/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2020 KiCad Developers, see AUTHORS.txt for contributors. * Copyright (C) 2020 CERN * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 3 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-3.0.html * or you may search the http://www.gnu.org website for the version 3 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifndef DRC_RTREE_H_ #define DRC_RTREE_H_ #include #include #include #include #include #include #include #include /** * DRC_RTREE - * Implements an R-tree for fast spatial and layer indexing of connectable items. * Non-owning. */ class DRC_RTREE { public: struct ITEM_WITH_SHAPE { ITEM_WITH_SHAPE( BOARD_ITEM *aParent, SHAPE* aShape, std::shared_ptr aParentShape = nullptr ) : parent ( aParent ), shape ( aShape ), parentShape( aParentShape ) {}; BOARD_ITEM* parent; SHAPE* shape; std::shared_ptr parentShape; }; private: using drc_rtree = RTree; public: DRC_RTREE() { for( int layer : LSET::AllLayersMask().Seq() ) m_tree[layer] = new drc_rtree(); m_count = 0; } ~DRC_RTREE() { for( auto tree : m_tree ) delete tree; } /** * Function Insert() * Inserts an item into the tree. */ void Insert( BOARD_ITEM* aItem, int aWorstClearance = 0, int aLayer = UNDEFINED_LAYER ) { std::vector subshapes; auto addLayer = [&]( PCB_LAYER_ID layer ) { std::shared_ptr shape = aItem->GetEffectiveShape( layer ); subshapes.clear(); if( shape->HasIndexableSubshapes() ) shape->GetIndexableSubshapes( subshapes ); else subshapes.push_back( shape.get() ); for( SHAPE* subshape : subshapes ) { BOX2I bbox = subshape->BBox(); bbox.Inflate( aWorstClearance ); const int mmin[2] = { bbox.GetX(), bbox.GetY() }; const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() }; m_tree[layer]->Insert( mmin, mmax, new ITEM_WITH_SHAPE( aItem, subshape, shape ) ); m_count++; } }; if( aItem->Type() == PCB_FP_TEXT_T && !static_cast( aItem )->IsVisible() ) return; if( aLayer != UNDEFINED_LAYER ) { addLayer( (PCB_LAYER_ID) aLayer ); } else { LSET layers = aItem->GetLayerSet(); // Special-case pad holes which pierce all the copper layers if( aItem->Type() == PCB_PAD_T ) { PAD* pad = static_cast( aItem ); if( pad->GetDrillSizeX() > 0 && pad->GetDrillSizeY() > 0 ) layers |= LSET::AllCuMask(); } for( int layer : layers.Seq() ) addLayer( (PCB_LAYER_ID) layer ); } } /** * Function RemoveAll() * Removes all items from the RTree */ void clear() { for( auto tree : m_tree ) tree->RemoveAll(); m_count = 0; } bool CheckColliding( SHAPE* aRefShape, PCB_LAYER_ID aTargetLayer, int aClearance = 0, std::function aFilter = nullptr ) const { BOX2I box = aRefShape->BBox(); box.Inflate( aClearance ); int min[2] = { box.GetX(), box.GetY() }; int max[2] = { box.GetRight(), box.GetBottom() }; int count = 0; auto visit = [&] ( ITEM_WITH_SHAPE* aItem ) -> bool { if( !aFilter || aFilter( aItem->parent ) ) { int actual; if( aRefShape->Collide( aItem->shape, aClearance, &actual ) ) { count++; return false; } } return true; }; this->m_tree[aTargetLayer]->Search( min, max, visit ); return count > 0; } /** * This is a fast test which essentially does bounding-box overlap given a worst-case * clearance. It's used when looking up the specific item-to-item clearance might be * expensive and should be deferred till we know we have a possible hit. */ int QueryColliding( BOARD_ITEM* aRefItem, PCB_LAYER_ID aRefLayer, PCB_LAYER_ID aTargetLayer, std::function aFilter = nullptr, std::function aVisitor = nullptr, int aClearance = 0 ) const { // keep track of BOARD_ITEMs that have been already found to collide (some items // might be build of COMPOUND/triangulated shapes and a single subshape collision // means we have a hit) std::unordered_set collidingCompounds; EDA_RECT box = aRefItem->GetBoundingBox(); box.Inflate( aClearance ); int min[2] = { box.GetX(), box.GetY() }; int max[2] = { box.GetRight(), box.GetBottom() }; std::shared_ptr refShape = aRefItem->GetEffectiveShape( aRefLayer ); int count = 0; auto visit = [&]( ITEM_WITH_SHAPE* aItem ) -> bool { if( aItem->parent == aRefItem ) return true; if( collidingCompounds.find( aItem->parent ) != collidingCompounds.end() ) return true; if( !aFilter || aFilter( aItem->parent ) ) { if( refShape->Collide( aItem->shape, aClearance ) ) { collidingCompounds.insert( aItem->parent ); count++; if( aVisitor ) return aVisitor( aItem->parent ); } } return true; }; this->m_tree[aTargetLayer]->Search( min, max, visit ); return count; } /** * This one is for tessellated items. (All shapes in the tree will be from a single * BOARD_ITEM.) * It checks all items in the bbox overlap to find the minimal actual distance and * position. */ bool QueryColliding( EDA_RECT aBox, SHAPE* aRefShape, PCB_LAYER_ID aLayer, int aClearance, int* aActual, VECTOR2I* aPos ) const { aBox.Inflate( aClearance ); int min[2] = { aBox.GetX(), aBox.GetY() }; int max[2] = { aBox.GetRight(), aBox.GetBottom() }; bool collision = false; int actual = INT_MAX; VECTOR2I pos; auto visit = [&]( ITEM_WITH_SHAPE* aItem ) -> bool { int curActual; VECTOR2I curPos; if( aRefShape->Collide( aItem->shape, aClearance, &curActual, &curPos ) ) { collision = true; if( curActual < actual ) { actual = curActual; pos = curPos; } } return true; }; this->m_tree[aLayer]->Search( min, max, visit ); if( collision ) { if( aActual ) *aActual = std::max( 0, actual ); if( aPos ) *aPos = pos; return true; } return false; } typedef std::pair LAYER_PAIR; struct PAIR_INFO { PAIR_INFO( LAYER_PAIR aPair, ITEM_WITH_SHAPE* aRef, ITEM_WITH_SHAPE* aTest ) : layerPair( aPair ), refItem( aRef ), testItem( aTest ) { }; LAYER_PAIR layerPair; ITEM_WITH_SHAPE* refItem; ITEM_WITH_SHAPE* testItem; }; int QueryCollidingPairs( DRC_RTREE* aRefTree, std::vector aLayerPairs, std::function aVisitor, int aMaxClearance, std::function aProgressReporter ) const { std::vector pairsToVisit; for( LAYER_PAIR& layerPair : aLayerPairs ) { const PCB_LAYER_ID refLayer = layerPair.first; const PCB_LAYER_ID targetLayer = layerPair.second; for( ITEM_WITH_SHAPE* refItem : aRefTree->OnLayer( refLayer ) ) { BOX2I box = refItem->shape->BBox(); box.Inflate( aMaxClearance ); int min[2] = { box.GetX(), box.GetY() }; int max[2] = { box.GetRight(), box.GetBottom() }; auto visit = [&]( ITEM_WITH_SHAPE* aItemToTest ) -> bool { // don't collide items against themselves if( aItemToTest->parent == refItem->parent ) return true; pairsToVisit.emplace_back( layerPair, refItem, aItemToTest ); return true; }; this->m_tree[targetLayer]->Search( min, max, visit ); }; } // keep track of BOARD_ITEMs pairs that have been already found to collide (some items // might be build of COMPOUND/triangulated shapes and a single subshape collision // means we have a hit) std::map< std::pair, int> collidingCompounds; int progress = 0; int count = pairsToVisit.size(); for( const PAIR_INFO& pair : pairsToVisit ) { if( !aProgressReporter( progress++, count ) ) break; BOARD_ITEM* a = pair.refItem->parent; BOARD_ITEM* b = pair.testItem->parent; // store canonical order so we don't collide in both directions (a:b and b:a) if( static_cast( a ) > static_cast( b ) ) std::swap( a, b ); // don't report multiple collisions for compound or triangulated shapes if( collidingCompounds.count( { a, b } ) ) continue; bool collisionDetected = false; if( !aVisitor( pair.layerPair, pair.refItem, pair.testItem, &collisionDetected ) ) break; if( collisionDetected ) collidingCompounds[ { a, b } ] = 1; } return 0; } /** * Returns the number of items in the tree * @return number of elements in the tree; */ size_t size() const { return m_count; } bool empty() const { return m_count == 0; } using iterator = typename drc_rtree::Iterator; /** * The DRC_LAYER struct provides a layer-specific auto-range iterator to the RTree. Using * this struct, one can write lines like: * * for( auto item : rtree.OnLayer( In1_Cu ) ) * * and iterate over only the RTree items that are on In1 */ struct DRC_LAYER { DRC_LAYER( drc_rtree* aTree ) : layer_tree( aTree ) { m_rect = { { INT_MIN, INT_MIN }, { INT_MAX, INT_MAX } }; }; DRC_LAYER( drc_rtree* aTree, const EDA_RECT aRect ) : layer_tree( aTree ) { m_rect = { { aRect.GetX(), aRect.GetY() }, { aRect.GetRight(), aRect.GetBottom() } }; }; drc_rtree::Rect m_rect; drc_rtree* layer_tree; iterator begin() { return layer_tree->begin( m_rect ); } iterator end() { return layer_tree->end( m_rect ); } }; DRC_LAYER OnLayer( PCB_LAYER_ID aLayer ) { return DRC_LAYER( m_tree[int( aLayer )] ); } DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const wxPoint& aPoint, int aAccuracy = 0 ) { EDA_RECT rect( aPoint, wxSize( 0, 0 ) ); rect.Inflate( aAccuracy ); return DRC_LAYER( m_tree[int( aLayer )], rect ); } DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const EDA_RECT& aRect ) { return DRC_LAYER( m_tree[int( aLayer )], aRect ); } private: drc_rtree* m_tree[PCB_LAYER_ID_COUNT]; size_t m_count; }; #endif /* DRC_RTREE_H_ */