/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2013 CERN * @author Maciej Suminski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file cached_container.cpp * @brief Class to store instances of VERTEX with caching. It allows storing VERTEX objects and * associates them with VERTEX_ITEMs. This leads to a possibility of caching vertices data in the * GPU memory and a fast reuse of that data. */ #include #include #include #include #include #include #include #ifdef __WXDEBUG__ #include #endif /* __WXDEBUG__ */ using namespace KIGFX; CACHED_CONTAINER::CACHED_CONTAINER( unsigned int aSize ) : VERTEX_CONTAINER( aSize ), m_item( NULL ) { // In the beginning there is only free space m_freeChunks.insert( CHUNK( aSize, 0 ) ); // Do not have uninitialized members: m_chunkSize = 0; m_chunkOffset = 0; m_itemSize = 0; } void CACHED_CONTAINER::SetItem( VERTEX_ITEM* aItem ) { wxASSERT( aItem != NULL ); m_item = aItem; m_itemSize = m_item->GetSize(); m_chunkSize = m_itemSize; if( m_itemSize == 0 ) m_items.insert( m_item ); // The item was not stored before else m_chunkOffset = m_item->GetOffset(); #if CACHED_CONTAINER_TEST > 1 wxLogDebug( wxT( "Adding/editing item 0x%08lx (size %d)" ), (long) m_item, m_itemSize ); #endif } void CACHED_CONTAINER::FinishItem() { wxASSERT( m_item != NULL ); wxASSERT( m_item->GetSize() == m_itemSize ); // Finishing the previously edited item if( m_itemSize < m_chunkSize ) { // There is some not used but reserved memory left, so we should return it to the pool int itemOffset = m_item->GetOffset(); // Add the not used memory back to the pool m_freeChunks.insert( CHUNK( m_chunkSize - m_itemSize, itemOffset + m_itemSize ) ); m_freeSpace += ( m_chunkSize - m_itemSize ); // mergeFreeChunks(); // veery slow and buggy } #if CACHED_CONTAINER_TEST > 1 wxLogDebug( wxT( "Finishing item 0x%08lx (size %d)" ), (long) m_item, m_itemSize ); test(); m_item = NULL; // electric fence #endif } VERTEX* CACHED_CONTAINER::Allocate( unsigned int aSize ) { wxASSERT( m_item != NULL ); if( m_failed ) return NULL; if( m_itemSize + aSize > m_chunkSize ) { // There is not enough space in the currently reserved chunk, so we have to resize it // Reserve a bigger memory chunk for the current item and // make it multiple of 3 to store triangles m_chunkSize = ( 2 * m_itemSize ) + aSize + ( 3 - aSize % 3 ); // Save the current size before reallocating m_chunkOffset = reallocate( m_chunkSize ); if( m_chunkOffset > m_currentSize ) { m_failed = true; return NULL; } } VERTEX* reserved = &m_vertices[m_chunkOffset + m_itemSize]; m_itemSize += aSize; // Now the item officially possesses the memory chunk m_item->setSize( m_itemSize ); // The content has to be updated m_dirty = true; #if CACHED_CONTAINER_TEST > 1 test(); #endif #if CACHED_CONTAINER_TEST > 2 showFreeChunks(); showReservedChunks(); #endif return reserved; } void CACHED_CONTAINER::Delete( VERTEX_ITEM* aItem ) { wxASSERT( aItem != NULL ); wxASSERT( m_items.find( aItem ) != m_items.end() ); int size = aItem->GetSize(); int offset = aItem->GetOffset(); #if CACHED_CONTAINER_TEST > 1 wxLogDebug( wxT( "Removing 0x%08lx (size %d offset %d)" ), (long) aItem, size, offset ); #endif // Insert a free memory chunk entry in the place where item was stored if( size > 0 ) { m_freeChunks.insert( CHUNK( size, offset ) ); m_freeSpace += size; // Indicate that the item is not stored in the container anymore aItem->setSize( 0 ); } m_items.erase( aItem ); #if CACHED_CONTAINER_TEST > 1 test(); #endif // Dynamic memory freeing, there is no point in holding // a large amount of memory when there is no use for it if( m_freeSpace > ( m_currentSize / 2 ) && m_currentSize > m_initialSize ) { resizeContainer( m_currentSize / 2 ); } } void CACHED_CONTAINER::Clear() { // Change size to the default one m_vertices = static_cast( realloc( m_vertices, m_initialSize * sizeof( VERTEX ) ) ); // Reset state variables m_freeSpace = m_initialSize; m_currentSize = m_initialSize; m_failed = false; // Set the size of all the stored VERTEX_ITEMs to 0, so it is clear that they are not held // in the container anymore ITEMS::iterator it; for( it = m_items.begin(); it != m_items.end(); ++it ) { ( *it )->setSize( 0 ); } m_items.clear(); // Now there is only free space left m_freeChunks.clear(); m_freeChunks.insert( CHUNK( m_freeSpace, 0 ) ); } unsigned int CACHED_CONTAINER::reallocate( unsigned int aSize ) { wxASSERT( aSize > 0 ); #if CACHED_CONTAINER_TEST > 2 wxLogDebug( wxT( "Resize 0x%08lx from %d to %d" ), (long) m_item, m_itemSize, aSize ); #endif // Is there enough space to store vertices? if( m_freeSpace < aSize ) { bool result; // Would it be enough to double the current space? if( aSize < m_freeSpace + m_currentSize ) { // Yes: exponential growing result = resizeContainer( m_currentSize * 2 ); } else { // No: grow to the nearest bigger power of 2 result = resizeContainer( getPowerOf2( m_currentSize * 2 + aSize ) ); } if( !result ) return UINT_MAX; } // Look for the free space chunk of at least given size FREE_CHUNK_MAP::iterator newChunk = m_freeChunks.lower_bound( aSize ); if( newChunk == m_freeChunks.end() ) { // In the case when there is enough space to store the vertices, // but the free space is not continous we should defragment the container if( !defragment() ) return UINT_MAX; // Update the current offset m_chunkOffset = m_item->GetOffset(); // We can take the first free chunk, as there is only one after defragmentation // and we can be sure that it provides enough space to store the object newChunk = m_freeChunks.begin(); } // Parameters of the allocated cuhnk unsigned int chunkSize = newChunk->first; unsigned int chunkOffset = newChunk->second; wxASSERT( chunkSize >= aSize ); wxASSERT( chunkOffset < m_currentSize ); // Check if the item was previously stored in the container if( m_itemSize > 0 ) { #if CACHED_CONTAINER_TEST > 3 wxLogDebug( wxT( "Moving 0x%08x from 0x%08x to 0x%08x" ), (int) m_item, oldChunkOffset, chunkOffset ); #endif // The item was reallocated, so we have to copy all the old data to the new place memcpy( &m_vertices[chunkOffset], &m_vertices[m_chunkOffset], m_itemSize * VertexSize ); // Free the space previously used by the chunk wxASSERT( m_itemSize > 0 ); m_freeChunks.insert( CHUNK( m_itemSize, m_chunkOffset ) ); m_freeSpace += m_itemSize; } // Remove the allocated chunk from the free space pool m_freeChunks.erase( newChunk ); // If there is some space left, return it to the pool - add an entry for it if( chunkSize > aSize ) { m_freeChunks.insert( CHUNK( chunkSize - aSize, chunkOffset + aSize ) ); } m_freeSpace -= aSize; // mergeFreeChunks(); // veery slow and buggy m_item->setOffset( chunkOffset ); return chunkOffset; } bool CACHED_CONTAINER::defragment( VERTEX* aTarget ) { #if CACHED_CONTAINER_TEST > 0 wxLogDebug( wxT( "Defragmenting" ) ); prof_counter totalTime; prof_start( &totalTime, false ); #endif if( aTarget == NULL ) { // No target was specified, so we have to reallocate our own space aTarget = static_cast( malloc( m_currentSize * sizeof( VERTEX ) ) ); if( aTarget == NULL ) { DisplayError( NULL, wxT( "Run out of memory" ) ); return false; } } int newOffset = 0; ITEMS::iterator it, it_end; for( it = m_items.begin(), it_end = m_items.end(); it != it_end; ++it ) { VERTEX_ITEM* item = *it; int itemOffset = item->GetOffset(); int itemSize = item->GetSize(); // Move an item to the new container memcpy( &aTarget[newOffset], &m_vertices[itemOffset], itemSize * VertexSize ); // Update new offset item->setOffset( newOffset ); // Move to the next free space newOffset += itemSize; } free( m_vertices ); m_vertices = aTarget; // Now there is only one big chunk of free memory m_freeChunks.clear(); wxASSERT( m_freeSpace > 0 ); m_freeChunks.insert( CHUNK( m_freeSpace, m_currentSize - m_freeSpace ) ); #if CACHED_CONTAINER_TEST > 0 prof_end( &totalTime ); wxLogDebug( wxT( "Defragmented the container storing %d vertices / %.1f ms" ), m_currentSize - m_freeSpace, (double) totalTime.value / 1000.0 ); #endif return true; } void CACHED_CONTAINER::mergeFreeChunks() { if( m_freeChunks.size() <= 1 ) // There are no chunks that can be merged return; #if CACHED_CONTAINER_TEST > 0 prof_counter totalTime; prof_start( &totalTime, false ); #endif // Reversed free chunks map - this one stores chunk size with its offset as the key std::list freeChunks; FREE_CHUNK_MAP::const_iterator it, it_end; for( it = m_freeChunks.begin(), it_end = m_freeChunks.end(); it != it_end; ++it ) { freeChunks.push_back( std::make_pair( it->second, it->first ) ); } m_freeChunks.clear(); freeChunks.sort(); std::list::const_iterator itf, itf_end; unsigned int offset = freeChunks.front().first; unsigned int size = freeChunks.front().second; freeChunks.pop_front(); for( itf = freeChunks.begin(), itf_end = freeChunks.end(); itf != itf_end; ++itf ) { if( itf->first == offset + size ) { // These chunks can be merged, so just increase the current chunk size and go on size += itf->second; } else { // These chunks cannot be merged // So store the previous one m_freeChunks.insert( std::make_pair( size, offset ) ); // and let's check the next chunk offset = itf->first; size = itf->second; } } // Add the last one m_freeChunks.insert( std::make_pair( size, offset ) ); #if CACHED_CONTAINER_TEST > 0 prof_end( &totalTime ); wxLogDebug( wxT( "Merged free chunks / %.1f ms" ), (double) totalTime.value / 1000.0 ); #endif test(); } bool CACHED_CONTAINER::resizeContainer( unsigned int aNewSize ) { wxASSERT( aNewSize != m_currentSize ); #if CACHED_CONTAINER_TEST > 0 wxLogDebug( wxT( "Resizing container from %d to %d" ), m_currentSize, aNewSize ); #endif VERTEX* newContainer; if( aNewSize < m_currentSize ) { // Shrinking container // Sanity check, no shrinking if we cannot fit all the data if( reservedSpace() > aNewSize ) return false; newContainer = static_cast( malloc( aNewSize * sizeof( VERTEX ) ) ); if( newContainer == NULL ) { DisplayError( NULL, wxT( "Run out of memory" ) ); return false; } // Defragment directly to the new, smaller container defragment( newContainer ); // We have to correct freeChunks after defragmentation m_freeChunks.clear(); wxASSERT( aNewSize - reservedSpace() > 0 ); m_freeChunks.insert( CHUNK( aNewSize - reservedSpace(), reservedSpace() ) ); } else { // Enlarging container newContainer = static_cast( realloc( m_vertices, aNewSize * sizeof( VERTEX ) ) ); if( newContainer == NULL ) { DisplayError( NULL, wxT( "Run out of memory" ) ); return false; } // Add an entry for the new memory chunk at the end of the container m_freeChunks.insert( CHUNK( aNewSize - m_currentSize, m_currentSize ) ); } m_vertices = newContainer; m_freeSpace += ( aNewSize - m_currentSize ); m_currentSize = aNewSize; return true; } unsigned int CACHED_CONTAINER::getPowerOf2( unsigned int aNumber ) const { unsigned int power = 1; while( power < aNumber && power != 0 ) power <<= 1; return power; } #ifdef CACHED_CONTAINER_TEST void CACHED_CONTAINER::showFreeChunks() { FreeChunkMap::iterator it; wxLogDebug( wxT( "Free chunks:" ) ); for( it = m_freeChunks.begin(); it != m_freeChunks.end(); ++it ) { unsigned int offset = getChunkOffset( *it ); unsigned int size = getChunkSize( *it ); wxASSERT( size > 0 ); wxLogDebug( wxT( "[0x%08x-0x%08x] (size %d)" ), offset, offset + size - 1, size ); } } void CACHED_CONTAINER::showReservedChunks() { Items::iterator it; wxLogDebug( wxT( "Reserved chunks:" ) ); for( it = m_items.begin(); it != m_items.end(); ++it ) { VERTEX_ITEM* item = *it; unsigned int offset = item->GetOffset(); unsigned int size = item->GetSize(); wxASSERT( size > 0 ); wxLogDebug( wxT( "[0x%08x-0x%08x] @ 0x%08lx (size %d)" ), offset, offset + size - 1, (long) item, size ); } } void CACHED_CONTAINER::test() { // Free space check unsigned int freeSpace = 0; FreeChunkMap::iterator itf; for( itf = m_freeChunks.begin(); itf != m_freeChunks.end(); ++itf ) freeSpace += getChunkSize( *itf ); wxASSERT( freeSpace == m_freeSpace ); // Reserved space check /*unsigned int reservedSpace = 0; Items::iterator itr; for( itr = m_items.begin(); itr != m_items.end(); ++itr ) reservedSpace += ( *itr )->GetSize(); reservedSpace += m_itemSize; // Add the current chunk size wxASSERT( ( freeSpace + reservedSpace ) == m_currentSize );*/ // Overlapping check TBD } #endif /* CACHED_CONTAINER_TEST */