/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 2011 Wayne Stambaugh * * Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* This is an odd place for this, but CvPcb won't link if it is * in class_board_item.cpp like I first tried it. */ wxPoint BOARD_ITEM::ZeroOffset( 0, 0 ); BOARD::BOARD() : BOARD_ITEM_CONTAINER( (BOARD_ITEM*) NULL, PCB_T ), m_boardUse( BOARD_USE::NORMAL ), m_paper( PAGE_INFO::A4 ), m_project( nullptr ), m_designSettings( new BOARD_DESIGN_SETTINGS( nullptr, "board.design_settings" ) ), m_NetInfo( this ), m_LegacyDesignSettingsLoaded( false ), m_LegacyNetclassesLoaded( false ) { // we have not loaded a board yet, assume latest until then. m_fileFormatVersionAtLoad = LEGACY_BOARD_FILE_VERSION; for( LAYER_NUM layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer ) { m_Layer[layer].m_name = GetStandardLayerName( ToLAYER_ID( layer ) ); if( IsCopperLayer( layer ) ) m_Layer[layer].m_type = LT_SIGNAL; else m_Layer[layer].m_type = LT_UNDEFINED; } BOARD_DESIGN_SETTINGS& bds = GetDesignSettings(); // Initialize default netclass. NETCLASS* defaultClass = bds.GetDefault(); defaultClass->SetDescription( _( "This is the default net class." ) ); bds.UseCustomTrackViaSize( false ); // Initialize ratsnest m_connectivity.reset( new CONNECTIVITY_DATA() ); // Set flag bits on these that will only be cleared if these are loaded from a legacy file m_LegacyVisibleLayers.reset().set( Rescue ); m_LegacyVisibleItems.reset().set( GAL_LAYER_INDEX( GAL_LAYER_ID_BITMASK_END ) ); } BOARD::~BOARD() { // Clean up the owned elements DeleteMARKERs(); for( ZONE_CONTAINER* zone : m_zones ) delete zone; m_zones.clear(); for( MODULE* m : m_modules ) delete m; m_modules.clear(); for( TRACK* t : m_tracks ) delete t; m_tracks.clear(); for( BOARD_ITEM* d : m_drawings ) delete d; m_drawings.clear(); for( PCB_GROUP* g : m_groups ) delete g; m_groups.clear(); } void BOARD::BuildConnectivity() { GetConnectivity()->Build( this ); } void BOARD::SetProject( PROJECT* aProject ) { m_project = aProject; if( aProject ) { PROJECT_FILE& project = aProject->GetProjectFile(); // Link the design settings object to the project file project.m_BoardSettings = &GetDesignSettings(); // Set parent, which also will load the values from JSON stored in the project project.m_BoardSettings->SetParent( &project ); // The DesignSettings' netclasses pointer will be pointing to its internal netclasses // list at this point. If we loaded anything into it from a legacy board file then we // want to transfer it over to the project netclasses list. if( m_LegacyNetclassesLoaded ) project.NetSettings().m_NetClasses = GetDesignSettings().GetNetClasses(); // Now update the DesignSettings' netclass pointer to point into the project. GetDesignSettings().SetNetClasses( &project.NetSettings().m_NetClasses ); } } void BOARD::ClearProject() { if( !m_project ) return; PROJECT_FILE& project = m_project->GetProjectFile(); // Owned by the BOARD if( project.m_BoardSettings ) { project.ReleaseNestedSettings( project.m_BoardSettings ); project.m_BoardSettings = nullptr; } GetDesignSettings().SetParent( nullptr ); m_project = nullptr; } std::vector BOARD::ResolveDRCExclusions() { for( MARKER_PCB* marker : GetBoard()->Markers() ) { auto i = m_designSettings->m_DrcExclusions.find( marker->Serialize() ); if( i != m_designSettings->m_DrcExclusions.end() ) { marker->SetExcluded( true ); m_designSettings->m_DrcExclusions.erase( i ); } } std::vector markers; for( const wxString& exclusionData : m_designSettings->m_DrcExclusions ) { MARKER_PCB* marker = MARKER_PCB::Deserialize( exclusionData ); if( marker ) { marker->SetExcluded( true ); markers.push_back( marker ); } } m_designSettings->m_DrcExclusions.clear(); return markers; } bool BOARD::ResolveTextVar( wxString* token, int aDepth ) const { if( m_properties.count( *token ) ) { *token = m_properties.at( *token ); return true; } return false; } wxPoint BOARD::GetPosition() const { return ZeroOffset; } void BOARD::SetPosition( const wxPoint& aPos ) { wxLogWarning( wxT( "This should not be called on the BOARD object") ); } void BOARD::Move( const wxPoint& aMoveVector ) // overload { // @todo : anything like this elsewhere? maybe put into GENERAL_COLLECTOR class. static const KICAD_T top_level_board_stuff[] = { PCB_MARKER_T, PCB_TEXT_T, PCB_SHAPE_T, PCB_DIM_ALIGNED_T, PCB_DIM_LEADER_T, PCB_TARGET_T, PCB_VIA_T, PCB_TRACE_T, PCB_ARC_T, // PCB_PAD_T, Can't be at board level // PCB_FP_TEXT_T, Can't be at board level PCB_MODULE_T, PCB_ZONE_AREA_T, EOT }; INSPECTOR_FUNC inspector = [&] ( EDA_ITEM* item, void* testData ) { BOARD_ITEM* brd_item = (BOARD_ITEM*) item; // aMoveVector was snapshotted, don't need "data". brd_item->Move( aMoveVector ); return SEARCH_RESULT::CONTINUE; }; Visit( inspector, NULL, top_level_board_stuff ); } TRACKS BOARD::TracksInNet( int aNetCode ) { TRACKS ret; INSPECTOR_FUNC inspector = [aNetCode, &ret]( EDA_ITEM* item, void* testData ) { TRACK* t = (TRACK*) item; if( t->GetNetCode() == aNetCode ) ret.push_back( t ); return SEARCH_RESULT::CONTINUE; }; // visit this BOARD's TRACKs and VIAs with above TRACK INSPECTOR which // appends all in aNetCode to ret. Visit( inspector, NULL, GENERAL_COLLECTOR::Tracks ); return ret; } bool BOARD::SetLayerDescr( PCB_LAYER_ID aIndex, const LAYER& aLayer ) { if( unsigned( aIndex ) < arrayDim( m_Layer ) ) { m_Layer[ aIndex ] = aLayer; return true; } return false; } const PCB_LAYER_ID BOARD::GetLayerID( const wxString& aLayerName ) const { // Check the BOARD physical layer names. for( LAYER_NUM layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer ) { if ( ( m_Layer[ layer ].m_name == aLayerName ) || ( m_Layer[ layer ].m_userName == aLayerName ) ) return ToLAYER_ID( layer ); } // Otherwise fall back to the system standard layer names for virtual layers. for( LAYER_NUM layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer ) { if( GetStandardLayerName( ToLAYER_ID( layer ) ) == aLayerName ) return ToLAYER_ID( layer ); } return UNDEFINED_LAYER; } const wxString BOARD::GetLayerName( PCB_LAYER_ID aLayer ) const { // All layer names are stored in the BOARD. if( IsLayerEnabled( aLayer ) ) { // Standard names were set in BOARD::BOARD() but they may be over-ridden by // BOARD::SetLayerName(). For copper layers, return the user defined layer name, // if it was set. Otherwise return the Standard English layer name. if( !m_Layer[aLayer].m_userName.IsEmpty() ) return m_Layer[aLayer].m_userName; } return GetStandardLayerName( aLayer ); } bool BOARD::SetLayerName( PCB_LAYER_ID aLayer, const wxString& aLayerName ) { wxCHECK( !aLayerName.IsEmpty(), false ); // no quote chars in the name allowed if( aLayerName.Find( wxChar( '"' ) ) != wxNOT_FOUND ) return false; if( IsLayerEnabled( aLayer ) ) { m_Layer[aLayer].m_userName = aLayerName; return true; } return false; } LAYER_T BOARD::GetLayerType( PCB_LAYER_ID aLayer ) const { if( !IsCopperLayer( aLayer ) ) return LT_SIGNAL; //@@IMB: The original test was broken due to the discontinuity // in the layer sequence. if( IsLayerEnabled( aLayer ) ) return m_Layer[aLayer].m_type; return LT_SIGNAL; } bool BOARD::SetLayerType( PCB_LAYER_ID aLayer, LAYER_T aLayerType ) { if( !IsCopperLayer( aLayer ) ) return false; //@@IMB: The original test was broken due to the discontinuity // in the layer sequence. if( IsLayerEnabled( aLayer ) ) { m_Layer[aLayer].m_type = aLayerType; return true; } return false; } const char* LAYER::ShowType( LAYER_T aType ) { switch( aType ) { default: case LT_SIGNAL: return "signal"; case LT_POWER: return "power"; case LT_MIXED: return "mixed"; case LT_JUMPER: return "jumper"; } } LAYER_T LAYER::ParseType( const char* aType ) { if( strcmp( aType, "signal" ) == 0 ) return LT_SIGNAL; else if( strcmp( aType, "power" ) == 0 ) return LT_POWER; else if( strcmp( aType, "mixed" ) == 0 ) return LT_MIXED; else if( strcmp( aType, "jumper" ) == 0 ) return LT_JUMPER; else return LT_UNDEFINED; } int BOARD::GetCopperLayerCount() const { return GetDesignSettings().GetCopperLayerCount(); } void BOARD::SetCopperLayerCount( int aCount ) { GetDesignSettings().SetCopperLayerCount( aCount ); } LSET BOARD::GetEnabledLayers() const { return GetDesignSettings().GetEnabledLayers(); } bool BOARD::IsLayerVisible( PCB_LAYER_ID aLayer ) const { // If there is no project, assume layer is visible always return GetDesignSettings().IsLayerEnabled( aLayer ) && ( !m_project || m_project->GetLocalSettings().m_VisibleLayers[aLayer] ); } LSET BOARD::GetVisibleLayers() const { return m_project ? m_project->GetLocalSettings().m_VisibleLayers : LSET::AllLayersMask(); } void BOARD::SetEnabledLayers( LSET aLayerSet ) { GetDesignSettings().SetEnabledLayers( aLayerSet ); } void BOARD::SetVisibleLayers( LSET aLayerSet ) { if( m_project ) m_project->GetLocalSettings().m_VisibleLayers = aLayerSet; } void BOARD::SetVisibleElements( const GAL_SET& aSet ) { // Call SetElementVisibility for each item // to ensure specific calculations that can be needed by some items, // just changing the visibility flags could be not sufficient. for( size_t i = 0; i < aSet.size(); i++ ) SetElementVisibility( GAL_LAYER_ID_START + static_cast( i ), aSet[i] ); } void BOARD::SetVisibleAlls() { SetVisibleLayers( LSET().set() ); // Call SetElementVisibility for each item, // to ensure specific calculations that can be needed by some items for( GAL_LAYER_ID ii = GAL_LAYER_ID_START; ii < GAL_LAYER_ID_BITMASK_END; ++ii ) SetElementVisibility( ii, true ); } GAL_SET BOARD::GetVisibleElements() const { return m_project ? m_project->GetLocalSettings().m_VisibleItems : GAL_SET().set(); } bool BOARD::IsElementVisible( GAL_LAYER_ID aLayer ) const { return !m_project || m_project->GetLocalSettings().m_VisibleItems[aLayer - GAL_LAYER_ID_START]; } void BOARD::SetElementVisibility( GAL_LAYER_ID aLayer, bool isEnabled ) { if( m_project ) m_project->GetLocalSettings().m_VisibleItems.set( aLayer - GAL_LAYER_ID_START, isEnabled ); switch( aLayer ) { case LAYER_RATSNEST: { // because we have a tool to show/hide ratsnest relative to a pad or a footprint // so the hide/show option is a per item selection for( TRACK* track : Tracks() ) track->SetLocalRatsnestVisible( isEnabled ); for( MODULE* footprint : Modules() ) { for( D_PAD* pad : footprint->Pads() ) pad->SetLocalRatsnestVisible( isEnabled ); } for( ZONE_CONTAINER* zone : Zones() ) zone->SetLocalRatsnestVisible( isEnabled ); break; } default: ; } } bool BOARD::IsModuleLayerVisible( PCB_LAYER_ID aLayer ) { switch( aLayer ) { case F_Cu: return IsElementVisible( LAYER_MOD_FR ); case B_Cu: return IsElementVisible( LAYER_MOD_BK ); default: wxFAIL_MSG( wxT( "BOARD::IsModuleLayerVisible() param error: bad layer" ) ); return true; } } void BOARD::Add( BOARD_ITEM* aBoardItem, ADD_MODE aMode ) { if( aBoardItem == NULL ) { wxFAIL_MSG( wxT( "BOARD::Add() param error: aBoardItem NULL" ) ); return; } switch( aBoardItem->Type() ) { case PCB_NETINFO_T: m_NetInfo.AppendNet( (NETINFO_ITEM*) aBoardItem ); break; // this one uses a vector case PCB_MARKER_T: m_markers.push_back( (MARKER_PCB*) aBoardItem ); break; // this one uses a vector case PCB_GROUP_T: m_groups.push_back( (PCB_GROUP*) aBoardItem ); break; // this one uses a vector case PCB_ZONE_AREA_T: m_zones.push_back( (ZONE_CONTAINER*) aBoardItem ); break; case PCB_TRACE_T: case PCB_VIA_T: case PCB_ARC_T: // N.B. This inserts a small memory leak as we lose the if( !IsCopperLayer( aBoardItem->GetLayer() ) ) { wxFAIL_MSG( wxT( "BOARD::Add() Cannot place Track on non-copper layer" ) ); return; } if( aMode == ADD_MODE::APPEND ) m_tracks.push_back( static_cast( aBoardItem ) ); else m_tracks.push_front( static_cast( aBoardItem ) ); break; case PCB_MODULE_T: if( aMode == ADD_MODE::APPEND ) m_modules.push_back( (MODULE*) aBoardItem ); else m_modules.push_front( (MODULE*) aBoardItem ); break; case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: case PCB_SHAPE_T: case PCB_TEXT_T: case PCB_TARGET_T: if( aMode == ADD_MODE::APPEND ) m_drawings.push_back( aBoardItem ); else m_drawings.push_front( aBoardItem ); break; // other types may use linked list default: { wxString msg; msg.Printf( wxT( "BOARD::Add() needs work: BOARD_ITEM type (%d) not handled" ), aBoardItem->Type() ); wxFAIL_MSG( msg ); return; } break; } aBoardItem->SetParent( this ); aBoardItem->ClearEditFlags(); m_connectivity->Add( aBoardItem ); InvokeListeners( &BOARD_LISTENER::OnBoardItemAdded, *this, aBoardItem ); } void BOARD::Remove( BOARD_ITEM* aBoardItem ) { // find these calls and fix them! Don't send me no stinking' NULL. wxASSERT( aBoardItem ); switch( aBoardItem->Type() ) { case PCB_NETINFO_T: { NETINFO_ITEM* item = (NETINFO_ITEM*) aBoardItem; m_NetInfo.RemoveNet( item ); break; } case PCB_MARKER_T: m_markers.erase( std::remove_if( m_markers.begin(), m_markers.end(), [aBoardItem]( BOARD_ITEM* aItem ) { return aItem == aBoardItem; } ) ); break; case PCB_GROUP_T: m_groups.erase( std::remove_if( m_groups.begin(), m_groups.end(), [aBoardItem]( BOARD_ITEM* aItem ) { return aItem == aBoardItem; } ) ); break; case PCB_ZONE_AREA_T: m_zones.erase( std::remove_if( m_zones.begin(), m_zones.end(), [aBoardItem]( BOARD_ITEM* aItem ) { return aItem == aBoardItem; } ) ); break; case PCB_MODULE_T: m_modules.erase( std::remove_if( m_modules.begin(), m_modules.end(), [aBoardItem]( BOARD_ITEM* aItem ) { return aItem == aBoardItem; } ) ); break; case PCB_TRACE_T: case PCB_ARC_T: case PCB_VIA_T: m_tracks.erase( std::remove_if( m_tracks.begin(), m_tracks.end(), [aBoardItem]( BOARD_ITEM* aItem ) { return aItem == aBoardItem; } ) ); break; case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: case PCB_SHAPE_T: case PCB_TEXT_T: case PCB_TARGET_T: m_drawings.erase( std::remove_if( m_drawings.begin(), m_drawings.end(), [aBoardItem](BOARD_ITEM* aItem) { return aItem == aBoardItem; } ) ); break; // other types may use linked list default: wxFAIL_MSG( wxT( "BOARD::Remove() needs more ::Type() support" ) ); } m_connectivity->Remove( aBoardItem ); InvokeListeners( &BOARD_LISTENER::OnBoardItemRemoved, *this, aBoardItem ); } wxString BOARD::GetSelectMenuText( EDA_UNITS aUnits ) const { return wxString::Format( _( "PCB" ) ); } void BOARD::DeleteMARKERs() { // the vector does not know how to delete the MARKER_PCB, it holds pointers for( MARKER_PCB* marker : m_markers ) delete marker; m_markers.clear(); } void BOARD::DeleteMARKERs( bool aWarningsAndErrors, bool aExclusions ) { // Deleting lots of items from a vector can be very slow. Copy remaining items instead. MARKERS remaining; for( MARKER_PCB* marker : m_markers ) { if( ( marker->IsExcluded() && aExclusions ) || ( !marker->IsExcluded() && aWarningsAndErrors ) ) { delete marker; } else { remaining.push_back( marker ); } } m_markers = remaining; } BOARD_ITEM* BOARD::GetItem( const KIID& aID ) const { if( aID == niluuid ) return nullptr; for( TRACK* track : Tracks() ) { if( track->m_Uuid == aID ) return track; } for( MODULE* footprint : Modules() ) { if( footprint->m_Uuid == aID ) return footprint; for( D_PAD* pad : footprint->Pads() ) { if( pad->m_Uuid == aID ) return pad; } if( footprint->Reference().m_Uuid == aID ) return &footprint->Reference(); if( footprint->Value().m_Uuid == aID ) return &footprint->Value(); for( BOARD_ITEM* drawing : footprint->GraphicalItems() ) { if( drawing->m_Uuid == aID ) return drawing; } for( BOARD_ITEM* zone : footprint->Zones() ) { if( zone->m_Uuid == aID ) return zone; } for( PCB_GROUP* group : footprint->Groups() ) { if( group->m_Uuid == aID ) return group; } } for( ZONE_CONTAINER* zone : Zones() ) { if( zone->m_Uuid == aID ) return zone; } for( BOARD_ITEM* drawing : Drawings() ) { if( drawing->m_Uuid == aID ) return drawing; } for( MARKER_PCB* marker : m_markers ) { if( marker->m_Uuid == aID ) return marker; } for( PCB_GROUP* group : m_groups ) { if( group->m_Uuid == aID ) return group; } if( m_Uuid == aID ) return const_cast( this ); // Not found; weak reference has been deleted. return DELETED_BOARD_ITEM::GetInstance(); } void BOARD::FillItemMap( std::map& aMap ) { // the board itself aMap[ this->m_Uuid ] = this; for( TRACK* track : Tracks() ) aMap[ track->m_Uuid ] = track; for( MODULE* footprint : Modules() ) { aMap[ footprint->m_Uuid ] = footprint; for( D_PAD* pad : footprint->Pads() ) aMap[ pad->m_Uuid ] = pad; aMap[ footprint->Reference().m_Uuid ] = &footprint->Reference(); aMap[ footprint->Value().m_Uuid ] = &footprint->Value(); for( BOARD_ITEM* drawing : footprint->GraphicalItems() ) aMap[ drawing->m_Uuid ] = drawing; } for( ZONE_CONTAINER* zone : Zones() ) aMap[ zone->m_Uuid ] = zone; for( BOARD_ITEM* drawing : Drawings() ) aMap[ drawing->m_Uuid ] = drawing; for( MARKER_PCB* marker : m_markers ) aMap[ marker->m_Uuid ] = marker; for( PCB_GROUP* group : m_groups ) aMap[ group->m_Uuid ] = group; } wxString BOARD::ConvertCrossReferencesToKIIDs( const wxString& aSource ) { wxString newbuf; size_t sourceLen = aSource.length(); for( size_t i = 0; i < sourceLen; ++i ) { if( aSource[i] == '$' && i + 1 < sourceLen && aSource[i+1] == '{' ) { wxString token; bool isCrossRef = false; for( i = i + 2; i < sourceLen; ++i ) { if( aSource[i] == '}' ) break; if( aSource[i] == ':' ) isCrossRef = true; token.append( aSource[i] ); } if( isCrossRef ) { wxString remainder; wxString ref = token.BeforeFirst( ':', &remainder ); for( MODULE* footprint : Modules() ) { if( footprint->GetReference().CmpNoCase( ref ) == 0 ) { wxString test( remainder ); if( footprint->ResolveTextVar( &test ) ) token = footprint->m_Uuid.AsString() + ":" + remainder; break; } } } newbuf.append( "${" + token + "}" ); } else { newbuf.append( aSource[i] ); } } return newbuf; } wxString BOARD::ConvertKIIDsToCrossReferences( const wxString& aSource ) { wxString newbuf; size_t sourceLen = aSource.length(); for( size_t i = 0; i < sourceLen; ++i ) { if( aSource[i] == '$' && i + 1 < sourceLen && aSource[i+1] == '{' ) { wxString token; bool isCrossRef = false; for( i = i + 2; i < sourceLen; ++i ) { if( aSource[i] == '}' ) break; if( aSource[i] == ':' ) isCrossRef = true; token.append( aSource[i] ); } if( isCrossRef ) { wxString remainder; wxString ref = token.BeforeFirst( ':', &remainder ); BOARD_ITEM* refItem = GetItem( KIID( ref ) ); if( refItem && refItem->Type() == PCB_MODULE_T ) token = static_cast( refItem )->GetReference() + ":" + remainder; } newbuf.append( "${" + token + "}" ); } else { newbuf.append( aSource[i] ); } } return newbuf; } unsigned BOARD::GetNodesCount( int aNet ) const { unsigned retval = 0; for( MODULE* footprint : Modules() ) { for( D_PAD* pad : footprint->Pads() ) { if( ( aNet == -1 && pad->GetNetCode() > 0 ) || aNet == pad->GetNetCode() ) retval++; } } return retval; } unsigned BOARD::GetUnconnectedNetCount() const { return m_connectivity->GetUnconnectedCount(); } EDA_RECT BOARD::ComputeBoundingBox( bool aBoardEdgesOnly ) const { EDA_RECT area; LSET visible = GetVisibleLayers(); bool showInvisibleText = IsElementVisible( LAYER_MOD_TEXT_INVISIBLE ) && PgmOrNull() && !PgmOrNull()->m_Printing; // Check shapes, dimensions, texts, and fiducials for( BOARD_ITEM* item : m_drawings ) { if( aBoardEdgesOnly && ( item->GetLayer() != Edge_Cuts || item->Type() != PCB_SHAPE_T ) ) continue; if( ( item->GetLayerSet() & visible ).any() ) area.Merge( item->GetBoundingBox() ); } // Check footprints for( MODULE* footprint : m_modules ) { if( !( footprint->GetLayerSet() & visible ).any() ) continue; if( aBoardEdgesOnly ) { for( const BOARD_ITEM* edge : footprint->GraphicalItems() ) { if( edge->GetLayer() == Edge_Cuts && edge->Type() == PCB_FP_SHAPE_T ) area.Merge( edge->GetBoundingBox() ); } } else { area.Merge( footprint->GetBoundingBox( showInvisibleText ) ); } } if( !aBoardEdgesOnly ) { // Check tracks for( TRACK* track : m_tracks ) { if( ( track->GetLayerSet() & visible ).any() ) area.Merge( track->GetBoundingBox() ); } // Check zones for( ZONE_CONTAINER* aZone : m_zones ) { if( ( aZone->GetLayerSet() & visible ).any() ) area.Merge( aZone->GetBoundingBox() ); } } return area; } void BOARD::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) { wxString txt; int viasCount = 0; int trackSegmentsCount = 0; for( TRACK* item : m_tracks ) { if( item->Type() == PCB_VIA_T ) viasCount++; else trackSegmentsCount++; } txt.Printf( wxT( "%d" ), GetPadCount() ); aList.emplace_back( _( "Pads" ), txt, DARKGREEN ); txt.Printf( wxT( "%d" ), viasCount ); aList.emplace_back( _( "Vias" ), txt, DARKGREEN ); txt.Printf( wxT( "%d" ), trackSegmentsCount ); aList.emplace_back( _( "Track Segments" ), txt, DARKGREEN ); txt.Printf( wxT( "%d" ), GetNodesCount() ); aList.emplace_back( _( "Nodes" ), txt, DARKCYAN ); txt.Printf( wxT( "%d" ), m_NetInfo.GetNetCount() - 1 /* Don't include "No Net" in count */ ); aList.emplace_back( _( "Nets" ), txt, RED ); txt.Printf( wxT( "%d" ), GetConnectivity()->GetUnconnectedCount() ); aList.emplace_back( _( "Unrouted" ), txt, BLUE ); } SEARCH_RESULT BOARD::Visit( INSPECTOR inspector, void* testData, const KICAD_T scanTypes[] ) { KICAD_T stype; SEARCH_RESULT result = SEARCH_RESULT::CONTINUE; const KICAD_T* p = scanTypes; bool done = false; #if 0 && defined(DEBUG) std::cout << GetClass().mb_str() << ' '; #endif while( !done ) { stype = *p; switch( stype ) { case PCB_T: result = inspector( this, testData ); // inspect me // skip over any types handled in the above call. ++p; break; /* Instances of the requested KICAD_T live in a list, either one * that I manage, or that my footprints manage. If it's a type managed * by class MODULE, then simply pass it on to each module's * MODULE::Visit() function by way of the * IterateForward( m_Modules, ... ) call. */ case PCB_MODULE_T: case PCB_PAD_T: case PCB_FP_TEXT_T: case PCB_FP_SHAPE_T: case PCB_FP_ZONE_AREA_T: // this calls MODULE::Visit() on each module. result = IterateForward( m_modules, inspector, testData, p ); // skip over any types handled in the above call. for( ; ; ) { switch( stype = *++p ) { case PCB_MODULE_T: case PCB_PAD_T: case PCB_FP_TEXT_T: case PCB_FP_SHAPE_T: case PCB_FP_ZONE_AREA_T: continue; default: ; } break; } break; case PCB_SHAPE_T: case PCB_TEXT_T: case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: case PCB_TARGET_T: result = IterateForward( m_drawings, inspector, testData, p ); // skip over any types handled in the above call. for( ; ; ) { switch( stype = *++p ) { case PCB_SHAPE_T: case PCB_TEXT_T: case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: case PCB_TARGET_T: continue; default: ; } break; } break; case PCB_VIA_T: result = IterateForward( m_tracks, inspector, testData, p ); ++p; break; case PCB_TRACE_T: case PCB_ARC_T: result = IterateForward( m_tracks, inspector, testData, p ); ++p; break; case PCB_MARKER_T: for( MARKER_PCB* marker : m_markers ) { result = marker->Visit( inspector, testData, p ); if( result == SEARCH_RESULT::QUIT ) break; } ++p; break; case PCB_ZONE_AREA_T: for( ZONE_CONTAINER* zone : m_zones) { result = zone->Visit( inspector, testData, p ); if( result == SEARCH_RESULT::QUIT ) break; } ++p; break; case PCB_GROUP_T: result = IterateForward( m_groups, inspector, testData, p ); ++p; break; default: // catch EOT or ANY OTHER type here and return. done = true; break; } if( result == SEARCH_RESULT::QUIT ) break; } return result; } NETINFO_ITEM* BOARD::FindNet( int aNetcode ) const { // the first valid netcode is 1 and the last is m_NetInfo.GetCount()-1. // zero is reserved for "no connection" and is not actually a net. // NULL is returned for non valid netcodes wxASSERT( m_NetInfo.GetNetCount() > 0 ); if( aNetcode == NETINFO_LIST::UNCONNECTED && m_NetInfo.GetNetCount() == 0 ) return NETINFO_LIST::OrphanedItem(); else return m_NetInfo.GetNetItem( aNetcode ); } NETINFO_ITEM* BOARD::FindNet( const wxString& aNetname ) const { return m_NetInfo.GetNetItem( aNetname ); } MODULE* BOARD::FindModuleByReference( const wxString& aReference ) const { for( MODULE* footprint : m_modules ) { if( aReference == footprint->GetReference() ) return footprint; } return nullptr; } MODULE* BOARD::FindModuleByPath( const KIID_PATH& aPath ) const { for( MODULE* footprint : m_modules ) { if( footprint->GetPath() == aPath ) return footprint; } return nullptr; } // The pad count for each netcode, stored in a buffer for a fast access. // This is needed by the sort function sortNetsByNodes() static std::vector padCountListByNet; // Sort nets by decreasing pad count. // For same pad count, sort by alphabetic names static bool sortNetsByNodes( const NETINFO_ITEM* a, const NETINFO_ITEM* b ) { int countA = padCountListByNet[a->GetNet()]; int countB = padCountListByNet[b->GetNet()]; if( countA == countB ) return a->GetNetname() < b->GetNetname(); else return countB < countA; } // Sort nets by alphabetic names static bool sortNetsByNames( const NETINFO_ITEM* a, const NETINFO_ITEM* b ) { return a->GetNetname() < b->GetNetname(); } int BOARD::SortedNetnamesList( wxArrayString& aNames, bool aSortbyPadsCount ) { if( m_NetInfo.GetNetCount() == 0 ) return 0; // Build the list std::vector netBuffer; netBuffer.reserve( m_NetInfo.GetNetCount() ); int max_netcode = 0; for( NETINFO_ITEM* net : m_NetInfo ) { int netcode = net->GetNet(); if( netcode > 0 && net->IsCurrent() ) { netBuffer.push_back( net ); max_netcode = std::max( netcode, max_netcode); } } // sort the list if( aSortbyPadsCount ) { // Build the pad count by net: padCountListByNet.clear(); std::vector pads = GetPads(); padCountListByNet.assign( max_netcode + 1, 0 ); for( D_PAD* pad : pads ) { int netCode = pad->GetNetCode(); if( netCode >= 0 ) padCountListByNet[ netCode ]++; } sort( netBuffer.begin(), netBuffer.end(), sortNetsByNodes ); } else { sort( netBuffer.begin(), netBuffer.end(), sortNetsByNames ); } for( NETINFO_ITEM* net : netBuffer ) aNames.Add( UnescapeString( net->GetNetname() ) ); return netBuffer.size(); } std::vector BOARD::GetNetClassAssignmentCandidates() { std::vector names; for( NETINFO_ITEM* net : m_NetInfo ) { if( !net->GetNetname().IsEmpty() ) names.emplace_back( net->GetNetname() ); } return names; } void BOARD::SynchronizeProperties() { if( m_project ) SetProperties( m_project->GetTextVars() ); } void BOARD::SynchronizeNetsAndNetClasses() { if( !m_project ) return; NET_SETTINGS* netSettings = m_project->GetProjectFile().m_NetSettings.get(); NETCLASSES& netClasses = netSettings->m_NetClasses; NETCLASSPTR defaultNetClass = netClasses.GetDefault(); for( NETINFO_ITEM* net : m_NetInfo ) { const wxString& netname = net->GetNetname(); const wxString& netclassName = netSettings->GetNetclassName( netname ); net->SetClass( netClasses.Find( netclassName ) ); } BOARD_DESIGN_SETTINGS& bds = GetDesignSettings(); // Set initial values for custom track width & via size to match the default // netclass settings bds.UseCustomTrackViaSize( false ); bds.SetCustomTrackWidth( defaultNetClass->GetTrackWidth() ); bds.SetCustomViaSize( defaultNetClass->GetViaDiameter() ); bds.SetCustomViaDrill( defaultNetClass->GetViaDrill() ); bds.SetCustomDiffPairWidth( defaultNetClass->GetDiffPairWidth() ); bds.SetCustomDiffPairGap( defaultNetClass->GetDiffPairGap() ); bds.SetCustomDiffPairViaGap( defaultNetClass->GetDiffPairViaGap() ); InvokeListeners( &BOARD_LISTENER::OnBoardNetSettingsChanged, *this ); } int BOARD::SetAreasNetCodesFromNetNames() { int error_count = 0; for( ZONE_CONTAINER* zone : Zones() ) { if( !zone->IsOnCopperLayer() ) { zone->SetNetCode( NETINFO_LIST::UNCONNECTED ); continue; } if( zone->GetNetCode() != 0 ) // i.e. if this zone is connected to a net { const NETINFO_ITEM* net = zone->GetNet(); if( net ) { zone->SetNetCode( net->GetNet() ); } else { error_count++; // keep Net Name and set m_NetCode to -1 : error flag. zone->SetNetCode( -1 ); } } } return error_count; } D_PAD* BOARD::GetPad( const wxPoint& aPosition, LSET aLayerSet ) { if( !aLayerSet.any() ) aLayerSet = LSET::AllCuMask(); for( MODULE* footprint : m_modules ) { D_PAD* pad = NULL; if( footprint->HitTest( aPosition ) ) pad = footprint->GetPad( aPosition, aLayerSet ); if( pad ) return pad; } return NULL; } D_PAD* BOARD::GetPad( TRACK* aTrace, ENDPOINT_T aEndPoint ) { const wxPoint& aPosition = aTrace->GetEndPoint( aEndPoint ); LSET lset( aTrace->GetLayer() ); return GetPad( aPosition, lset ); } D_PAD* BOARD::GetPadFast( const wxPoint& aPosition, LSET aLayerSet ) { for( MODULE* footprint : Modules() ) { for( D_PAD* pad : footprint->Pads() ) { if( pad->GetPosition() != aPosition ) continue; // Pad found, it must be on the correct layer if( ( pad->GetLayerSet() & aLayerSet ).any() ) return pad; } } return nullptr; } D_PAD* BOARD::GetPad( std::vector& aPadList, const wxPoint& aPosition, LSET aLayerSet ) { // Search aPadList for aPosition // aPadList is sorted by X then Y values, and a fast binary search is used int idxmax = aPadList.size()-1; int delta = aPadList.size(); int idx = 0; // Starting index is the beginning of list while( delta ) { // Calculate half size of remaining interval to test. // Ensure the computed value is not truncated (too small) if( (delta & 1) && ( delta > 1 ) ) delta++; delta /= 2; D_PAD* pad = aPadList[idx]; if( pad->GetPosition() == aPosition ) // candidate found { // The pad must match the layer mask: if( ( aLayerSet & pad->GetLayerSet() ).any() ) return pad; // More than one pad can be at aPosition // search for a pad at aPosition that matched this mask // search next for( int ii = idx+1; ii <= idxmax; ii++ ) { pad = aPadList[ii]; if( pad->GetPosition() != aPosition ) break; if( ( aLayerSet & pad->GetLayerSet() ).any() ) return pad; } // search previous for( int ii = idx-1 ;ii >=0; ii-- ) { pad = aPadList[ii]; if( pad->GetPosition() != aPosition ) break; if( ( aLayerSet & pad->GetLayerSet() ).any() ) return pad; } // Not found: return 0; } if( pad->GetPosition().x == aPosition.x ) // Must search considering Y coordinate { if( pad->GetPosition().y < aPosition.y ) // Must search after this item { idx += delta; if( idx > idxmax ) idx = idxmax; } else // Must search before this item { idx -= delta; if( idx < 0 ) idx = 0; } } else if( pad->GetPosition().x < aPosition.x ) // Must search after this item { idx += delta; if( idx > idxmax ) idx = idxmax; } else // Must search before this item { idx -= delta; if( idx < 0 ) idx = 0; } } return NULL; } /** * Used by #GetSortedPadListByXCoord to sort a pad list by X coordinate value. * * This function is used to build ordered pads lists */ bool sortPadsByXthenYCoord( D_PAD* const & ref, D_PAD* const & comp ) { if( ref->GetPosition().x == comp->GetPosition().x ) return ref->GetPosition().y < comp->GetPosition().y; return ref->GetPosition().x < comp->GetPosition().x; } void BOARD::GetSortedPadListByXthenYCoord( std::vector& aVector, int aNetCode ) { for( MODULE* footprint : Modules() ) { for( D_PAD* pad : footprint->Pads( ) ) { if( aNetCode < 0 || pad->GetNetCode() == aNetCode ) aVector.push_back( pad ); } } std::sort( aVector.begin(), aVector.end(), sortPadsByXthenYCoord ); } void BOARD::PadDelete( D_PAD* aPad ) { GetConnectivity()->Remove( aPad ); InvokeListeners( &BOARD_LISTENER::OnBoardItemRemoved, *this, aPad ); aPad->DeleteStructure(); } std::tuple BOARD::GetTrackLength( const TRACK& aTrack ) const { int count = 0; double length = 0.0; double package_length = 0.0; constexpr KICAD_T types[] = { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T, PCB_PAD_T, EOT }; auto connectivity = GetBoard()->GetConnectivity(); for( BOARD_CONNECTED_ITEM* item : connectivity->GetConnectedItems( static_cast( &aTrack ), types ) ) { count++; if( TRACK* track = dyn_cast( item ) ) { bool inPad = false; for( auto pad_it : connectivity->GetConnectedPads( item ) ) { D_PAD* pad = static_cast( pad_it ); if( pad->HitTest( track->GetStart(), track->GetWidth() / 2 ) && pad->HitTest( track->GetEnd(), track->GetWidth() / 2 ) ) { inPad = true; break; } } if( !inPad ) length += track->GetLength(); } else if( D_PAD* pad = dyn_cast( item ) ) { package_length += pad->GetPadToDieLength(); } } return std::make_tuple( count, length, package_length ); } MODULE* BOARD::GetFootprint( const wxPoint& aPosition, PCB_LAYER_ID aActiveLayer, bool aVisibleOnly, bool aIgnoreLocked ) { MODULE* footprint = NULL; MODULE* alt_footprint = NULL; int min_dim = 0x7FFFFFFF; int alt_min_dim = 0x7FFFFFFF; bool current_layer_back = IsBackLayer( aActiveLayer ); for( MODULE* candidate : m_modules ) { // is the ref point within the footprint's bounds? if( !candidate->HitTest( aPosition ) ) continue; // if caller wants to ignore locked footprints, and this one is locked, skip it. if( aIgnoreLocked && candidate->IsLocked() ) continue; PCB_LAYER_ID layer = candidate->GetLayer(); // Filter non visible footprints if requested if( !aVisibleOnly || IsModuleLayerVisible( layer ) ) { EDA_RECT bb = candidate->GetFootprintRect(); int offx = bb.GetX() + bb.GetWidth() / 2; int offy = bb.GetY() + bb.GetHeight() / 2; // off x & offy point to the middle of the box. int dist = ( aPosition.x - offx ) * ( aPosition.x - offx ) + ( aPosition.y - offy ) * ( aPosition.y - offy ); if( current_layer_back == IsBackLayer( layer ) ) { if( dist <= min_dim ) { // better footprint shown on the active side footprint = candidate; min_dim = dist; } } else if( aVisibleOnly && IsModuleLayerVisible( layer ) ) { if( dist <= alt_min_dim ) { // better footprint shown on the other side alt_footprint = candidate; alt_min_dim = dist; } } } } if( footprint ) return footprint; if( alt_footprint) return alt_footprint; return NULL; } std::list BOARD::GetZoneList( bool aIncludeZonesInFootprints ) { std::list zones; for( ZONE_CONTAINER* zone : Zones() ) zones.push_back( zone ); if( aIncludeZonesInFootprints ) { for( MODULE* footprint : m_modules ) { for( MODULE_ZONE_CONTAINER* zone : footprint->Zones() ) zones.push_back( zone ); } } return zones; } ZONE_CONTAINER* BOARD::AddArea( PICKED_ITEMS_LIST* aNewZonesList, int aNetcode, PCB_LAYER_ID aLayer, wxPoint aStartPointPosition, ZONE_BORDER_DISPLAY_STYLE aHatch ) { ZONE_CONTAINER* new_area = new ZONE_CONTAINER( this ); new_area->SetNetCode( aNetcode ); new_area->SetLayer( aLayer ); m_zones.push_back( new_area ); new_area->SetHatchStyle( (ZONE_BORDER_DISPLAY_STYLE) aHatch ); // Add the first corner to the new zone new_area->AppendCorner( aStartPointPosition, -1 ); if( aNewZonesList ) { ITEM_PICKER picker( nullptr, new_area, UNDO_REDO::NEWITEM ); aNewZonesList->PushItem( picker ); } return new_area; } void BOARD::RemoveArea( PICKED_ITEMS_LIST* aDeletedList, ZONE_CONTAINER* area_to_remove ) { if( area_to_remove == NULL ) return; if( aDeletedList ) { ITEM_PICKER picker( nullptr, area_to_remove, UNDO_REDO::DELETED ); aDeletedList->PushItem( picker ); Remove( area_to_remove ); // remove from zone list, but does not delete it } else { Delete( area_to_remove ); } } bool BOARD::NormalizeAreaPolygon( PICKED_ITEMS_LIST * aNewZonesList, ZONE_CONTAINER* aCurrArea ) { // mark all areas as unmodified except this one, if modified for( ZONE_CONTAINER* zone : m_zones ) zone->SetLocalFlags( 0 ); aCurrArea->SetLocalFlags( 1 ); if( aCurrArea->Outline()->IsSelfIntersecting() ) { aCurrArea->UnHatchBorder(); // Normalize copied area and store resulting number of polygons int n_poly = aCurrArea->Outline()->NormalizeAreaOutlines(); // If clipping has created some polygons, we must add these new copper areas. if( n_poly > 1 ) { ZONE_CONTAINER* NewArea; // Move the newly created polygons to new areas, removing them from the current area for( int ip = 1; ip < n_poly; ip++ ) { // Create new copper area and copy poly into it SHAPE_POLY_SET* new_p = new SHAPE_POLY_SET( aCurrArea->Outline()->UnitSet( ip ) ); NewArea = AddArea( aNewZonesList, aCurrArea->GetNetCode(), aCurrArea->GetLayer(), wxPoint(0, 0), aCurrArea->GetHatchStyle() ); // remove the poly that was automatically created for the new area // and replace it with a poly from NormalizeAreaOutlines delete NewArea->Outline(); NewArea->SetOutline( new_p ); NewArea->HatchBorder(); NewArea->SetLocalFlags( 1 ); } SHAPE_POLY_SET* new_p = new SHAPE_POLY_SET( aCurrArea->Outline()->UnitSet( 0 ) ); delete aCurrArea->Outline(); aCurrArea->SetOutline( new_p ); } } aCurrArea->HatchBorder(); return true; } bool BOARD::GetBoardPolygonOutlines( SHAPE_POLY_SET& aOutlines, wxString* aErrorText, std::vector* aDiscontinuities, std::vector* aIntersections ) { bool success = BuildBoardPolygonOutlines( this, aOutlines, GetDesignSettings().m_MaxError, aErrorText, aDiscontinuities, aIntersections ); // Make polygon strictly simple to avoid issues (especially in 3D viewer) aOutlines.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); return success; } const std::vector BOARD::GetPads() const { std::vector allPads; for( MODULE* footprint : Modules() ) { for( D_PAD* pad : footprint->Pads() ) allPads.push_back( pad ); } return allPads; } unsigned BOARD::GetPadCount() const { unsigned retval = 0; for( MODULE* footprint : Modules() ) retval += footprint->Pads().size(); return retval; } const std::vector BOARD::AllConnectedItems() { std::vector items; for( TRACK* track : Tracks() ) items.push_back( track ); for( MODULE* footprint : Modules() ) { for( D_PAD* pad : footprint->Pads() ) items.push_back( pad ); } for( ZONE_CONTAINER* zone : Zones() ) items.push_back( zone ); return items; } void BOARD::ClearAllNetCodes() { for( BOARD_CONNECTED_ITEM* item : AllConnectedItems() ) item->SetNetCode( 0 ); } void BOARD::MapNets( const BOARD* aDestBoard ) { for( BOARD_CONNECTED_ITEM* item : AllConnectedItems() ) { NETINFO_ITEM* netInfo = aDestBoard->FindNet( item->GetNetname() ); if( netInfo ) item->SetNet( netInfo ); else item->SetNetCode( 0 ); } } void BOARD::SanitizeNetcodes() { for ( BOARD_CONNECTED_ITEM* item : AllConnectedItems() ) { if( FindNet( item->GetNetCode() ) == nullptr ) item->SetNetCode( NETINFO_LIST::ORPHANED ); } } void BOARD::AddListener( BOARD_LISTENER* aListener ) { if( !alg::contains( m_listeners, aListener ) ) m_listeners.push_back( aListener ); } void BOARD::RemoveListener( BOARD_LISTENER* aListener ) { auto i = std::find( m_listeners.begin(), m_listeners.end(), aListener ); if( i != m_listeners.end() ) { std::iter_swap( i, m_listeners.end() - 1 ); m_listeners.pop_back(); } } void BOARD::OnItemChanged( BOARD_ITEM* aItem ) { InvokeListeners( &BOARD_LISTENER::OnBoardItemChanged, *this, aItem ); } void BOARD::ResetNetHighLight() { m_highLight.Clear(); m_highLightPrevious.Clear(); InvokeListeners( &BOARD_LISTENER::OnBoardHighlightNetChanged, *this ); } void BOARD::SetHighLightNet( int aNetCode, bool aMulti ) { if( !m_highLight.m_netCodes.count( aNetCode ) ) { if( !aMulti ) m_highLight.m_netCodes.clear(); m_highLight.m_netCodes.insert( aNetCode ); InvokeListeners( &BOARD_LISTENER::OnBoardHighlightNetChanged, *this ); } } void BOARD::HighLightON( bool aValue ) { if( m_highLight.m_highLightOn != aValue ) { m_highLight.m_highLightOn = aValue; InvokeListeners( &BOARD_LISTENER::OnBoardHighlightNetChanged, *this ); } } wxString BOARD::GroupsSanityCheck( bool repair ) { if( repair ) { while( GroupsSanityCheckInternal( repair ) != wxEmptyString ); return wxEmptyString; } return GroupsSanityCheckInternal( repair ); } wxString BOARD::GroupsSanityCheckInternal( bool repair ) { // Cycle detection // // Each group has at most one parent group. // So we start at group 0 and traverse the parent chain, marking groups seen along the way. // If we ever see a group that we've already marked, that's a cycle. // If we reach the end of the chain, we know all groups in that chain are not part of any cycle. // // Algorithm below is linear in the # of groups because each group is visited only once. // There may be extra time taken due to the container access calls and iterators. // // Groups we know are cycle free std::unordered_set knownCycleFreeGroups; // Groups in the current chain we're exploring. std::unordered_set currentChainGroups; // Groups we haven't checked yet. std::unordered_set toCheckGroups; // Initialize set of groups to check that could participate in a cycle. for( PCB_GROUP* group : Groups() ) toCheckGroups.insert( group); while( !toCheckGroups.empty() ) { currentChainGroups.clear(); PCB_GROUP* group = *toCheckGroups.begin(); while( true ) { if( currentChainGroups.find( group ) != currentChainGroups.end() ) { if( repair ) Remove( group ); return "Cycle detected in group membership"; } else if( knownCycleFreeGroups.find( group ) != knownCycleFreeGroups.end() ) { // Parent is a group we know does not lead to a cycle break; } currentChainGroups.insert( group ); // We haven't visited currIdx yet, so it must be in toCheckGroups toCheckGroups.erase( group ); group = group->GetParentGroup(); if( !group ) { // end of chain and no cycles found in this chain break; } } // No cycles found in chain, so add it to set of groups we know don't participate // in a cycle. knownCycleFreeGroups.insert( currentChainGroups.begin(), currentChainGroups.end() ); } // Success return ""; } BOARD::GroupLegalOpsField BOARD::GroupLegalOps( const PCBNEW_SELECTION& selection ) const { GroupLegalOpsField legalOps = { false, false, false, false, false, false }; std::unordered_set allMembers; for( const PCB_GROUP* grp : m_groups ) { for( const BOARD_ITEM* member : grp->GetItems() ) allMembers.insert( member ); } bool hasGroup = ( SELECTION_CONDITIONS::HasType( PCB_GROUP_T ) )( selection ); // All elements of selection are groups, and no element is a descendant group of any other. bool onlyGroups = ( SELECTION_CONDITIONS::OnlyType( PCB_GROUP_T ) )( selection ); // Any elements of the selections are already members of groups bool anyGrouped = false; // Any elements of the selections, except the first group, are already members of groups. bool anyGroupedExceptFirst = false; // All elements of the selections are already members of groups bool allGrouped = true; bool seenFirstGroup = false; if( onlyGroups ) { // Check that no groups are descendant subgroups of another group in the selection for( EDA_ITEM* item : selection ) { const PCB_GROUP* group = static_cast( item ); std::unordered_set subgroupos; std::queue toCheck; toCheck.push( group ); while( !toCheck.empty() ) { const PCB_GROUP* candidate = toCheck.front(); toCheck.pop(); for( const BOARD_ITEM* aChild : candidate->GetItems() ) { if( aChild->Type() == PCB_GROUP_T ) { const PCB_GROUP* childGroup = static_cast( aChild ); subgroupos.insert( childGroup ); toCheck.push( childGroup ); } } } for( EDA_ITEM* otherItem : selection ) { if( otherItem != item && subgroupos.find( static_cast( otherItem ) ) != subgroupos.end() ) { // otherItem is a descendant subgroup of item onlyGroups = false; } } } } for( EDA_ITEM* item : selection ) { BOARD_ITEM* board_item = static_cast( item ); bool isFirstGroup = !seenFirstGroup && board_item->Type() == PCB_GROUP_T; if( isFirstGroup ) { seenFirstGroup = true; } if( allMembers.find( board_item ) == allMembers.end() ) { allGrouped = false; } else { anyGrouped = true; if( !isFirstGroup ) anyGroupedExceptFirst = true; } } legalOps.create = !anyGrouped; legalOps.merge = hasGroup && !anyGroupedExceptFirst && ( selection.Size() > 1 ); legalOps.ungroup = onlyGroups; legalOps.removeItems = allGrouped; legalOps.flatten = onlyGroups; legalOps.enter = onlyGroups && selection.Size() == 1; return legalOps; }