/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2016 Mario Luzeiro * Copyright (C) 1992-2016 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file PerlinNoise.h * @brief This source code comes from the project: * https://github.com/sol-prog/Perlin_Noise * * It was changed to work with floats instead of doubles * * Original copyright notice: * * Perlin_Noise * Here you could find the code for "Perlin noise in C++11", for more informations visit the project webpage: * http://solarianprogrammer.com/2012/07/18/perlin-noise-cpp-11/ * You could use this program under the terms of GPL v3, for more details see: * http://www.gnu.org/copyleft/gpl.html * Copyright 2012 Sol from www.solarianprogrammer.com */ #include "PerlinNoise.h" #include #include #include #include #include #include // THIS IS A DIRECT TRANSLATION TO C++11 FROM THE REFERENCE // JAVA IMPLEMENTATION OF THE IMPROVED PERLIN FUNCTION (see http://mrl.nyu.edu/~perlin/noise/) // THE ORIGINAL JAVA IMPLEMENTATION IS COPYRIGHT 2002 KEN PERLIN // I ADDED AN EXTRA METHOD THAT GENERATES A NEW PERMUTATION VECTOR // (THIS IS NOT PRESENT IN THE ORIGINAL IMPLEMENTATION) // Initialize with the reference values for the permutation vector PerlinNoise::PerlinNoise() { // Initialize the permutation vector with the reference values p = { 151,160,137,91,90,15,131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142, 8,99,37,240,21,10,23,190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117, 35,11,32,57,177,33,88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71, 134,139,48,27,166,77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41, 55,46,245,40,244,102,143,54, 65,25,63,161,1,216,80,73,209,76,132,187,208, 89, 18,169,200,196,135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226, 250,124,123,5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182, 189,28,42,223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246, 97,228,251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239, 107,49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180 }; // Duplicate the permutation vector p.insert(p.end(), p.begin(), p.end()); } // Generate a new permutation vector based on the value of seed PerlinNoise::PerlinNoise( unsigned int seed ) { p.resize( 256 ); // Fill p with values from 0 to 255 std::iota( p.begin(), p.end(), 0 ); // Initialize a random engine with seed std::default_random_engine engine( seed ); // Suffle using the above random engine std::shuffle( p.begin(), p.end(), engine ); // Duplicate the permutation vector p.insert( p.end(), p.begin(), p.end() ); } float PerlinNoise::noise( float x, float y, float z ) const { // Find the unit cube that contains the point int X = static_cast( std::floor( x ) ) & 255; int Y = static_cast( std::floor( y ) ) & 255; int Z = static_cast( std::floor( z ) ) & 255; // Find relative x, y,z of point in cube x -= std::floor( x ); y -= std::floor( y ); z -= std::floor( z ); // Compute fade curves for each of x, y, z const float u = fade( x ); const float v = fade( y ); const float w = fade( z ); // Hash coordinates of the 8 cube corners const int A = p[X] + Y; const int AA = p[A] + Z; const int AB = p[A + 1] + Z; const int B = p[X + 1] + Y; const int BA = p[B] + Z; const int BB = p[B + 1] + Z; // Add blended results from 8 corners of cube const float res = lerp( w, lerp( v, lerp( u, grad( p[AA], x , y, z), grad( p[BA], x - 1, y, z) ), lerp( u, grad( p[AB], x , y - 1, z ), grad( p[BB], x - 1, y - 1, z) ) ), lerp( v, lerp( u, grad( p[AA + 1], x , y, z - 1 ), grad( p[BA + 1], x - 1, y, z - 1) ), lerp( u, grad( p[AB + 1], x , y - 1, z - 1 ), grad( p[BB + 1], x - 1, y - 1, z - 1 ) ) ) ); return (res + 1.0f) / 2.0f; } float PerlinNoise::noise( float x, float y ) const { // Find the unit cube that contains the point int X = static_cast( std::floor( x ) ) & 255; int Y = static_cast( std::floor( y ) ) & 255; // Find relative x, y,z of point in cube x -= std::floor( x ); y -= std::floor( y ); // Compute fade curves for each of x, y const float u = fade( x ); const float v = fade( y ); // Hash coordinates of the 8 cube corners const int A = p[X] + Y; const int AA = p[A] + 0; const int AB = p[A + 1] + 0; const int B = p[X + 1] + Y; const int BA = p[B] + 0; const int BB = p[B + 1] + 0; // Add blended results from 8 corners of cube const float res = lerp( v, lerp( u, grad( p[AA], x , y ), grad( p[BA], x - 1, y ) ), lerp( u, grad( p[AB], x , y - 1 ), grad( p[BB], x - 1, y - 1 ) ) ); return (res + 1.0f) / 2.0f; } float PerlinNoise::fade( float t ) const { return t * t * t * (t * (t * 6.0f - 15.0f) + 10.0f); } float PerlinNoise::lerp( float t, float a, float b ) const { return a + t * (b - a); } float PerlinNoise::grad( int hash, float x, float y, float z ) const { const int h = hash & 15; // Convert lower 4 bits of hash inot 12 gradient directions const float u = h < 8 ? x : y; const float v = h < 4 ? y : h == 12 || h == 14 ? x : z; return ((h & 1) == 0 ? u : -u) + ((h & 2) == 0 ? v : -v); } float PerlinNoise::grad( int hash, float x, float y ) const { const int h = hash & 15; // Convert lower 4 bits of hash inot 12 gradient directions const float u = h < 8 ? x : y; const float v = h < 4 ? y : h == 12 || h == 14 ? x : 0.0f; return ((h & 1) == 0 ? u : -u) + ((h & 2) == 0 ? v : -v); }