/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2009 Jean-Pierre Charras, jaen-pierre.charras@gipsa-lab.inpg.com * Copyright (C) 2011 Wayne Stambaugh * Copyright (C) 1992-2011 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file sch_sheet_path.h * @brief Definition of the SCH_SHEET_PATH and SCH_SHEET_LIST classes for Eeschema. */ #ifndef CLASS_DRAWSHEET_PATH_H #define CLASS_DRAWSHEET_PATH_H #include /** Info about complex hierarchies handling: * A hierarchical schematic uses sheets (hierarchical sheets) included in a * given sheet. Each sheet corresponds to a schematic drawing handled by a * SCH_SCREEN structure. A SCH_SCREEN structure contains drawings, and have * a filename to write it's data. Also a SCH_SCREEN display a sheet number * and the name of the sheet. * * In simple (and flat) hierarchies a sheet is linked to a SCH_SCREEN, * and a SCH_SCREEN is used by only one hierarchical sheet. * * In complex hierarchies the same SCH_SCREEN (and its data) is shared between * more than one sheet. Therefore subsheets (like subsheets in a SCH_SCREEN * shared by many sheets) can be also shared. So the same SCH_SCREEN must * handle different components references and parts selection depending on * which sheet is currently selected, and how a given subsheet is selected. * 2 sheets share the same SCH_SCREEN (the same drawings) if they have the * same filename. * * In KiCad each component and sheet receives (when created) an unique * identification called Time Stamp. So each sheet has 2 ids: its time stamp * (that cannot change) and its name ( that can be edited and therefore is * not reliable for strong identification). KiCad uses Time Stamp ( a unique * 32 bit id), to identify sheets in hierarchies. * A given sheet in a hierarchy is fully labeled by its path (or sheet path) * that is the list of time stamp found to access it through the hierarchy * the root sheet is /. All other sheets have a path like /1234ABCD or * /4567FEDC/AA2233DD/. This path can be displayed as human readable sheet * name like: / or /sheet1/include_sheet/ or /sheet2/include_sheet/ * * So to know for a given SCH_SCREEN (a given schematic drawings) we must: * 1) Handle all references possibilities. * 2) When acceded by a given selected sheet, display (update) the * corresponding references and sheet path * * The class SCH_SHEET_PATH handles paths used to access a sheet. The class * SCH_SHEET_LIST allows to handle the full (or partial) list of sheets and * their paths in a complex hierarchy. The class EDA_ScreenList allow to * handle the list of SCH_SCREEN. It is useful to clear or save data, * but is not suitable to handle the full complex hierarchy possibilities * (usable in flat and simple hierarchies). */ class wxFindReplaceData; class SCH_SCREEN; class SCH_MARKER; class SCH_SHEET; class SCH_ITEM; class SCH_REFERENCE_LIST; class PART_LIBS; /** * Class SCH_SHEET_PATH * handles access to a sheet by way of a path. *

* The member m_sheets stores the list of sheets from the first (usually * g_RootSheet) to a given sheet in last position. * The _last_ sheet is usually the sheet we want to select or reach (which is * what the function Last() returns). * Others sheets constitute the "path" from the first to the last sheet. *

*/ class SCH_SHEET_PATH { #define DSLSZ 32 // Max number of levels for a sheet path SCH_SHEET* m_sheets[ DSLSZ ]; unsigned m_numSheets; public: SCH_SHEET_PATH(); void Clear() { m_numSheets = 0; } unsigned GetSheetsCount() { return m_numSheets; } /** * Function Cmp * Compare if this is the same sheet path as aSheetPathToTest * @param aSheetPathToTest = sheet path to compare * @return -1 if different, 0 if same */ int Cmp( const SCH_SHEET_PATH& aSheetPathToTest ) const; /** * Function Last * returns a pointer to the last sheet of the list * One can see the others sheet as the "path" to reach this last sheet */ SCH_SHEET* Last() const; /** * Function LastScreen * @return the SCH_SCREEN relative to the last sheet in list */ SCH_SCREEN* LastScreen() const; /** * Function LastDrawList * @return a pointer to the first schematic item handled by the * SCH_SCREEN relative to the last sheet in list */ SCH_ITEM* LastDrawList() const; /** * Get the last schematic item relative to the first sheet in the list. * * @return Last schematic item relative to the first sheet in the list if list * is not empty. Otherwise NULL. */ SCH_ITEM* FirstDrawList() const; /** * Function Push * store (push) aSheet in list * @param aSheet = pointer to the SCH_SHEET to store in list * Push is used when entered a sheet to select or analyze it * This is like cd <directory> in directories navigation */ void Push( SCH_SHEET* aSheet ); /** * Function Pop * retrieves (pop) the last entered sheet and remove it from list * @return a SCH_SHEET* pointer to the removed sheet in list * Pop is used when leaving a sheet after a selection or analyze * This is like cd .. in directories navigation */ SCH_SHEET* Pop(); /** * Function Path * the path uses the time stamps which do not changes even when editing * sheet parameters * a path is something like / (root) or /34005677 or /34005677/00AE4523 */ wxString Path() const; /** * Function PathHumanReadable * returns the sheet path in a human readable form, i.e. as a path made * from sheet names. The the "normal" path instead uses the time * stamps in the path. (Time stamps do not change even when editing * sheet parameters). */ wxString PathHumanReadable() const; /** * Function BuildSheetPathInfoFromSheetPathValue * Fill this with data to access to the hierarchical sheet known by its path \a aPath * @param aPath = path of the sheet to reach (in non human readable format) * @param aFound - Please document me. * @return true if success else false */ bool BuildSheetPathInfoFromSheetPathValue( const wxString& aPath, bool aFound = false ); /** * Function UpdateAllScreenReferences * updates the reference and the m_Multi parameter (part selection) for all * components on a screen depending on the actual sheet path. * Mandatory in complex hierarchies because sheets use the same screen * (basic schematic) * but with different references and part selections according to the * displayed sheet */ void UpdateAllScreenReferences(); /** * Function AnnotatePowerSymbols * annotates the power symbols only starting at \a aReference in the sheet path. * @param aReference A pointer to the number for the reference designator of the * first power symbol to be annotated. If the pointer is NULL * the annotation starts at 1. The number is incremented for * each power symbol annotated. */ void AnnotatePowerSymbols( PART_LIBS* aLibs, int* aReference ); /** * Function GetComponents * adds a SCH_REFERENCE() object to \a aReferences for each component in the sheet. * @param aReferences List of references to populate. * @param aIncludePowerSymbols Set to false to only get normal components. */ void GetComponents( PART_LIBS* aLibs, SCH_REFERENCE_LIST& aReferences, bool aIncludePowerSymbols = true ); /** * Function SetFootprintField * searches last sheet in the path for a component with \a aReference and set the footprint * field to \a aFootPrint if found. * * @param aReference The reference designator of the component. * @param aFootPrint The value to set the footprint field. * @param aSetVisible The value to set the field visibility flag. * @return True if \a aReference was found otherwise false. */ bool SetComponentFootprint( const wxString& aReference, const wxString& aFootPrint, bool aSetVisible ); /** * Find the next schematic item in this sheet object. * * @param aType - The type of schematic item object to search for. * @param aLastItem - Start search from aLastItem. If no aLastItem, search from * the beginning of the list. * @param aWrap - Wrap around the end of the list to find the next item if aLastItem * is defined. * @return - The next schematic item if found. Otherwise, NULL is returned. */ SCH_ITEM* FindNextItem( KICAD_T aType, SCH_ITEM* aLastItem = NULL, bool aWrap = false ) const; /** * Find the previous schematic item in this sheet path object. * * @param aType - The type of schematic item object to search for. * @param aLastItem - Start search from aLastItem. If no aLastItem, search from * the end of the list. * @param aWrap - Wrap around the beginning of the list to find the next item if aLastItem * is defined. * @return - The previous schematic item if found. Otherwise, NULL is returned. */ SCH_ITEM* FindPreviousItem( KICAD_T aType, SCH_ITEM* aLastItem = NULL, bool aWrap = false ) const; SCH_SHEET_PATH& operator=( const SCH_SHEET_PATH& d1 ); bool operator==( const SCH_SHEET_PATH& d1 ) const; bool operator!=( const SCH_SHEET_PATH& d1 ) const { return !( *this == d1 ) ; } }; /** * Class SCH_SHEET_LIST * handles the list of Sheets in a hierarchy. * Sheets are not unique, there can be many sheets with the same * filename and the same SCH_SCREEN reference. * The schematic (SCH_SCREEN) is shared between these sheets, * and component references are specific to a sheet path. * When a sheet is entered, component references and sheet number are updated. */ class SCH_SHEET_LIST { private: SCH_SHEET_PATH* m_List; int m_count; /* Number of sheets included in hierarchy, * starting at the given sheet in constructor . * the given sheet is counted */ int m_index; /* internal variable to handle GetNext(): cleared by * GetFirst() and incremented by GetNext() after * returning the next item in m_List. Also used for * internal calculations in BuildSheetList() */ bool m_isRootSheet; SCH_SHEET_PATH m_currList; public: /** * Constructor * builds the list of sheets from aSheet. * If aSheet == NULL (default) build the whole list of sheets in hierarchy. * So usually call it with no parameter. */ SCH_SHEET_LIST( SCH_SHEET* aSheet = NULL ); ~SCH_SHEET_LIST() { if( m_List ) delete[] m_List; m_List = NULL; } /** * Function GetCount * @return the number of sheets in list: * usually the number of sheets found in the whole hierarchy */ int GetCount() const { return m_count; } /** * Function GetFirst * @return the first item (sheet) in m_List and prepare calls to GetNext() */ SCH_SHEET_PATH* GetFirst(); /** * Function GetNext * @return the next item (sheet) in m_List or NULL if no more item in * sheet list */ SCH_SHEET_PATH* GetNext(); /** * Function GetLast * returns the last sheet in the sheet list. * * @return Last sheet in the list or NULL if sheet list is empty. */ SCH_SHEET_PATH* GetLast(); /** * Function GetPrevious * returns the previous sheet in the sheet list. * * @return The previous sheet in the sheet list or NULL if already at the * beginning of the list. */ SCH_SHEET_PATH* GetPrevious(); /** * Function GetSheet * * @param aIndex A index in sheet list to get the sheet. * @return the sheet at \a aIndex position in m_List or NULL if \a aIndex is * outside the bounds of the index list. */ SCH_SHEET_PATH* GetSheet( int aIndex ); /** * Function GetSheet * returns a sheet matching the path name in \a aPath. * * @param aPath A wxString object containing path of the sheet to get. * @param aHumanReadable True uses the human readable path for comparison. * False uses the timestamp generated path. * @return The sheet that matches \a aPath or NULL if no sheet matching * \a aPath is found. */ SCH_SHEET_PATH* GetSheet( const wxString aPath, bool aHumanReadable = true ); /** * Function IsModified * checks the entire hierarchy for any modifications. * @returns True if the hierarchy is modified otherwise false. */ bool IsModified(); /** * Function IsAutoSaveRequired * checks the entire hierarchy for any modifications that require auto save. * @return True if the hierarchy is modified otherwise false. */ bool IsAutoSaveRequired(); void ClearModifyStatus(); /** * Function AnnotatePowerSymbols * clear and annotates the entire hierarchy of the sheet path list. */ void AnnotatePowerSymbols( PART_LIBS* aLib ); /** * Function GetComponents * adds a SCH_REFERENCE() object to \a aReferences for each component in the list * of sheets. * @param aReferences List of references to populate. * @param aIncludePowerSymbols Set to false to only get normal components. */ void GetComponents( PART_LIBS* aLibs, SCH_REFERENCE_LIST& aReferences, bool aIncludePowerSymbols = true ); /** * Function FindNextItem * searches the entire schematic for the next schematic object. * * @param aType - The type of schematic item to find. * @param aSheetFound - The sheet the item was found in. NULL if the next item * is not found. * @param aLastItem - Find next item after aLastItem if not NULL. * @param aWrap - Wrap past around the end of the list of sheets. * @return If found, Returns the next schematic item. Otherwise, returns NULL. */ SCH_ITEM* FindNextItem( KICAD_T aType, SCH_SHEET_PATH** aSheetFound = NULL, SCH_ITEM* aLastItem = NULL, bool aWrap = true ); /** * Function FindPreviousItem * searches the entire schematic for the previous schematic item. * * @param aType - The type of schematic item to find. * @param aSheetFound - The sheet the item was found in. NULL if the previous item * is not found. * @param aLastItem - Find the previous item before aLastItem if not NULL. * @param aWrap - Wrap past around the beginning of the list of sheets. * @return If found, the previous schematic item. Otherwise, NULL. */ SCH_ITEM* FindPreviousItem( KICAD_T aType, SCH_SHEET_PATH** aSheetFound = NULL, SCH_ITEM* aLastItem = NULL, bool aWrap = true ); /** * Function SetFootprintField * searches all the sheets for a component with \a aReference and set the footprint * field to \a aFootPrint if found. * * @param aReference The reference designator of the component. * @param aFootPrint The value to set the footprint field. * @param aSetVisible The value to set the field visibility flag. * @return True if \a aReference was found otherwise false. */ bool SetComponentFootprint( const wxString& aReference, const wxString& aFootPrint, bool aSetVisible ); /** * Function IsComplexHierarchy * searches all of the sheets for duplicate files names which indicates a complex * hierarchy. * * @return true if the #SCH_SHEET_LIST is a complex hierarchy. */ bool IsComplexHierarchy(); private: /** * Function BuildSheetList * builds the list of sheets and their sheet path from \a aSheet. * If \a aSheet is the root sheet, the full sheet path and sheet list are built. * * @param aSheet is the starting sheet from which the list is built, or NULL * indicating that g_RootSheet should be used. * @throw std::bad_alloc if the memory for the sheet path list could not be allocated. */ void BuildSheetList( SCH_SHEET* aSheet ); }; #endif // CLASS_DRAWSHEET_PATH_H