ) // search for others segments connected to the initial segment end point { layerMask = Segm2->ReturnMaskLayer(); chainMarkedSegments( aTrace->m_Start, layerMask, &trackList ); } } else // mark the chain using both ends of the initial segment { chainMarkedSegments( aTrace->m_Start, layerMask, &trackList ); chainMarkedSegments( aTrace->m_End, layerMask, &trackList ); } // Now examine selected vias and flag them if they are on the track // If a via is connected to only one or 2 segments, it is flagged (is on the track) // If a via is connected to more than 2 segments, it is a track end, and it // is removed from the list // go through the list backwards. for( int i = trackList.size() - 1; i>=0; --i ) { TRACK* via = trackList[i]; if( via->Type() != PCB_VIA_T ) continue; if( via == aTrace ) continue; via->SetState( BUSY, ON ); // Try to flag it. the flag will be cleared later if needed layerMask = via->ReturnMaskLayer(); TRACK* track = ::GetTrace( m_Track, NULL, via->m_Start, layerMask ); // GetTrace does not consider tracks flagged BUSY. // So if no connected track found, this via is on the current track // only: keep it if( track == NULL ) continue; /* If a track is found, this via connects also others segments of an * other track. This case happens when the vias ends the selected * track but must we consider this via is on the selected track, or * on an other track. * (this is important when selecting a track for deletion: must this * via be deleted or not?) * We consider here this via on the track if others segment connected * to this via remain connected when removing this via. * We search for all others segment connected together: * if there are on the same layer, the via is on the selected track * if there are on different layers, the via is on an other track */ int layer = track->GetLayer(); while( ( track = ::GetTrace( track->Next(), NULL, via->m_Start, layerMask ) ) != NULL ) { if( layer != track->GetLayer() ) { // The via connects segments of an other track: it is removed // from list because it is member of an other track via->SetState( BUSY, OFF ); break; } } } /* Rearrange the track list in order to have flagged segments linked * from firstTrack so the NbSegmBusy segments are consecutive segments * in list, the first item in the full track list is firstTrack, and * the NbSegmBusy-1 next items (NbSegmBusy when including firstTrack) * are the flagged segments */ NbSegmBusy = 0; TRACK* firstTrack; for( firstTrack = m_Track; firstTrack; firstTrack = firstTrack->Next() ) { // Search for the first flagged BUSY segments if( firstTrack->GetState( BUSY ) ) { NbSegmBusy = 1; break; } } if( firstTrack == NULL ) return NULL; double full_len = 0; double lenDie = 0; if( aReorder ) { DLIST* list = (DLIST*)firstTrack->GetList(); wxASSERT( list ); /* Rearrange the chain starting at firstTrack * All others flagged items are moved from their position to the end * of the flagged list */ TRACK* next; for( TRACK* track = firstTrack->Next(); track; track = next ) { next = track->Next(); if( track->GetState( BUSY ) ) // move it! { NbSegmBusy++; track->UnLink(); list->Insert( track, firstTrack->Next() ); if( aTraceLength ) full_len += track->GetLength(); if( aDieLength ) // Add now length die. { // In fact only 2 pads (maximum) will be taken in account: // that are on each end of the track, if any if( track->GetState( BEGIN_ONPAD ) ) { D_PAD * pad = (D_PAD *) track->start; lenDie += (double) pad->m_LengthDie; } if( track->GetState( END_ONPAD ) ) { D_PAD * pad = (D_PAD *) track->end; lenDie += (double) pad->m_LengthDie; } } } } } else if( aTraceLength ) { NbSegmBusy = 0; for( TRACK* track = firstTrack; track; track = track->Next() ) { if( track->GetState( BUSY ) ) { NbSegmBusy++; track->SetState( BUSY, OFF ); full_len += track->GetLength(); // Add now length die. // In fact only 2 pads (maximum) will be taken in account: // that are on each end of the track, if any if( track->GetState( BEGIN_ONPAD ) ) { D_PAD * pad = (D_PAD *) track->start; lenDie += (double) pad->m_LengthDie; } if( track->GetState( END_ONPAD ) ) { D_PAD * pad = (D_PAD *) track->end; lenDie += (double) pad->m_LengthDie; } } } } if( aTraceLength ) *aTraceLength = wxRound( full_len ); if( aDieLength ) *aDieLength = wxRound( lenDie ); if( aCount ) *aCount = NbSegmBusy; return firstTrack; } MODULE* BOARD::GetFootprint( const wxPoint& aPosition, int aActiveLayer, bool aVisibleOnly, bool aIgnoreLocked ) { MODULE* pt_module; MODULE* module = NULL; MODULE* Altmodule = NULL; int min_dim = 0x7FFFFFFF; int alt_min_dim = 0x7FFFFFFF; int layer; for( pt_module = m_Modules; pt_module; pt_module = (MODULE*) pt_module->Next() ) { // is the ref point within the module's bounds? if( !pt_module->HitTest( aPosition ) ) continue; // if caller wants to ignore locked modules, and this one is locked, skip it. if( aIgnoreLocked && pt_module->IsLocked() ) continue; /* Calculate priority: the priority is given to the layer of the * module and the copper layer if the module layer is indelible, * adhesive copper, a layer if cmp module layer is indelible, * adhesive component. */ layer = pt_module->GetLayer(); if( layer==ADHESIVE_N_BACK || layer==SILKSCREEN_N_BACK ) layer = LAYER_N_BACK; else if( layer==ADHESIVE_N_FRONT || layer==SILKSCREEN_N_FRONT ) layer = LAYER_N_FRONT; /* Test of minimum size to choosing the best candidate. */ EDA_RECT bb = pt_module->GetFootPrintRect(); int offx = bb.GetX() + bb.GetWidth() / 2; int offy = bb.GetY() + bb.GetHeight() / 2; //off x & offy point to the middle of the box. int dist = abs( aPosition.x - offx ) + abs( aPosition.y - offy ); //int dist = MIN(lx, ly); // to pick the smallest module (kinda // screwy with same-sized modules -- this is bad!) if( aActiveLayer == layer ) { if( dist <= min_dim ) { /* better footprint shown on the active layer */ module = pt_module; min_dim = dist; } } else if( aVisibleOnly && IsModuleLayerVisible( layer ) ) { if( dist <= alt_min_dim ) { /* better footprint shown on other layers */ Altmodule = pt_module; alt_min_dim = dist; } } } if( module ) { return module; } if( Altmodule ) { return Altmodule; } return NULL; } BOARD_CONNECTED_ITEM* BOARD::GetLockPoint( const wxPoint& aPosition, int aLayerMask ) { for( MODULE* module = m_Modules; module; module = module->Next() ) { D_PAD* pad = module->GetPad( aPosition, aLayerMask ); if( pad ) return pad; } /* No pad has been located so check for a segment of the trace. */ TRACK* segment = ::GetTrace( m_Track, NULL, aPosition, aLayerMask ); if( segment == NULL ) segment = GetTrace( m_Track, aPosition, aLayerMask ); return segment; } TRACK* BOARD::CreateLockPoint( wxPoint& aPosition, TRACK* aSegment, PICKED_ITEMS_LIST* aList ) { if( aSegment->m_Start == aPosition || aSegment->m_End == aPosition ) return NULL; /* A via is a good lock point */ if( aSegment->Type() == PCB_VIA_T ) { aPosition = aSegment->m_Start; return aSegment; } // Calculation coordinate of intermediate point relative to the start point of aSegment wxPoint delta = aSegment->m_End - aSegment->m_Start; // Not yet in use: #if 0 int ox, oy, fx, fy; if( aRefSegm ) { ox = aRefSegm->m_Start.x - aSegment->m_Start.x; oy = aRefSegm->m_Start.y - aSegment->m_Start.y; fx = aRefSegm->m_End.x - aSegment->m_Start.x; fy = aRefSegm->m_End.y - aSegment->m_Start.y; } #endif // calculate coordinates of aPosition relative to aSegment->m_Start wxPoint newPoint = aPosition - aSegment->m_Start; // newPoint must be on aSegment: // Ensure newPoint.y/newPoint.y = delta.y/delta.x if( delta.x == 0 ) newPoint.x = 0; /* horizontal segment*/ else newPoint.y = wxRound( ( (double)newPoint.x * delta.y ) / delta.x ); /* Create the intermediate point (that is to say creation of a new * segment, beginning at the intermediate point. */ newPoint.x += aSegment->m_Start.x; newPoint.y += aSegment->m_Start.y; TRACK* newTrack = aSegment->Copy(); if( aList ) { ITEM_PICKER picker( newTrack, UR_NEW ); aList->PushItem( picker ); } DLIST* list = (DLIST*)aSegment->GetList(); wxASSERT( list ); list->Insert( newTrack, aSegment->Next() ); if( aList ) { ITEM_PICKER picker( aSegment, UR_CHANGED ); picker.m_Link = aSegment->Copy(); aList->PushItem( picker ); } /* Correct pointer at the end of the new segment. */ newTrack->end = aSegment->end; newTrack->SetState( END_ONPAD, aSegment->GetState( END_ONPAD ) ); /* Set connections info relative to the new point */ /* Old segment now ends at new point. */ aSegment->m_End = newPoint; aSegment->end = newTrack; aSegment->SetState( END_ONPAD, OFF ); /* The new segment begins at the new point. */ newTrack->m_Start = newPoint; newTrack->start = aSegment; newTrack->SetState( BEGIN_ONPAD, OFF ); D_PAD * pad = GetPad( newTrack, START ); if ( pad ) { newTrack->start = pad; newTrack->SetState( BEGIN_ONPAD, ON ); aSegment->end = pad; aSegment->SetState( END_ONPAD, ON ); } aPosition = newPoint; return newTrack; } #if defined(DEBUG) void BOARD::Show( int nestLevel, std::ostream& os ) { BOARD_ITEM* p; // for now, make it look like XML: NestedSpace( nestLevel, os ) << '<' << GetClass().Lower().mb_str() << ">\n"; // specialization of the output: NestedSpace( nestLevel + 1, os ) << "\n"; p = m_Modules; for( ; p; p = p->Next() ) p->Show( nestLevel + 2, os ); NestedSpace( nestLevel + 1, os ) << "\n"; NestedSpace( nestLevel + 1, os ) << "\n"; p = m_Drawings; for( ; p; p = p->Next() ) p->Show( nestLevel + 2, os ); NestedSpace( nestLevel + 1, os ) << "\n"; NestedSpace( nestLevel + 1, os ) << "\n"; p = m_Track; for( ; p; p = p->Next() ) p->Show( nestLevel + 2, os ); NestedSpace( nestLevel + 1, os ) << "\n"; NestedSpace( nestLevel + 1, os ) << "\n"; p = m_Zone; for( ; p; p = p->Next() ) p->Show( nestLevel + 2, os ); NestedSpace( nestLevel + 1, os ) << "\n"; /* * NestedSpace( nestLevel+1, os ) << "\n"; * for( ZONE_CONTAINERS::iterator i=m_ZoneDescriptorList.begin(); * i!=m_ZoneDescriptorList.end(); ++i ) * (*i)->Show( nestLevel+2, os ); * NestedSpace( nestLevel+1, os ) << "\n"; */ p = (BOARD_ITEM*) m_Son; for( ; p; p = p->Next() ) { p->Show( nestLevel + 1, os ); } NestedSpace( nestLevel, os ) << "\n"; } #endif