/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2010 Wayne Stambaugh * Copyright (C) 2015-2021 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include // for KiROUND #include bool TRANSFORM::operator==( const TRANSFORM& aTransform ) const { return ( x1 == aTransform.x1 && y1 == aTransform.y1 && x2 == aTransform.x2 && y2 == aTransform.y2 ); } VECTOR2I TRANSFORM::TransformCoordinate( const VECTOR2I& aPoint ) const { return VECTOR2I( ( x1 * aPoint.x ) + ( y1 * aPoint.y ), ( x2 * aPoint.x ) + ( y2 * aPoint.y ) ); } BOX2I TRANSFORM::TransformCoordinate( const BOX2I& aRect ) const { BOX2I rect; rect.SetOrigin( TransformCoordinate( aRect.GetOrigin() ) ); rect.SetEnd( TransformCoordinate( aRect.GetEnd() ) ); return rect; } TRANSFORM TRANSFORM::InverseTransform() const { int invx1; int invx2; int invy1; int invy2; /* Calculates the inverse matrix coeffs: * for a matrix m{x1, x2, y1, y2} * the inverse matrix is 1/(x1*y2 -x2*y1) m{y2,-x2,-y1,x1) */ int det = x1*y2 -x2*y1; // Is never null, because the inverse matrix exists invx1 = y2/det; invx2 = -x2/det; invy1 = -y1/det; invy2 = x1/det; TRANSFORM invtransform( invx1, invy1, invx2, invy2 ); return invtransform; } bool TRANSFORM::MapAngles( EDA_ANGLE* aAngle1, EDA_ANGLE* aAngle2 ) const { wxCHECK_MSG( aAngle1 != nullptr && aAngle2 != nullptr, false, wxT( "Cannot map NULL point angles." ) ); double x, y; VECTOR2D v; bool swap = false; EDA_ANGLE delta = ( *aAngle2 - *aAngle1 ).Normalize180(); x = aAngle1->Cos(); y = aAngle1->Sin(); v = VECTOR2D( x * x1 + y * y1, x * x2 + y * y2 ); *aAngle1 = EDA_ANGLE( v ); aAngle1->Normalize180(); x = aAngle2->Cos(); y = aAngle2->Sin(); v = VECTOR2D( x * x1 + y * y1, x * x2 + y * y2 ); *aAngle2 = EDA_ANGLE( v ); aAngle2->Normalize180(); EDA_ANGLE deltaTransformed = ( *aAngle2 - *aAngle1 ).Normalize180(); if( sign( deltaTransformed.AsDegrees() ) != sign( delta.AsDegrees() ) ) { std::swap( *aAngle1, *aAngle2 ); swap = true; if( *aAngle2 < *aAngle1 ) *aAngle2 += ANGLE_360; } #ifdef DEBUG // This check is only valid for coordinate inversions (y=-y). If we start using this function on // more complex transforms (different x to y scaling), we should re-write it/re think it. static const EDA_ANGLE epsilon( 0.1, DEGREES_T ); EDA_ANGLE residualError( *aAngle2 - *aAngle1 - delta ); residualError.Normalize(); assert( residualError < epsilon || residualError > epsilon.Invert().Normalize() ); #endif // DEBUG return swap; }