/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 2011 Wayne Stambaugh * Copyright (C) 1992-2018 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file class_drawsegment.cpp * @brief Class and functions to handle a graphic segments. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DRAWSEGMENT::DRAWSEGMENT( BOARD_ITEM* aParent, KICAD_T idtype ) : BOARD_ITEM( aParent, idtype ) { m_Type = 0; m_Angle = 0; m_Flags = 0; m_Shape = S_SEGMENT; m_Width = Millimeter2iu( DEFAULT_LINE_WIDTH ); } DRAWSEGMENT::~DRAWSEGMENT() { } void DRAWSEGMENT::SetPosition( const wxPoint& aPos ) { m_Start = aPos; } const wxPoint DRAWSEGMENT::GetPosition() const { if( m_Shape == S_POLYGON ) return (wxPoint) m_Poly.CVertex( 0 ); else return m_Start; } void DRAWSEGMENT::Move( const wxPoint& aMoveVector ) { m_Start += aMoveVector; m_End += aMoveVector; switch ( m_Shape ) { case S_POLYGON: for( auto iter = m_Poly.Iterate(); iter; iter++ ) { (*iter) += VECTOR2I( aMoveVector ); } break; case S_CURVE: m_BezierC1 += aMoveVector; m_BezierC2 += aMoveVector; for( unsigned int ii = 0; ii < m_BezierPoints.size(); ii++ ) { m_BezierPoints[ii] += aMoveVector; } break; default: break; } } void DRAWSEGMENT::Rotate( const wxPoint& aRotCentre, double aAngle ) { switch( m_Shape ) { case S_ARC: case S_SEGMENT: case S_CIRCLE: // these can all be done by just rotating the start and end points RotatePoint( &m_Start, aRotCentre, aAngle); RotatePoint( &m_End, aRotCentre, aAngle); break; case S_POLYGON: for( auto iter = m_Poly.Iterate(); iter; iter++ ) { RotatePoint( *iter, VECTOR2I(aRotCentre), aAngle); } break; case S_CURVE: RotatePoint( &m_Start, aRotCentre, aAngle); RotatePoint( &m_End, aRotCentre, aAngle); RotatePoint( &m_BezierC1, aRotCentre, aAngle); RotatePoint( &m_BezierC2, aRotCentre, aAngle); for( unsigned int ii = 0; ii < m_BezierPoints.size(); ii++ ) { RotatePoint( &m_BezierPoints[ii], aRotCentre, aAngle); } break; case S_RECT: default: // un-handled edge transform wxASSERT_MSG( false, wxT( "DRAWSEGMENT::Rotate not implemented for " + ShowShape( m_Shape ) ) ); break; } } void DRAWSEGMENT::Flip( const wxPoint& aCentre ) { m_Start.y = aCentre.y - (m_Start.y - aCentre.y); m_End.y = aCentre.y - (m_End.y - aCentre.y); switch ( m_Shape ) { case S_ARC: m_Angle = -m_Angle; break; case S_POLYGON: for( auto iter = m_Poly.Iterate(); iter; iter++ ) { iter->y = aCentre.y - (iter->y - aCentre.y); } break; case S_CURVE: { m_BezierC1.y = aCentre.y - (m_BezierC1.y - aCentre.y); m_BezierC2.y = aCentre.y - (m_BezierC2.y - aCentre.y); // Rebuild the poly points shape std::vector ctrlPoints = { m_Start, m_BezierC1, m_BezierC2, m_End }; BEZIER_POLY converter( ctrlPoints ); converter.GetPoly( m_BezierPoints, m_Width ); } break; default: break; } // DRAWSEGMENT items are not allowed on copper layers, so // copper layers count is not taken in account in Flip transform SetLayer( FlipLayer( GetLayer() ) ); } void DRAWSEGMENT::RebuildBezierToSegmentsPointsList( int aMinSegLen ) { // Has meaning only for S_CURVE DRAW_SEGMENT shape if( m_Shape != S_CURVE ) { m_BezierPoints.clear(); return; } // Rebuild the m_BezierPoints vertex list that approximate the Bezier curve std::vector ctrlPoints = { m_Start, m_BezierC1, m_BezierC2, m_End }; BEZIER_POLY converter( ctrlPoints ); converter.GetPoly( m_BezierPoints, aMinSegLen ); } const wxPoint DRAWSEGMENT::GetCenter() const { wxPoint c; switch( m_Shape ) { case S_ARC: case S_CIRCLE: c = m_Start; break; case S_SEGMENT: // Midpoint of the line c = ( GetStart() + GetEnd() ) / 2; break; case S_POLYGON: case S_RECT: case S_CURVE: c = GetBoundingBox().Centre(); break; default: wxASSERT_MSG( false, "DRAWSEGMENT::GetCentre not implemented for shape" + ShowShape( GetShape() ) ); break; } return c; } const wxPoint DRAWSEGMENT::GetArcEnd() const { wxPoint endPoint( m_End ); // start of arc switch( m_Shape ) { case S_ARC: // rotate the starting point of the arc, given by m_End, through the // angle m_Angle to get the ending point of the arc. // m_Start is the arc centre endPoint = m_End; // m_End = start point of arc RotatePoint( &endPoint, m_Start, -m_Angle ); break; default: break; } return endPoint; // after rotation, the end of the arc. } const wxPoint DRAWSEGMENT::GetArcMid() const { wxPoint endPoint( m_End ); switch( m_Shape ) { case S_ARC: // rotate the starting point of the arc, given by m_End, through half // the angle m_Angle to get the middle of the arc. // m_Start is the arc centre endPoint = m_End; // m_End = start point of arc RotatePoint( &endPoint, m_Start, -m_Angle / 2.0 ); break; default: break; } return endPoint; // after rotation, the end of the arc. } double DRAWSEGMENT::GetArcAngleStart() const { // due to the Y axis orient atan2 needs - y value double angleStart = ArcTangente( GetArcStart().y - GetCenter().y, GetArcStart().x - GetCenter().x ); // Normalize it to 0 ... 360 deg, to avoid discontinuity for angles near 180 deg // because 180 deg and -180 are very near angles when ampping betewwen -180 ... 180 deg. // and this is not easy to handle in calculations NORMALIZE_ANGLE_POS( angleStart ); return angleStart; } void DRAWSEGMENT::SetAngle( double aAngle ) { // m_Angle must be >= -360 and <= +360 degrees m_Angle = NormalizeAngle360Max( aAngle ); } MODULE* DRAWSEGMENT::GetParentModule() const { if( !m_Parent || m_Parent->Type() != PCB_MODULE_T ) return NULL; return (MODULE*) m_Parent; } void DRAWSEGMENT::Draw( EDA_DRAW_PANEL* panel, wxDC* DC, GR_DRAWMODE draw_mode, const wxPoint& aOffset ) { int ux0, uy0, dx, dy; int l_trace; int radius; PCB_LAYER_ID curr_layer = ( (PCB_SCREEN*) panel->GetScreen() )->m_Active_Layer; BOARD * brd = GetBoard( ); if( brd->IsLayerVisible( GetLayer() ) == false ) return; auto frame = static_cast ( panel->GetParent() ); auto color = frame->Settings().Colors().GetLayerColor( GetLayer() ); auto displ_opts = (PCB_DISPLAY_OPTIONS*) panel->GetDisplayOptions(); if( ( draw_mode & GR_ALLOW_HIGHCONTRAST ) && displ_opts && displ_opts->m_ContrastModeDisplay ) { if( !IsOnLayer( curr_layer ) && !IsOnLayer( Edge_Cuts ) ) color = COLOR4D( DARKDARKGRAY ); } GRSetDrawMode( DC, draw_mode ); l_trace = m_Width >> 1; // half trace width // Line start point or Circle and Arc center ux0 = m_Start.x + aOffset.x; uy0 = m_Start.y + aOffset.y; // Line end point or circle and arc start point dx = m_End.x + aOffset.x; dy = m_End.y + aOffset.y; bool filled = displ_opts ? displ_opts->m_DisplayDrawItemsFill : FILLED; if( m_Flags & FORCE_SKETCH ) filled = SKETCH; switch( m_Shape ) { case S_CIRCLE: radius = KiROUND( Distance( ux0, uy0, dx, dy ) ); if( filled ) { GRCircle( panel->GetClipBox(), DC, ux0, uy0, radius, m_Width, color ); } else { GRCircle( panel->GetClipBox(), DC, ux0, uy0, radius - l_trace, color ); GRCircle( panel->GetClipBox(), DC, ux0, uy0, radius + l_trace, color ); } break; case S_ARC: double StAngle, EndAngle; radius = KiROUND( Distance( ux0, uy0, dx, dy ) ); StAngle = ArcTangente( dy - uy0, dx - ux0 ); EndAngle = StAngle + m_Angle; if( !panel->GetPrintMirrored() ) { if( StAngle > EndAngle ) std::swap( StAngle, EndAngle ); } else // Mirrored mode: arc orientation is reversed { #ifdef __WXMAC__ // wxWidgets OSX print driver handles arc mirroring for us if( StAngle > EndAngle ) std::swap( StAngle, EndAngle ); #else if( StAngle < EndAngle ) std::swap( StAngle, EndAngle ); #endif } if( filled ) { GRArc( panel->GetClipBox(), DC, ux0, uy0, StAngle, EndAngle, radius, m_Width, color ); } else { GRArc( panel->GetClipBox(), DC, ux0, uy0, StAngle, EndAngle, radius - l_trace, color ); GRArc( panel->GetClipBox(), DC, ux0, uy0, StAngle, EndAngle, radius + l_trace, color ); } break; case S_CURVE: { RebuildBezierToSegmentsPointsList( m_Width ); wxPoint& startp = m_BezierPoints[0]; for( unsigned int i = 1; i < m_BezierPoints.size(); i++ ) { wxPoint& endp = m_BezierPoints[i]; if( filled ) GRFilledSegment( panel->GetClipBox(), DC, startp+aOffset, endp+aOffset, m_Width, color ); else GRCSegm( panel->GetClipBox(), DC, startp+aOffset, endp+aOffset, m_Width, color ); startp = m_BezierPoints[i]; } } break; case S_POLYGON: { SHAPE_POLY_SET& outline = GetPolyShape(); // Draw the polygon: only one polygon is expected // However we provide a multi polygon shape drawing // ( for the future or to show a non expected shape ) for( int jj = 0; jj < outline.OutlineCount(); ++jj ) { SHAPE_LINE_CHAIN& poly = outline.Outline( jj ); GRClosedPoly( panel->GetClipBox(), DC, poly.PointCount(), (wxPoint*)&poly.Point( 0 ), IsPolygonFilled(), GetWidth(), color, color ); } } break; default: if( filled ) { GRFillCSegm( panel->GetClipBox(), DC, ux0, uy0, dx, dy, m_Width, color ); } else { GRCSegm( panel->GetClipBox(), DC, ux0, uy0, dx, dy, m_Width, color ); } break; } } void DRAWSEGMENT::GetMsgPanelInfo( EDA_UNITS_T aUnits, std::vector< MSG_PANEL_ITEM >& aList ) { wxString msg; msg = _( "Drawing" ); aList.push_back( MSG_PANEL_ITEM( _( "Type" ), msg, DARKCYAN ) ); wxString shape = _( "Shape" ); switch( m_Shape ) { case S_CIRCLE: aList.push_back( MSG_PANEL_ITEM( shape, _( "Circle" ), RED ) ); msg = MessageTextFromValue( aUnits, GetLineLength( m_Start, m_End ) ); aList.push_back( MSG_PANEL_ITEM( _( "Radius" ), msg, RED ) ); break; case S_ARC: aList.push_back( MSG_PANEL_ITEM( shape, _( "Arc" ), RED ) ); msg.Printf( wxT( "%.1f" ), m_Angle / 10.0 ); aList.push_back( MSG_PANEL_ITEM( _( "Angle" ), msg, RED ) ); msg = MessageTextFromValue( aUnits, GetLineLength( m_Start, m_End ) ); aList.push_back( MSG_PANEL_ITEM( _( "Radius" ), msg, RED ) ); break; case S_CURVE: aList.push_back( MSG_PANEL_ITEM( shape, _( "Curve" ), RED ) ); break; default: { aList.push_back( MSG_PANEL_ITEM( shape, _( "Segment" ), RED ) ); msg = MessageTextFromValue( aUnits, GetLineLength( m_Start, m_End ) ); aList.push_back( MSG_PANEL_ITEM( _( "Length" ), msg, DARKGREEN ) ); // angle counter-clockwise from 3'o-clock const double deg = RAD2DEG( atan2( (double)( m_Start.y - m_End.y ), (double)( m_End.x - m_Start.x ) ) ); msg.Printf( wxT( "%.1f" ), deg ); aList.push_back( MSG_PANEL_ITEM( _( "Angle" ), msg, DARKGREEN ) ); } } wxString start = wxString::Format( "@(%s, %s)", MessageTextFromValue( aUnits, GetStart().x ), MessageTextFromValue( aUnits, GetStart().y ) ); wxString end = wxString::Format( "@(%s, %s)", MessageTextFromValue( aUnits, GetEnd().x ), MessageTextFromValue( aUnits, GetEnd().y ) ); aList.push_back( MSG_PANEL_ITEM( start, end, DARKGREEN ) ); aList.push_back( MSG_PANEL_ITEM( _( "Layer" ), GetLayerName(), DARKBROWN ) ); msg = MessageTextFromValue( aUnits, m_Width, true ); aList.push_back( MSG_PANEL_ITEM( _( "Width" ), msg, DARKCYAN ) ); } const EDA_RECT DRAWSEGMENT::GetBoundingBox() const { EDA_RECT bbox; bbox.SetOrigin( m_Start ); switch( m_Shape ) { case S_SEGMENT: bbox.SetEnd( m_End ); break; case S_CIRCLE: bbox.Inflate( GetRadius() ); break; case S_ARC: computeArcBBox( bbox ); break; case S_POLYGON: if( m_Poly.IsEmpty() ) break; { wxPoint p_end; MODULE* module = GetParentModule(); bool first = true; for( auto iter = m_Poly.CIterate(); iter; iter++ ) { wxPoint pt ( iter->x, iter->y ); if( module ) // Transform, if we belong to a module { RotatePoint( &pt, module->GetOrientation() ); pt += module->GetPosition(); } if( first ) { p_end = pt; bbox.SetX( pt.x ); bbox.SetY( pt.y ); first = false; } else { bbox.SetX( std::min( bbox.GetX(), pt.x ) ); bbox.SetY( std::min( bbox.GetY(), pt.y ) ); p_end.x = std::max( p_end.x, pt.x ); p_end.y = std::max( p_end.y, pt.y ); } } bbox.SetEnd( p_end ); break; } case S_CURVE: for( unsigned ii = 0; ii < m_BezierPoints.size(); ++ii ) bbox.Merge( m_BezierPoints[ii] ); break; default: break; } bbox.Inflate( ((m_Width+1) / 2) + 1 ); bbox.Normalize(); return bbox; } bool DRAWSEGMENT::HitTest( const wxPoint& aPosition, int aAccuracy ) const { int maxdist = aAccuracy + ( m_Width / 2 ); switch( m_Shape ) { case S_CIRCLE: case S_ARC: { wxPoint relPos = aPosition - GetCenter(); int radius = GetRadius(); int dist = KiROUND( EuclideanNorm( relPos ) ); if( abs( radius - dist ) <= maxdist ) { if( m_Shape == S_CIRCLE ) return true; // For arcs, the test point angle must be >= arc angle start // and <= arc angle end // However angle values > 360 deg are not easy to handle // so we calculate the relative angle between arc start point and teast point // this relative arc should be < arc angle if arc angle > 0 (CW arc) // and > arc angle if arc angle < 0 (CCW arc) double arc_angle_start = GetArcAngleStart(); // Always 0.0 ... 360 deg, in 0.1 deg double arc_hittest = ArcTangente( relPos.y, relPos.x ); // Calculate relative angle between the starting point of the arc, and the test point arc_hittest -= arc_angle_start; // Normalise arc_hittest between 0 ... 360 deg NORMALIZE_ANGLE_POS( arc_hittest ); // Check angle: inside the arc angle when it is > 0 // and outside the not drawn arc when it is < 0 if( GetAngle() >= 0.0 ) { if( arc_hittest <= GetAngle() ) return true; } else { if( arc_hittest >= (3600.0 + GetAngle()) ) return true; } } } break; case S_CURVE: ((DRAWSEGMENT*)this)->RebuildBezierToSegmentsPointsList( m_Width ); for( unsigned int i= 1; i < m_BezierPoints.size(); i++) { if( TestSegmentHit( aPosition, m_BezierPoints[i-1], m_BezierPoints[i-1], maxdist ) ) return true; } break; case S_SEGMENT: if( TestSegmentHit( aPosition, m_Start, m_End, maxdist ) ) return true; break; case S_POLYGON: { if( !IsPolygonFilled() ) { SHAPE_POLY_SET::VERTEX_INDEX i; auto poly = m_Poly; //todo: Fix CollideEdge to be const return poly.CollideEdge( VECTOR2I( aPosition ), i, std::max( maxdist, Millimeter2iu( 0.25 ) ) ); } else return m_Poly.Collide( VECTOR2I( aPosition ), maxdist ); } break; default: wxASSERT_MSG( 0, wxString::Format( "unknown DRAWSEGMENT shape: %d", m_Shape ) ); break; } return false; } bool DRAWSEGMENT::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const { EDA_RECT arect = aRect; arect.Normalize(); arect.Inflate( aAccuracy ); EDA_RECT arcRect; EDA_RECT bb = GetBoundingBox(); switch( m_Shape ) { case S_CIRCLE: // Test if area intersects or contains the circle: if( aContained ) return arect.Contains( bb ); else { // If the rectangle does not intersect the bounding box, this is a much quicker test if( !aRect.Intersects( bb ) ) { return false; } else { return arect.IntersectsCircleEdge( GetCenter(), GetRadius(), GetWidth() ); } } break; case S_ARC: // Test for full containment of this arc in the rect if( aContained ) { return arect.Contains( bb ); } // Test if the rect crosses the arc else { arcRect = bb.Common( arect ); /* All following tests must pass: * 1. Rectangle must intersect arc BoundingBox * 2. Rectangle must cross the outside of the arc */ return arcRect.Intersects( arect ) && arcRect.IntersectsCircleEdge( GetCenter(), GetRadius(), GetWidth() ); } break; case S_SEGMENT: if( aContained ) { return arect.Contains( GetStart() ) && aRect.Contains( GetEnd() ); } else { // Account for the width of the line arect.Inflate( GetWidth() / 2 ); return arect.Intersects( GetStart(), GetEnd() ); } break; case S_POLYGON: if( aContained ) { return arect.Contains( bb ); } else { // Fast test: if aRect is outside the polygon bounding box, // rectangles cannot intersect if( !arect.Intersects( bb ) ) return false; // Account for the width of the line arect.Inflate( GetWidth() / 2 ); int count = m_Poly.TotalVertices(); for( int ii = 0; ii < count; ii++ ) { auto vertex = m_Poly.CVertex( ii ); auto vertexNext = m_Poly.CVertex( ( ii + 1 ) % count ); // Test if the point is within aRect if( arect.Contains( ( wxPoint ) vertex ) ) return true; // Test if this edge intersects aRect if( arect.Intersects( ( wxPoint ) vertex, ( wxPoint ) vertexNext ) ) return true; } } break; case S_CURVE: // not yet handled if( aContained ) { return arect.Contains( bb ); } else { // Fast test: if aRect is outside the polygon bounding box, // rectangles cannot intersect if( !arect.Intersects( bb ) ) return false; // Account for the width of the line arect.Inflate( GetWidth() / 2 ); unsigned count = m_BezierPoints.size(); for( unsigned ii = 1; ii < count; ii++ ) { wxPoint vertex = m_BezierPoints[ii-1]; wxPoint vertexNext = m_BezierPoints[ii]; // Test if the point is within aRect if( arect.Contains( ( wxPoint ) vertex ) ) return true; // Test if this edge intersects aRect if( arect.Intersects( vertex, vertexNext ) ) return true; } } break; default: wxASSERT_MSG( 0, wxString::Format( "unknown DRAWSEGMENT shape: %d", m_Shape ) ); break; } return false; } wxString DRAWSEGMENT::GetSelectMenuText( EDA_UNITS_T aUnits ) const { return wxString::Format( _( "Pcb Graphic %s, length %s on %s" ), ShowShape( m_Shape ), MessageTextFromValue( aUnits, GetLength() ), GetLayerName() ); } BITMAP_DEF DRAWSEGMENT::GetMenuImage() const { return add_dashed_line_xpm; } EDA_ITEM* DRAWSEGMENT::Clone() const { return new DRAWSEGMENT( *this ); } const BOX2I DRAWSEGMENT::ViewBBox() const { // For arcs - do not include the center point in the bounding box, // it is redundant for displaying an arc if( m_Shape == S_ARC ) { EDA_RECT bbox; bbox.SetOrigin( m_End ); computeArcBBox( bbox ); return BOX2I( bbox.GetOrigin(), bbox.GetSize() ); } return EDA_ITEM::ViewBBox(); } void DRAWSEGMENT::computeArcBBox( EDA_RECT& aBBox ) const { // Do not include the center, which is not necessarily // inside the BB of a arc with a small angle aBBox.SetOrigin( m_End ); wxPoint end = m_End; RotatePoint( &end, m_Start, -m_Angle ); aBBox.Merge( end ); // Determine the starting quarter // 0 right-bottom // 1 left-bottom // 2 left-top // 3 right-top unsigned int quarter = 0; // assume right-bottom if( m_End.x < m_Start.x ) { if( m_End.y <= m_Start.y ) quarter = 2; else // ( m_End.y > m_Start.y ) quarter = 1; } else if( m_End.x >= m_Start.x ) { if( m_End.y < m_Start.y ) quarter = 3; else if( m_End.x == m_Start.x ) quarter = 1; } int radius = GetRadius(); int angle = (int) GetArcAngleStart() % 900 + m_Angle; bool directionCW = ( m_Angle > 0 ); // Is the direction of arc clockwise? // Make the angle positive, so we go clockwise and merge points belonging to the arc if( !directionCW ) { angle = 900 - angle; quarter = ( quarter + 3 ) % 4; // -1 modulo arithmetic } while( angle > 900 ) { switch( quarter ) { case 0: aBBox.Merge( wxPoint( m_Start.x, m_Start.y + radius ) ); // down break; case 1: aBBox.Merge( wxPoint( m_Start.x - radius, m_Start.y ) ); // left break; case 2: aBBox.Merge( wxPoint( m_Start.x, m_Start.y - radius ) ); // up break; case 3: aBBox.Merge( wxPoint( m_Start.x + radius, m_Start.y ) ); // right break; } if( directionCW ) ++quarter; else quarter += 3; // -1 modulo arithmetic quarter %= 4; angle -= 900; } } void DRAWSEGMENT::SetPolyPoints( const std::vector& aPoints ) { m_Poly.RemoveAllContours(); m_Poly.NewOutline(); for ( auto p : aPoints ) { m_Poly.Append( p.x, p.y ); } } const std::vector DRAWSEGMENT::BuildPolyPointsList() const { std::vector rv; if( m_Poly.OutlineCount() ) { if( m_Poly.COutline( 0 ).PointCount() ) { for ( auto iter = m_Poly.CIterate(); iter; iter++ ) { rv.push_back( wxPoint( iter->x, iter->y ) ); } } } return rv; } bool DRAWSEGMENT::IsPolyShapeValid() const { // return true if the polygonal shape is valid (has more than 2 points) if( GetPolyShape().OutlineCount() == 0 ) return false; const SHAPE_LINE_CHAIN& outline = ((SHAPE_POLY_SET&)GetPolyShape()).Outline( 0 ); return outline.PointCount() > 2; } int DRAWSEGMENT::GetPointCount() const { // return the number of corners of the polygonal shape // this shape is expected to be only one polygon without hole if( GetPolyShape().OutlineCount() ) return GetPolyShape().VertexCount( 0 ); return 0; } void DRAWSEGMENT::SwapData( BOARD_ITEM* aImage ) { assert( aImage->Type() == PCB_LINE_T ); std::swap( *((DRAWSEGMENT*) this), *((DRAWSEGMENT*) aImage) ); }