/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2014 CERN * Copyright (C) 2016 KiCad Developers, see AUTHORS.txt for contributors. * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include #include #include #include #include #include "pns_item.h" #include "pns_line.h" #include "pns_node.h" #include "pns_via.h" #include "pns_solid.h" #include "pns_joint.h" #include "pns_index.h" #include "pns_router.h" using boost::unordered_set; using boost::unordered_map; namespace PNS { #ifdef DEBUG static boost::unordered_set allocNodes; #endif NODE::NODE() { wxLogTrace( "PNS", "NODE::create %p", this ); m_depth = 0; m_root = this; m_parent = NULL; m_maxClearance = 800000; // fixme: depends on how thick traces are. m_ruleResolver = NULL; m_index = new INDEX; #ifdef DEBUG allocNodes.insert( this ); #endif } NODE::~NODE() { wxLogTrace( "PNS", "NODE::delete %p", this ); if( !m_children.empty() ) { wxLogTrace( "PNS", "attempting to free a node that has kids." ); assert( false ); } #ifdef DEBUG if( allocNodes.find( this ) == allocNodes.end() ) { wxLogTrace( "PNS", "attempting to free an already-free'd node." ); assert( false ); } allocNodes.erase( this ); #endif m_joints.clear(); for( INDEX::ITEM_SET::iterator i = m_index->begin(); i != m_index->end(); ++i ) { if( (*i)->BelongsTo( this ) ) delete *i; } releaseGarbage(); unlinkParent(); delete m_index; } int NODE::GetClearance( const ITEM* aA, const ITEM* aB ) const { if( !m_ruleResolver ) return 100000; return m_ruleResolver->Clearance( aA, aB ); } NODE* NODE::Branch() { NODE* child = new NODE; wxLogTrace( "PNS", "NODE::branch %p (parent %p)", child, this ); m_children.insert( child ); child->m_depth = m_depth + 1; child->m_parent = this; child->m_ruleResolver = m_ruleResolver; child->m_root = isRoot() ? this : m_root; // immmediate offspring of the root branch needs not copy anything. // For the rest, deep-copy joints, overridden item map and pointers // to stored items. if( !isRoot() ) { JOINT_MAP::iterator j; for( INDEX::ITEM_SET::iterator i = m_index->begin(); i != m_index->end(); ++i ) child->m_index->Add( *i ); child->m_joints = m_joints; child->m_override = m_override; } wxLogTrace( "PNS", "%d items, %d joints, %d overrides", child->m_index->Size(), (int) child->m_joints.size(), (int) child->m_override.size() ); return child; } void NODE::unlinkParent() { if( isRoot() ) return; m_parent->m_children.erase( this ); } OBSTACLE_VISITOR::OBSTACLE_VISITOR( const ITEM* aItem ) : m_item( aItem ), m_node( NULL ), m_override( NULL ), m_extraClearance( 0 ) { } void OBSTACLE_VISITOR::SetWorld( const NODE* aNode, const NODE* aOverride ) { m_node = aNode; m_override = aOverride; } bool OBSTACLE_VISITOR::visit( ITEM* aCandidate ) { // check if there is a more recent branch with a newer // (possibily modified) version of this item. if( m_override && m_override->Overrides( aCandidate ) ) return true; return false; } // function object that visits potential obstacles and performs // the actual collision refining struct NODE::DEFAULT_OBSTACLE_VISITOR : public OBSTACLE_VISITOR { ///> list of encountered obstacles OBSTACLES& m_tab; ///> acccepted kinds of colliding items (solids, vias, segments, etc...) int m_kindMask; ///> max number of hits int m_limitCount; ///> number of items found so far int m_matchCount; ///> additional clearance int m_extraClearance; bool m_differentNetsOnly; int m_forceClearance; DEFAULT_OBSTACLE_VISITOR( NODE::OBSTACLES& aTab, const ITEM* aItem, int aKindMask, bool aDifferentNetsOnly ) : OBSTACLE_VISITOR( aItem ), m_tab( aTab ), m_kindMask( aKindMask ), m_limitCount( -1 ), m_matchCount( 0 ), m_extraClearance( 0 ), m_differentNetsOnly( aDifferentNetsOnly ), m_forceClearance( -1 ) { if( aItem && aItem->Kind() == ITEM::LINE_T ) { m_extraClearance += static_cast( aItem )->Width() / 2; } } void SetCountLimit( int aLimit ) { m_limitCount = aLimit; } bool operator()( ITEM* aCandidate ) override { if( !aCandidate->OfKind( m_kindMask ) ) return true; if( visit( aCandidate ) ) return true; int clearance = m_extraClearance + m_node->GetClearance( aCandidate, m_item ); if( aCandidate->Kind() == ITEM::LINE_T ) // this should never happen. { assert( false ); clearance += static_cast( aCandidate )->Width() / 2; } if( m_forceClearance >= 0 ) clearance = m_forceClearance; if( !aCandidate->Collide( m_item, clearance, m_differentNetsOnly ) ) return true; OBSTACLE obs; obs.m_item = aCandidate; obs.m_head = m_item; m_tab.push_back( obs ); m_matchCount++; if( m_limitCount > 0 && m_matchCount >= m_limitCount ) return false; return true; }; }; int NODE::QueryColliding( const ITEM* aItem, OBSTACLE_VISITOR& aVisitor ) { aVisitor.SetWorld( this, NULL ); m_index->Query( aItem, m_maxClearance, aVisitor ); // if we haven't found enough items, look in the root branch as well. if( !isRoot() ) { aVisitor.SetWorld( m_root, this ); m_root->m_index->Query( aItem, m_maxClearance, aVisitor ); } return 0; } int NODE::QueryColliding( const ITEM* aItem, NODE::OBSTACLES& aObstacles, int aKindMask, int aLimitCount, bool aDifferentNetsOnly, int aForceClearance ) { DEFAULT_OBSTACLE_VISITOR visitor( aObstacles, aItem, aKindMask, aDifferentNetsOnly ); #ifdef DEBUG assert( allocNodes.find( this ) != allocNodes.end() ); #endif visitor.SetCountLimit( aLimitCount ); visitor.SetWorld( this, NULL ); visitor.m_forceClearance = aForceClearance; // first, look for colliding items in the local index m_index->Query( aItem, m_maxClearance, visitor ); // if we haven't found enough items, look in the root branch as well. if( !isRoot() && ( visitor.m_matchCount < aLimitCount || aLimitCount < 0 ) ) { visitor.SetWorld( m_root, this ); m_root->m_index->Query( aItem, m_maxClearance, visitor ); } return aObstacles.size(); } NODE::OPT_OBSTACLE NODE::NearestObstacle( const LINE* aItem, int aKindMask, const std::set* aRestrictedSet ) { OBSTACLES obs_list; bool found_isects = false; const SHAPE_LINE_CHAIN& line = aItem->CLine(); obs_list.reserve( 100 ); int n = 0; for( int i = 0; i < line.SegmentCount(); i++ ) { const SEGMENT s( *aItem, line.CSegment( i ) ); n += QueryColliding( &s, obs_list, aKindMask ); } if( aItem->EndsWithVia() ) n += QueryColliding( &aItem->Via(), obs_list, aKindMask ); if( !n ) return OPT_OBSTACLE(); LINE& aLine = (LINE&) *aItem; OBSTACLE nearest; nearest.m_item = NULL; nearest.m_distFirst = INT_MAX; for( OBSTACLE obs : obs_list ) { VECTOR2I ip_first, ip_last; int dist_max = INT_MIN; if( aRestrictedSet && aRestrictedSet->find( obs.m_item ) == aRestrictedSet->end() ) continue; std::vector isect_list; int clearance = GetClearance( obs.m_item, &aLine ); SHAPE_LINE_CHAIN hull = obs.m_item->Hull( clearance, aItem->Width() ); if( aLine.EndsWithVia() ) { clearance = GetClearance( obs.m_item, &aLine.Via() ); SHAPE_LINE_CHAIN viaHull = aLine.Via().Hull( clearance, aItem->Width() ); viaHull.Intersect( hull, isect_list ); for( SHAPE_LINE_CHAIN::INTERSECTION isect : isect_list ) { int dist = aLine.CLine().Length() + ( isect.p - aLine.Via().Pos() ).EuclideanNorm(); if( dist < nearest.m_distFirst ) { found_isects = true; nearest.m_distFirst = dist; nearest.m_ipFirst = isect.p; nearest.m_item = obs.m_item; nearest.m_hull = hull; } if( dist > dist_max ) { dist_max = dist; ip_last = isect.p; } } } isect_list.clear(); hull.Intersect( aLine.CLine(), isect_list ); for( SHAPE_LINE_CHAIN::INTERSECTION isect : isect_list ) { int dist = aLine.CLine().PathLength( isect.p ); if( dist < nearest.m_distFirst ) { found_isects = true; nearest.m_distFirst = dist; nearest.m_ipFirst = isect.p; nearest.m_item = obs.m_item; nearest.m_hull = hull; } if( dist > dist_max ) { dist_max = dist; ip_last = isect.p; } } nearest.m_ipLast = ip_last; nearest.m_distLast = dist_max; } if( !found_isects ) nearest.m_item = obs_list[0].m_item; return nearest; } NODE::OPT_OBSTACLE NODE::CheckColliding( const ITEM_SET& aSet, int aKindMask ) { for( const ITEM* item : aSet.CItems() ) { OPT_OBSTACLE obs = CheckColliding( item, aKindMask ); if( obs ) return obs; } return OPT_OBSTACLE(); } NODE::OPT_OBSTACLE NODE::CheckColliding( const ITEM* aItemA, int aKindMask ) { OBSTACLES obs; obs.reserve( 100 ); if( aItemA->Kind() == ITEM::LINE_T ) { int n = 0; const LINE* line = static_cast( aItemA ); const SHAPE_LINE_CHAIN& l = line->CLine(); for( int i = 0; i < l.SegmentCount(); i++ ) { const SEGMENT s( *line, l.CSegment( i ) ); n += QueryColliding( &s, obs, aKindMask, 1 ); if( n ) return OPT_OBSTACLE( obs[0] ); } if( line->EndsWithVia() ) { n += QueryColliding( &line->Via(), obs, aKindMask, 1 ); if( n ) return OPT_OBSTACLE( obs[0] ); } } else if( QueryColliding( aItemA, obs, aKindMask, 1 ) > 0 ) return OPT_OBSTACLE( obs[0] ); return OPT_OBSTACLE(); } bool NODE::CheckColliding( const ITEM* aItemA, const ITEM* aItemB, int aKindMask, int aForceClearance ) { assert( aItemB ); int clearance; if( aForceClearance >= 0 ) clearance = aForceClearance; else clearance = GetClearance( aItemA, aItemB ); // fixme: refactor if( aItemA->Kind() == ITEM::LINE_T ) clearance += static_cast( aItemA )->Width() / 2; if( aItemB->Kind() == ITEM::LINE_T ) clearance += static_cast( aItemB )->Width() / 2; return aItemA->Collide( aItemB, clearance ); } struct HIT_VISITOR : public OBSTACLE_VISITOR { ITEM_SET& m_items; const VECTOR2I& m_point; HIT_VISITOR( ITEM_SET& aTab, const VECTOR2I& aPoint ) : OBSTACLE_VISITOR( NULL ), m_items( aTab ), m_point( aPoint ) {} bool operator()( ITEM* aItem ) override { SHAPE_CIRCLE cp( m_point, 0 ); int cl = 0; if( aItem->Shape()->Collide( &cp, cl ) ) m_items.Add( aItem ); return true; } }; const ITEM_SET NODE::HitTest( const VECTOR2I& aPoint ) const { ITEM_SET items; // fixme: we treat a point as an infinitely small circle - this is inefficient. SHAPE_CIRCLE s( aPoint, 0 ); HIT_VISITOR visitor( items, aPoint ); visitor.SetWorld( this, NULL ); m_index->Query( &s, m_maxClearance, visitor ); if( !isRoot() ) // fixme: could be made cleaner { ITEM_SET items_root; visitor.SetWorld( m_root, NULL ); HIT_VISITOR visitor_root( items_root, aPoint ); m_root->m_index->Query( &s, m_maxClearance, visitor_root ); for( ITEM* item : items_root.Items() ) { if( !Overrides( item ) ) items.Add( item ); } } return items; } void NODE::addSolid( SOLID* aSolid ) { linkJoint( aSolid->Pos(), aSolid->Layers(), aSolid->Net(), aSolid ); m_index->Add( aSolid ); } void NODE::Add( std::unique_ptr< SOLID > aSolid ) { aSolid->SetOwner( this ); addSolid( aSolid.release() ); } void NODE::addVia( VIA* aVia ) { linkJoint( aVia->Pos(), aVia->Layers(), aVia->Net(), aVia ); m_index->Add( aVia ); } void NODE::Add( std::unique_ptr< VIA > aVia ) { aVia->SetOwner( this ); addVia( aVia.release() ); } void NODE::Add( LINE& aLine, bool aAllowRedundant ) { assert( !aLine.IsLinked() ); SHAPE_LINE_CHAIN& l = aLine.Line(); for( int i = 0; i < l.SegmentCount(); i++ ) { SEG s = l.CSegment( i ); if( s.A != s.B ) { SEGMENT* rseg; if( !aAllowRedundant && (rseg = findRedundantSegment( s.A, s.B, aLine.Layers(), aLine.Net() )) ) { // another line could be referencing this segment too :( aLine.LinkSegment( rseg ); } else { std::unique_ptr< SEGMENT > newseg( new SEGMENT( aLine, s ) ); aLine.LinkSegment( newseg.get() ); Add( std::move( newseg ), true ); } } } } void NODE::addSegment( SEGMENT* aSeg ) { linkJoint( aSeg->Seg().A, aSeg->Layers(), aSeg->Net(), aSeg ); linkJoint( aSeg->Seg().B, aSeg->Layers(), aSeg->Net(), aSeg ); m_index->Add( aSeg ); } void NODE::Add( std::unique_ptr< SEGMENT > aSegment, bool aAllowRedundant ) { if( aSegment->Seg().A == aSegment->Seg().B ) { wxLogTrace( "PNS", "attempting to add a segment with same end coordinates, ignoring." ); return; } if( !aAllowRedundant && findRedundantSegment( aSegment.get() ) ) return; aSegment->SetOwner( this ); addSegment( aSegment.release() ); } void NODE::Add( std::unique_ptr< ITEM > aItem, bool aAllowRedundant ) { switch( aItem->Kind() ) { case ITEM::SOLID_T: Add( ItemCast( std::move( aItem ) ) ); break; case ITEM::SEGMENT_T: Add( ItemCast( std::move( aItem ) ), aAllowRedundant ); break; case ITEM::LINE_T: assert( false ); break; case ITEM::VIA_T: Add( ItemCast( std::move( aItem ) ) ); break; default: assert( false ); } } void NODE::doRemove( ITEM* aItem ) { // case 1: removing an item that is stored in the root node from any branch: // mark it as overridden, but do not remove if( aItem->BelongsTo( m_root ) && !isRoot() ) m_override.insert( aItem ); // case 2: the item belongs to this branch or a parent, non-root branch, // or the root itself and we are the root: remove from the index else if( !aItem->BelongsTo( m_root ) || isRoot() ) m_index->Remove( aItem ); // the item belongs to this particular branch: un-reference it if( aItem->BelongsTo( this ) ) { aItem->SetOwner( NULL ); m_root->m_garbageItems.insert( aItem ); } } void NODE::removeSegmentIndex( SEGMENT* aSeg ) { unlinkJoint( aSeg->Seg().A, aSeg->Layers(), aSeg->Net(), aSeg ); unlinkJoint( aSeg->Seg().B, aSeg->Layers(), aSeg->Net(), aSeg ); } void NODE::removeViaIndex( VIA* aVia ) { // We have to split a single joint (associated with a via, binding together multiple layers) // into multiple independent joints. As I'm a lazy bastard, I simply delete the via and all its links and re-insert them. JOINT::HASH_TAG tag; VECTOR2I p( aVia->Pos() ); LAYER_RANGE vLayers( aVia->Layers() ); int net = aVia->Net(); JOINT* jt = FindJoint( p, vLayers.Start(), net ); JOINT::LINKED_ITEMS links( jt->LinkList() ); tag.net = net; tag.pos = p; bool split; do { split = false; std::pair range = m_joints.equal_range( tag ); if( range.first == m_joints.end() ) break; // find and remove all joints containing the via to be removed for( JOINT_MAP::iterator f = range.first; f != range.second; ++f ) { if( aVia->LayersOverlap( &f->second ) ) { m_joints.erase( f ); split = true; break; } } } while( split ); // and re-link them, using the former via's link list for(ITEM* item : links) { if( item != aVia ) linkJoint( p, item->Layers(), net, item ); } } void NODE::removeSolidIndex( SOLID* aSolid ) { // fixme: this fucks up the joints, but it's only used for marking colliding obstacles for the moment, so we don't care. } void NODE::Replace( ITEM* aOldItem, std::unique_ptr< ITEM > aNewItem ) { Remove( aOldItem ); Add( std::move( aNewItem ) ); } void NODE::Replace( LINE& aOldLine, LINE& aNewLine ) { Remove( aOldLine ); Add( aNewLine ); } void NODE::Remove( SOLID* aSolid ) { removeSolidIndex( aSolid ); doRemove( aSolid ); } void NODE::Remove( VIA* aVia ) { removeViaIndex( aVia ); doRemove( aVia ); } void NODE::Remove( SEGMENT* aSegment ) { removeSegmentIndex( aSegment ); doRemove( aSegment ); } void NODE::Remove( ITEM* aItem ) { switch( aItem->Kind() ) { case ITEM::SOLID_T: Remove( static_cast( aItem ) ); break; case ITEM::SEGMENT_T: Remove( static_cast( aItem ) ); break; case ITEM::LINE_T: assert( false ); break; case ITEM::VIA_T: Remove( static_cast( aItem ) ); break; default: break; } } void NODE::Remove( LINE& aLine ) { // LINE does not have a seperate remover, as LINEs are never truly a member of the tree std::vector& segRefs = aLine.LinkedSegments(); for( SEGMENT* seg : segRefs ) { Remove( seg ); } aLine.SetOwner( nullptr ); aLine.ClearSegmentLinks(); } void NODE::followLine( SEGMENT* aCurrent, bool aScanDirection, int& aPos, int aLimit, VECTOR2I* aCorners, SEGMENT** aSegments, bool& aGuardHit, bool aStopAtLockedJoints ) { bool prevReversed = false; const VECTOR2I guard = aScanDirection ? aCurrent->Seg().B : aCurrent->Seg().A; for( int count = 0 ; ; ++count ) { const VECTOR2I p = ( aScanDirection ^ prevReversed ) ? aCurrent->Seg().B : aCurrent->Seg().A; const JOINT* jt = FindJoint( p, aCurrent ); assert( jt ); aCorners[aPos] = jt->Pos(); aSegments[aPos] = aCurrent; aPos += ( aScanDirection ? 1 : -1 ); if( count && guard == p) { aSegments[aPos] = NULL; aGuardHit = true; break; } bool locked = aStopAtLockedJoints ? jt->IsLocked() : false; if( locked || !jt->IsLineCorner() || aPos < 0 || aPos == aLimit ) break; aCurrent = jt->NextSegment( aCurrent ); prevReversed = ( jt->Pos() == ( aScanDirection ? aCurrent->Seg().B : aCurrent->Seg().A ) ); } } const LINE NODE::AssembleLine( SEGMENT* aSeg, int* aOriginSegmentIndex, bool aStopAtLockedJoints ) { const int MaxVerts = 1024 * 16; VECTOR2I corners[MaxVerts + 1]; SEGMENT* segs[MaxVerts + 1]; LINE pl; bool guardHit = false; int i_start = MaxVerts / 2, i_end = i_start + 1; pl.SetWidth( aSeg->Width() ); pl.SetLayers( aSeg->Layers() ); pl.SetNet( aSeg->Net() ); pl.SetOwner( this ); followLine( aSeg, false, i_start, MaxVerts, corners, segs, guardHit, aStopAtLockedJoints ); if( !guardHit ) followLine( aSeg, true, i_end, MaxVerts, corners, segs, guardHit, aStopAtLockedJoints ); int n = 0; SEGMENT* prev_seg = NULL; bool originSet = false; for( int i = i_start + 1; i < i_end; i++ ) { const VECTOR2I& p = corners[i]; pl.Line().Append( p ); if( segs[i] && prev_seg != segs[i] ) { pl.LinkSegment( segs[i] ); // latter condition to avoid loops if( segs[i] == aSeg && aOriginSegmentIndex && !originSet ) { *aOriginSegmentIndex = n; originSet = true; } n++; } prev_seg = segs[i]; } assert( pl.SegmentCount() != 0 ); return pl; } void NODE::FindLineEnds( const LINE& aLine, JOINT& aA, JOINT& aB ) { aA = *FindJoint( aLine.CPoint( 0 ), &aLine ); aB = *FindJoint( aLine.CPoint( -1 ), &aLine ); } #if 0 void NODE::MapConnectivity( JOINT* aStart, std::vector& aFoundJoints ) { std::deque searchQueue; std::set processed; searchQueue.push_back( aStart ); processed.insert( aStart ); while( !searchQueue.empty() ) { JOINT* current = searchQueue.front(); searchQueue.pop_front(); for( ITEM* item : current->LinkList() ) { if( item->OfKind( ITEM::SEGMENT_T ) ) { SEGMENT* seg = static_cast( item ); JOINT* a = FindJoint( seg->Seg().A, seg ); JOINT* b = FindJoint( seg->Seg().B, seg ); JOINT* next = ( *a == *current ) ? b : a; if( processed.find( next ) == processed.end() ) { processed.insert( next ); searchQueue.push_back( next ); } } } } for(JOINT* jt : processed) aFoundJoints.push_back( jt ); } #endif int NODE::FindLinesBetweenJoints( JOINT& aA, JOINT& aB, std::vector& aLines ) { for( ITEM* item : aA.LinkList() ) { if( item->Kind() == ITEM::SEGMENT_T ) { SEGMENT* seg = static_cast( item ); LINE line = AssembleLine( seg ); if( !line.Layers().Overlaps( aB.Layers() ) ) continue; JOINT j_start, j_end; FindLineEnds( line, j_start, j_end ); int id_start = line.CLine().Find( aA.Pos() ); int id_end = line.CLine().Find( aB.Pos() ); if( id_end < id_start ) std::swap( id_end, id_start ); if( id_start >= 0 && id_end >= 0 ) { line.ClipVertexRange( id_start, id_end ); aLines.push_back( line ); } } } return 0; } JOINT* NODE::FindJoint( const VECTOR2I& aPos, int aLayer, int aNet ) { JOINT::HASH_TAG tag; tag.net = aNet; tag.pos = aPos; JOINT_MAP::iterator f = m_joints.find( tag ), end = m_joints.end(); if( f == end && !isRoot() ) { end = m_root->m_joints.end(); f = m_root->m_joints.find( tag ); // m_root->FindJoint(aPos, aLayer, aNet); } if( f == end ) return NULL; while( f != end ) { if( f->second.Layers().Overlaps( aLayer ) ) return &f->second; ++f; } return NULL; } void NODE::LockJoint( const VECTOR2I& aPos, const ITEM* aItem, bool aLock ) { JOINT& jt = touchJoint( aPos, aItem->Layers(), aItem->Net() ); jt.Lock( aLock ); } JOINT& NODE::touchJoint( const VECTOR2I& aPos, const LAYER_RANGE& aLayers, int aNet ) { JOINT::HASH_TAG tag; tag.pos = aPos; tag.net = aNet; // try to find the joint in this node. JOINT_MAP::iterator f = m_joints.find( tag ); std::pair range; // not found and we are not root? find in the root and copy results here. if( f == m_joints.end() && !isRoot() ) { range = m_root->m_joints.equal_range( tag ); for( f = range.first; f != range.second; ++f ) m_joints.insert( *f ); } // now insert and combine overlapping joints JOINT jt( aPos, aLayers, aNet ); bool merged; do { merged = false; range = m_joints.equal_range( tag ); if( range.first == m_joints.end() ) break; for( f = range.first; f != range.second; ++f ) { if( aLayers.Overlaps( f->second.Layers() ) ) { jt.Merge( f->second ); m_joints.erase( f ); merged = true; break; } } } while( merged ); return m_joints.insert( TagJointPair( tag, jt ) )->second; } void JOINT::Dump() const { wxLogTrace( "PNS", "joint layers %d-%d, net %d, pos %s, links: %d", m_layers.Start(), m_layers.End(), m_tag.net, m_tag.pos.Format().c_str(), LinkCount() ); } void NODE::linkJoint( const VECTOR2I& aPos, const LAYER_RANGE& aLayers, int aNet, ITEM* aWhere ) { JOINT& jt = touchJoint( aPos, aLayers, aNet ); jt.Link( aWhere ); } void NODE::unlinkJoint( const VECTOR2I& aPos, const LAYER_RANGE& aLayers, int aNet, ITEM* aWhere ) { // fixme: remove dangling joints JOINT& jt = touchJoint( aPos, aLayers, aNet ); jt.Unlink( aWhere ); } void NODE::Dump( bool aLong ) { #if 0 boost::unordered_set all_segs; SHAPE_INDEX_LIST::iterator i; for( i = m_items.begin(); i != m_items.end(); i++ ) { if( (*i)->GetKind() == ITEM::SEGMENT_T ) all_segs.insert( static_cast( *i ) ); } if( !isRoot() ) { for( i = m_root->m_items.begin(); i != m_root->m_items.end(); i++ ) { if( (*i)->GetKind() == ITEM::SEGMENT_T && !overrides( *i ) ) all_segs.insert( static_cast(*i) ); } } JOINT_MAP::iterator j; if( aLong ) for( j = m_joints.begin(); j != m_joints.end(); ++j ) { wxLogTrace( "PNS", "joint : %s, links : %d\n", j->second.GetPos().Format().c_str(), j->second.LinkCount() ); JOINT::LINKED_ITEMS::const_iterator k; for( k = j->second.GetLinkList().begin(); k != j->second.GetLinkList().end(); ++k ) { const ITEM* m_item = *k; switch( m_item->GetKind() ) { case ITEM::SEGMENT_T: { const SEGMENT* seg = static_cast( m_item ); wxLogTrace( "PNS", " -> seg %s %s\n", seg->GetSeg().A.Format().c_str(), seg->GetSeg().B.Format().c_str() ); break; } default: break; } } } int lines_count = 0; while( !all_segs.empty() ) { SEGMENT* s = *all_segs.begin(); LINE* l = AssembleLine( s ); LINE::LinkedSegments* seg_refs = l->GetLinkedSegments(); if( aLong ) wxLogTrace( "PNS", "Line: %s, net %d ", l->GetLine().Format().c_str(), l->GetNet() ); for( std::vector::iterator j = seg_refs->begin(); j != seg_refs->end(); ++j ) { wxLogTrace( "PNS", "%s ", (*j)->GetSeg().A.Format().c_str() ); if( j + 1 == seg_refs->end() ) wxLogTrace( "PNS", "%s\n", (*j)->GetSeg().B.Format().c_str() ); all_segs.erase( *j ); } lines_count++; } wxLogTrace( "PNS", "Local joints: %d, lines : %d \n", m_joints.size(), lines_count ); #endif } void NODE::GetUpdatedItems( ITEM_VECTOR& aRemoved, ITEM_VECTOR& aAdded ) { aRemoved.reserve( m_override.size() ); aAdded.reserve( m_index->Size() ); if( isRoot() ) return; for( ITEM* item : m_override ) aRemoved.push_back( item ); for( INDEX::ITEM_SET::iterator i = m_index->begin(); i != m_index->end(); ++i ) aAdded.push_back( *i ); } void NODE::releaseChildren() { // copy the kids as the NODE destructor erases the item from the parent node. std::set kids = m_children; for( NODE* node : kids ) { node->releaseChildren(); delete node; } } void NODE::releaseGarbage() { if( !isRoot() ) return; for( ITEM* item : m_garbageItems ) { if( !item->BelongsTo( this ) ) delete item; } m_garbageItems.clear(); } void NODE::Commit( NODE* aNode ) { if( aNode->isRoot() ) return; for( ITEM* item : aNode->m_override ) Remove( item ); for( INDEX::ITEM_SET::iterator i = aNode->m_index->begin(); i != aNode->m_index->end(); ++i ) { (*i)->SetRank( -1 ); (*i)->Unmark(); Add( std::unique_ptr( *i ) ); } releaseChildren(); releaseGarbage(); } void NODE::KillChildren() { assert( isRoot() ); releaseChildren(); } void NODE::AllItemsInNet( int aNet, std::set& aItems ) { INDEX::NET_ITEMS_LIST* l_cur = m_index->GetItemsForNet( aNet ); if( l_cur ) { for( ITEM*item : *l_cur ) aItems.insert( item ); } if( !isRoot() ) { INDEX::NET_ITEMS_LIST* l_root = m_root->m_index->GetItemsForNet( aNet ); if( l_root ) for( INDEX::NET_ITEMS_LIST::iterator i = l_root->begin(); i!= l_root->end(); ++i ) if( !Overrides( *i ) ) aItems.insert( *i ); } } void NODE::ClearRanks( int aMarkerMask ) { for( INDEX::ITEM_SET::iterator i = m_index->begin(); i != m_index->end(); ++i ) { (*i)->SetRank( -1 ); (*i)->Mark( (*i)->Marker() & (~aMarkerMask) ); } } int NODE::FindByMarker( int aMarker, ITEM_SET& aItems ) { for( INDEX::ITEM_SET::iterator i = m_index->begin(); i != m_index->end(); ++i ) { if( (*i)->Marker() & aMarker ) aItems.Add( *i ); } return 0; } int NODE::RemoveByMarker( int aMarker ) { std::list garbage; for( INDEX::ITEM_SET::iterator i = m_index->begin(); i != m_index->end(); ++i ) { if( (*i)->Marker() & aMarker ) { garbage.push_back( *i ); } } for( std::list::const_iterator i = garbage.begin(), end = garbage.end(); i != end; ++i ) { Remove( *i ); } return 0; } SEGMENT* NODE::findRedundantSegment( const VECTOR2I& A, const VECTOR2I& B, const LAYER_RANGE& lr, int aNet ) { JOINT* jtStart = FindJoint( A, lr.Start(), aNet ); if( !jtStart ) return nullptr; for( ITEM* item : jtStart->LinkList() ) { if( item->OfKind( ITEM::SEGMENT_T ) ) { SEGMENT* seg2 = (SEGMENT*)item; const VECTOR2I a2( seg2->Seg().A ); const VECTOR2I b2( seg2->Seg().B ); if( seg2->Layers().Start() == lr.Start() && ((A == a2 && B == b2) || (A == b2 && B == a2)) ) return seg2; } } return nullptr; } SEGMENT* NODE::findRedundantSegment( SEGMENT* aSeg ) { return findRedundantSegment( aSeg->Seg().A, aSeg->Seg().B, aSeg->Layers(), aSeg->Net() ); } ITEM *NODE::FindItemByParent( const BOARD_CONNECTED_ITEM* aParent ) { INDEX::NET_ITEMS_LIST* l_cur = m_index->GetItemsForNet( aParent->GetNetCode() ); for( ITEM*item : *l_cur ) if( item->Parent() == aParent ) return item; return NULL; } }