/* * TRANSLINE.cpp - base for a transmission line implementation * * Copyright (C) 2005 Stefan Jahn * Modified for Kicad: 2011 jean-pierre.charras * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this package; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, * Boston, MA 02110-1301, USA. * */ #include #include "transline.h" #include "units.h" #ifndef INFINITY #define INFINITY std::numeric_limits::infinity() #endif #ifndef M_PI_2 #define M_PI_2 (M_PI/2) #endif #ifdef _MSC_VER inline bool isinf(double x) { return x == INFINITY; // return true if x is infinity } inline double asinh(double x) { return log(x+sqrt(x*x+1)); } inline double acosh(double x) { // must be x>=1, if not return Nan (Not a Number) if(!(x>=1.0)) return sqrt(-1.0); // return only the positive result (as sqrt does). return log(x+sqrt(x*x-1.0)); } inline double atanh(double x) { // must be x>-1, x<1, if not return Nan (Not a Number) if(!(x>-1.0 && x<1.0)) return sqrt(-1.0); return log((1.0+x)/(1.0-x))/2.0; } #endif // Functions to Read/Write parameters in pcb_calculator main frame: // They are wrapper to actual functions, so all transline functions do not // depend on Graphic User Interface void SetPropertyInDialog( enum PRMS_ID aPrmId, double value ); /* Puts the text into the given result line. */ void SetResultInDialog( int line, const char* text ); /* print aValue into the given result line. */ void SetResultInDialog( int aLineNumber, double aValue, const char* aText ); /* Returns a named property value. */ double GetPropertyInDialog( enum PRMS_ID aPrmId ); // Returns true if the param aPrmId is selected // Has meaning only for params that have a radio button bool IsSelectedInDialog( enum PRMS_ID aPrmId ); /* Constructor creates a transmission line instance. */ TRANSLINE::TRANSLINE() { murC = 1.0; m_name = (const char*) 0; } /* Destructor destroys a transmission line instance. */ TRANSLINE::~TRANSLINE() { } /* Sets a named property to the given value, access through the * application. */ void TRANSLINE::setProperty( enum PRMS_ID aPrmId, double value ) { SetPropertyInDialog( aPrmId, value ); } /* *Returns true if the param aPrmId is selected * Has meaning only for params that have a radio button */ bool TRANSLINE::isSelected( enum PRMS_ID aPrmId ) { return IsSelectedInDialog( aPrmId ); } /* Puts the text into the given result line. */ void TRANSLINE::setResult( int line, const char* text ) { SetResultInDialog( line, text ); } void TRANSLINE::setResult( int line, double value, const char* text ) { SetResultInDialog( line, value, text ); } /* Returns a property value. */ double TRANSLINE::getProperty( enum PRMS_ID aPrmId ) { return GetPropertyInDialog( aPrmId ); } /* * skin_depth - calculate skin depth */ #include double TRANSLINE::skin_depth() { double depth; depth = 1.0 / sqrt( M_PI * f * murC * MU0 * sigma ); return depth; } /* ***************************************************************** ********** ********** ********** mathematical functions ********** ********** ********** ***************************************************************** */ #define NR_EPSI 2.2204460492503131e-16 /* The function computes the complete elliptic integral of first kind * K() and the second kind E() using the arithmetic-geometric mean * algorithm (AGM) by Abramowitz and Stegun. */ void TRANSLINE::ellipke( double arg, double& k, double& e ) { int iMax = 16; if( arg == 1.0 ) { k = INFINITY; // infinite e = 0; } else if( isinf( arg ) && arg < 0 ) { k = 0; e = INFINITY; // infinite } else { double a, b, c, f, s, fk = 1, fe = 1, t, da = arg; int i; if( arg < 0 ) { fk = 1 / sqrt( 1 - arg ); fe = sqrt( 1 - arg ); da = -arg / (1 - arg); } a = 1; b = sqrt( 1 - da ); c = sqrt( da ); f = 0.5; s = f * c * c; for( i = 0; i < iMax; i++ ) { t = (a + b) / 2; c = (a - b) / 2; b = sqrt( a * b ); a = t; f *= 2; s += f * c * c; if( c / a < NR_EPSI ) break; } if( i >= iMax ) { k = 0; e = 0; } else { k = M_PI_2 / a; e = M_PI_2 * (1 - s) / a; if( arg < 0 ) { k *= fk; e *= fe; } } } } /* We need to know only K(k), and if possible KISS. */ double TRANSLINE::ellipk( double k ) { double r, lost; ellipke( k, r, lost ); return r; }