/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2019 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2011 Wayne Stambaugh * Copyright (C) 2004-2021 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SCH_ITEM* SCH_EDITOR_CONTROL::FindComponentAndItem( const wxString& aReference, bool aSearchHierarchy, SCH_SEARCH_T aSearchType, const wxString& aSearchText ) { SCH_SHEET_PATH* sheetWithComponentFound = NULL; SCH_COMPONENT* component = NULL; wxPoint pos; SCH_PIN* pin = nullptr; SCH_SHEET_LIST sheetList; SCH_ITEM* foundItem = nullptr; if( !aSearchHierarchy ) sheetList.push_back( m_frame->GetCurrentSheet() ); else sheetList = m_frame->Schematic().GetSheets(); for( SCH_SHEET_PATH& sheet : sheetList ) { SCH_SCREEN* screen = sheet.LastScreen(); for( auto item : screen->Items().OfType( SCH_COMPONENT_T ) ) { SCH_COMPONENT* candidate = static_cast( item ); if( aReference.CmpNoCase( candidate->GetRef( &sheet ) ) == 0 ) { component = candidate; sheetWithComponentFound = &sheet; if( aSearchType == HIGHLIGHT_PIN ) { pos = component->GetPosition(); // temporary: will be changed if the pin is found. pin = component->GetPin( aSearchText ); // Ensure we have found the right unit in case of multi-units symbol if( pin ) { int unit = pin->GetLibPin()->GetUnit(); if( unit != 0 && unit != component->GetUnit() ) { pin = nullptr; continue; } // Get pin position in true schematic coordinate pos = pin->GetPosition(); foundItem = pin; break; } } else { pos = component->GetPosition(); foundItem = component; break; } } } if( foundItem ) break; } CROSS_PROBING_SETTINGS& crossProbingSettings = m_frame->eeconfig()->m_CrossProbing; if( component ) { if( *sheetWithComponentFound != m_frame->GetCurrentSheet() ) { m_frame->Schematic().SetCurrentSheet( *sheetWithComponentFound ); m_frame->DisplayCurrentSheet(); } if( crossProbingSettings.center_on_items ) { m_frame->GetCanvas()->GetViewControls()->SetCrossHairCursorPosition( pos, false ); m_frame->CenterScreen( pos, false ); if( crossProbingSettings.zoom_to_fit ) { //#define COMP_1_TO_1_RATIO // Un-comment for normal KiCad full screen zoom cross-probe #ifdef COMP_1_TO_1_RATIO // Pass "false" to only include visible fields of component in bbox calculations EDA_RECT bbox = component->GetBoundingBox( false ); wxSize bbSize = bbox.Inflate( bbox.GetWidth() * 0.2f ).GetSize(); VECTOR2D screenSize = getView()->GetViewport().GetSize(); // NOTE: The 1:1 here is using the default KiCad sizing, which adds a margin of 20% screenSize.x = std::max( 10.0, screenSize.x ); screenSize.y = std::max( 10.0, screenSize.y ); double ratio = std::max( fabs( bbSize.x / screenSize.x ), fabs( bbSize.y / screenSize.y ) ); // Try not to zoom on every cross-probe; it gets very noisy if( ratio < 0.5 || ratio > 1.0 ) getView()->SetScale( getView()->GetScale() / ratio ); #endif // COMP_1_TO_1_RATIO #ifndef COMP_1_TO_1_RATIO // Do the scaled zoom // Pass "false" to only include visible fields of component in bbox calculations EDA_RECT bbox = component->GetBoundingBox( false ); wxSize bbSize = bbox.Inflate( bbox.GetWidth() * 0.2f ).GetSize(); VECTOR2D screenSize = getView()->GetViewport().GetSize(); // This code tries to come up with a zoom factor that doesn't simply zoom in // to the cross probed component, but instead shows a reasonable amount of the // circuit around it to provide context. This reduces or eliminates the need // to manually change the zoom because it's too close. // Using the default text height as a constant to compare against, use the // height of the bounding box of visible items for a footprint to figure out // if this is a big symbol (like a processor) or a small symbol (like a resistor). // This ratio is not useful by itself as a scaling factor. It must be "bent" to // provide good scaling at varying component sizes. Bigger components need less // scaling than small ones. double currTextHeight = Mils2iu( DEFAULT_TEXT_SIZE ); double compRatio = bbSize.y / currTextHeight; // Ratio of component to text height double compRatioBent = 1.0; // LUT to scale zoom ratio to provide reasonable schematic context. Must work // with symbols of varying sizes (e.g. 0402 package and 200 pin BGA). // "first" is used as the input and "second" as the output // // "first" = compRatio (symbol height / default text height) // "second" = Amount to scale ratio by std::vector> lut { {1.25, 16}, // 32 {2.5, 12}, //24 {5, 8}, // 16 {6, 6}, // {10, 4}, //8 {20, 2}, //4 {40, 1.5}, // 2 {100, 1} }; std::vector>::iterator it; compRatioBent = lut.back().second; // Large component default is last LUT entry (1:1) // Use LUT to do linear interpolation of "compRatio" within "first", then // use that result to linearly interpolate "second" which gives the scaling // factor needed. if( compRatio >= lut.front().first ) { for( it = lut.begin(); it < lut.end() - 1; it++ ) { if( it->first <= compRatio && next( it )->first >= compRatio ) { double diffx = compRatio - it->first; double diffn = next( it )->first - it->first; compRatioBent = it->second + ( next( it )->second - it->second ) * diffx / diffn; break; // We have our interpolated value } } } else compRatioBent = lut.front().second; // Small component default is first entry // This is similar to the original KiCad code that scaled the zoom to make sure // components were visible on screen. It's simply a ratio of screen size to component // size, and its job is to zoom in to make the component fullscreen. Earlier in the // code the component BBox is given a 20% margin to add some breathing room. We compare // the height of this enlarged component bbox to the default text height. If a // component will end up with the sides clipped, we adjust later to make sure it fits // on screen. screenSize.x = std::max( 10.0, screenSize.x ); screenSize.y = std::max( 10.0, screenSize.y ); double ratio = std::max( -1.0, fabs( bbSize.y / screenSize.y ) ); // Original KiCad code for how much to scale the zoom double kicadRatio = std::max( fabs( bbSize.x / screenSize.x ), fabs( bbSize.y / screenSize.y ) ); // If the width of the part we're probing is bigger than what the screen width will be // after the zoom, then punt and use the KiCad zoom algorithm since it guarantees the // part's width will be encompassed within the screen. if( bbSize.x > screenSize.x * ratio * compRatioBent ) { ratio = kicadRatio; // Use standard KiCad zoom for parts too wide to fit on screen compRatioBent = 1.0; // Reset so we don't modify the "KiCad" ratio wxLogTrace( "CROSS_PROBE_SCALE", "Part TOO WIDE for screen. Using normal KiCad zoom ratio: %1.5f", ratio ); } // Now that "compRatioBent" holds our final scaling factor we apply it to the original // fullscreen zoom ratio to arrive at the final ratio itself. ratio *= compRatioBent; bool alwaysZoom = false; // DEBUG - allows us to minimize zooming or not // Try not to zoom on every cross-probe; it gets very noisy if( ( ratio < 0.5 || ratio > 1.0 ) || alwaysZoom ) getView()->SetScale( getView()->GetScale() / ratio ); #endif // ifndef COMP_1_TO_1_RATIO } } } /* Print diag */ wxString msg; if( component ) { if( aSearchType == HIGHLIGHT_PIN ) { if( foundItem ) msg.Printf( _( "%s pin %s found" ), aReference, aSearchText ); else msg.Printf( _( "%s found but pin %s not found" ), aReference, aSearchText ); } else { msg.Printf( _( "%s found" ), aReference ); } } else { msg.Printf( _( "%s not found" ), aReference ); } m_frame->SetStatusText( msg ); m_probingPcbToSch = true; // recursion guard { // Clear any existing highlighting m_toolMgr->RunAction( EE_ACTIONS::clearSelection, true ); if( foundItem ) m_toolMgr->RunAction( EE_ACTIONS::addItemToSel, true, foundItem ); } m_probingPcbToSch = false; m_frame->GetCanvas()->Refresh(); return foundItem; } void SCH_EDIT_FRAME::ExecuteRemoteCommand( const char* cmdline ) { SCH_EDITOR_CONTROL* editor = m_toolManager->GetTool(); char line[1024]; strncpy( line, cmdline, sizeof(line) - 1 ); line[ sizeof(line) - 1 ] = '\0'; char* idcmd = strtok( line, " \n\r" ); char* text = strtok( NULL, "\"\n\r" ); if( idcmd == NULL ) return; CROSS_PROBING_SETTINGS& crossProbingSettings = eeconfig()->m_CrossProbing; if( strcmp( idcmd, "$NET:" ) == 0 ) { if( !crossProbingSettings.auto_highlight ) return; wxString netName = FROM_UTF8( text ); if( auto sg = Schematic().ConnectionGraph()->FindFirstSubgraphByName( netName ) ) m_highlightedConn = sg->m_driver_connection; else m_highlightedConn = nullptr; GetToolManager()->RunAction( EE_ACTIONS::updateNetHighlighting, true ); SetStatusText( _( "Selected net:" ) + wxS( " " ) + UnescapeString( netName ) ); return; } if( strcmp( idcmd, "$CLEAR:" ) == 0 ) { // Cross-probing is now done through selection so we no longer need a clear command return; } if( text == NULL ) return; if( strcmp( idcmd, "$PART:" ) != 0 ) return; wxString part_ref = FROM_UTF8( text ); /* look for a complement */ idcmd = strtok( NULL, " \n\r" ); if( idcmd == NULL ) // Highlight component only (from Cvpcb or Pcbnew) { // Highlight component part_ref, or clear Highlight, if part_ref is not existing editor->FindComponentAndItem( part_ref, true, HIGHLIGHT_COMPONENT, wxEmptyString ); return; } text = strtok( NULL, "\"\n\r" ); if( text == NULL ) return; wxString msg = FROM_UTF8( text ); if( strcmp( idcmd, "$REF:" ) == 0 ) { // Highlighting the reference itself isn't actually that useful, and it's harder to // see. Highlight the parent and display the message. editor->FindComponentAndItem( part_ref, true, HIGHLIGHT_COMPONENT, msg ); } else if( strcmp( idcmd, "$VAL:" ) == 0 ) { // Highlighting the value itself isn't actually that useful, and it's harder to see. // Highlight the parent and display the message. editor->FindComponentAndItem( part_ref, true, HIGHLIGHT_COMPONENT, msg ); } else if( strcmp( idcmd, "$PAD:" ) == 0 ) { editor->FindComponentAndItem( part_ref, true, HIGHLIGHT_PIN, msg ); } else { editor->FindComponentAndItem( part_ref, true, HIGHLIGHT_COMPONENT, wxEmptyString ); } } std::string FormatProbeItem( EDA_ITEM* aItem, SCH_COMPONENT* aSymbol ) { // This is a keyword followed by a quoted string. // Cross probing to Pcbnew if a pin or a component is found switch( aItem->Type() ) { case SCH_FIELD_T: if( aSymbol ) { return StrPrintf( "$PART: \"%s\"", TO_UTF8( aSymbol->GetField( REFERENCE_FIELD )->GetText() ) ); } break; case SCH_COMPONENT_T: aSymbol = (SCH_COMPONENT*) aItem; return StrPrintf( "$PART: \"%s\"", TO_UTF8( aSymbol->GetField( REFERENCE_FIELD )->GetText() ) ); case SCH_SHEET_T: { // For cross probing, we need the full path of the sheet, because // in complex hierarchies the sheet uuid of not unique SCH_SHEET* sheet = (SCH_SHEET*)aItem; wxString full_path; SCH_SHEET* parent = sheet; while( (parent = dynamic_cast( parent->GetParent() ) ) ) { if( parent->GetParent() ) // The root sheet has no parent and path is just "/" { full_path.Prepend( parent->m_Uuid.AsString() ); full_path.Prepend( "/" ); } } full_path += "/" + sheet->m_Uuid.AsString(); return StrPrintf( "$SHEET: \"%s\"", TO_UTF8( full_path ) ); } case SCH_PIN_T: { SCH_PIN* pin = (SCH_PIN*) aItem; aSymbol = pin->GetParentSymbol(); if( !pin->GetNumber().IsEmpty() ) { return StrPrintf( "$PIN: \"%s\" $PART: \"%s\"", TO_UTF8( pin->GetNumber() ), TO_UTF8( aSymbol->GetField( REFERENCE_FIELD )->GetText() ) ); } else { return StrPrintf( "$PART: \"%s\"", TO_UTF8( aSymbol->GetField( REFERENCE_FIELD )->GetText() ) ); } } default: break; } return ""; } void SCH_EDIT_FRAME::SendMessageToPCBNEW( EDA_ITEM* aObjectToSync, SCH_COMPONENT* aLibItem ) { wxASSERT( aObjectToSync ); // fix the caller if( !aObjectToSync ) return; std::string packet = FormatProbeItem( aObjectToSync, aLibItem ); if( !packet.empty() ) { if( Kiface().IsSingle() ) SendCommand( MSG_TO_PCB, packet ); else { // Typically ExpressMail is going to be s-expression packets, but since // we have existing interpreter of the cross probe packet on the other // side in place, we use that here. Kiway().ExpressMail( FRAME_PCB_EDITOR, MAIL_CROSS_PROBE, packet, this ); } } } void SCH_EDIT_FRAME::SendCrossProbeNetName( const wxString& aNetName ) { // The command is a keyword followed by a quoted string. std::string packet = StrPrintf( "$NET: \"%s\"", TO_UTF8( aNetName ) ); if( !packet.empty() ) { if( Kiface().IsSingle() ) SendCommand( MSG_TO_PCB, packet ); else { // Typically ExpressMail is going to be s-expression packets, but since // we have existing interpreter of the cross probe packet on the other // side in place, we use that here. Kiway().ExpressMail( FRAME_PCB_EDITOR, MAIL_CROSS_PROBE, packet, this ); } } } void SCH_EDIT_FRAME::SetCrossProbeConnection( const SCH_CONNECTION* aConnection ) { if( !aConnection ) { SendCrossProbeClearHighlight(); return; } if( aConnection->IsNet() ) { SendCrossProbeNetName( aConnection->Name() ); return; } if( aConnection->Members().empty() ) return; auto all_members = aConnection->AllMembers(); wxString nets = all_members[0]->Name(); if( all_members.size() == 1 ) { SendCrossProbeNetName( nets ); return; } // TODO: This could be replaced by just sending the bus name once we have bus contents // included as part of the netlist sent from eeschema to pcbnew (and thus pcbnew can // natively keep track of bus membership) for( size_t i = 1; i < all_members.size(); i++ ) nets << "," << all_members[i]->Name(); std::string packet = StrPrintf( "$NETS: \"%s\"", TO_UTF8( nets ) ); if( !packet.empty() ) { if( Kiface().IsSingle() ) SendCommand( MSG_TO_PCB, packet ); else { // Typically ExpressMail is going to be s-expression packets, but since // we have existing interpreter of the cross probe packet on the other // side in place, we use that here. Kiway().ExpressMail( FRAME_PCB_EDITOR, MAIL_CROSS_PROBE, packet, this ); } } } void SCH_EDIT_FRAME::SendCrossProbeClearHighlight() { std::string packet = "$CLEAR\n"; if( Kiface().IsSingle() ) SendCommand( MSG_TO_PCB, packet ); else { // Typically ExpressMail is going to be s-expression packets, but since // we have existing interpreter of the cross probe packet on the other // side in place, we use that here. Kiway().ExpressMail( FRAME_PCB_EDITOR, MAIL_CROSS_PROBE, packet, this ); } } void SCH_EDIT_FRAME::KiwayMailIn( KIWAY_EXPRESS& mail ) { std::string& payload = mail.GetPayload(); switch( mail.Command() ) { case MAIL_CROSS_PROBE: ExecuteRemoteCommand( payload.c_str() ); break; case MAIL_SCH_GET_NETLIST: { if( !payload.empty() ) { wxString annotationMessage( payload ); // Ensure schematic is OK for netlist creation (especially that it is fully annotated): if( !ReadyToNetlist( annotationMessage ) ) return; } NETLIST_EXPORTER_KICAD exporter( &Schematic() ); STRING_FORMATTER formatter; // TODO remove once real-time connectivity is a given if( !ADVANCED_CFG::GetCfg().m_RealTimeConnectivity || !CONNECTION_GRAPH::m_allowRealTime ) // Ensure the netlist data is up to date: RecalculateConnections( NO_CLEANUP ); exporter.Format( &formatter, GNL_ALL | GNL_OPT_KICAD ); payload = formatter.GetString(); } break; case MAIL_ASSIGN_FOOTPRINTS: try { SCH_EDITOR_CONTROL* controlTool = m_toolManager->GetTool(); controlTool->AssignFootprints( payload ); } catch( const IO_ERROR& ) { } break; case MAIL_SCH_REFRESH: { TestDanglingEnds(); GetCanvas()->GetView()->UpdateAllItems( KIGFX::ALL ); GetCanvas()->Refresh(); } break; case MAIL_SCH_CLEAN_NETCLASSES: { NET_SETTINGS& netSettings = Prj().GetProjectFile().NetSettings(); netSettings.m_NetClassAssignments.clear(); // Establish the set of nets which is currently valid for( const wxString& name : Schematic().GetNetClassAssignmentCandidates() ) netSettings.m_NetClassAssignments[ name ] = "Default"; // Copy their netclass assignments, dropping any assignments to non-current nets. for( auto& ii : netSettings.m_NetClasses ) { for( const wxString& member : *ii.second ) { if( netSettings.m_NetClassAssignments.count( member ) ) netSettings.m_NetClassAssignments[ member ] = ii.first; } ii.second->Clear(); } // Update the membership lists to contain only the current nets. for( const std::pair& ii : netSettings.m_NetClassAssignments ) { if( ii.second == "Default" ) continue; NETCLASSPTR netclass = netSettings.m_NetClasses.Find( ii.second ); if( netclass ) netclass->Add( ii.first ); } netSettings.ResolveNetClassAssignments(); } break; case MAIL_IMPORT_FILE: { // Extract file format type and path (plugin type and path separated with \n) size_t split = payload.find( '\n' ); wxCHECK( split != std::string::npos, /*void*/ ); int importFormat; try { importFormat = std::stoi( payload.substr( 0, split ) ); } catch( std::invalid_argument& ) { wxFAIL; importFormat = -1; } std::string path = payload.substr( split + 1 ); wxASSERT( !path.empty() ); if( importFormat >= 0 ) importFile( path, importFormat ); } break; case MAIL_SCH_SAVE: if( SaveProject() ) payload = "success"; break; case MAIL_SCH_UPDATE: m_toolManager->RunAction( ACTIONS::updateSchematicFromPcb, true ); break; case MAIL_REANNOTATE: //Reannotate the schematic as per the netlist. ReannotateFromPCBNew( this, payload ); break; default:; } }