/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2004-2020 KiCad Developers. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Copper clearance test. Checks all copper items (pads, vias, tracks, drawings, zones) for their electrical clearance. Errors generated: - DRCE_CLEARANCE - DRCE_TRACKS_CROSSING - DRCE_ZONES_INTERSECT - DRCE_SHORTING_ITEMS */ class DRC_TEST_PROVIDER_COPPER_CLEARANCE : public DRC_TEST_PROVIDER_CLEARANCE_BASE { public: DRC_TEST_PROVIDER_COPPER_CLEARANCE () : DRC_TEST_PROVIDER_CLEARANCE_BASE(), m_drcEpsilon( 0 ) { } virtual ~DRC_TEST_PROVIDER_COPPER_CLEARANCE() { } virtual bool Run() override; virtual const wxString GetName() const override { return "clearance"; }; virtual const wxString GetDescription() const override { return "Tests copper item clearance"; } virtual std::set GetConstraintTypes() const override; int GetNumPhases() const override; private: bool testTrackAgainstItem( TRACK* track, SHAPE* trackShape, PCB_LAYER_ID layer, BOARD_ITEM* other ); void testTrackClearances(); bool testPadAgainstItem( PAD* pad, SHAPE* padShape, PCB_LAYER_ID layer, BOARD_ITEM* other ); void testPadClearances(); void testZones(); void testItemAgainstZones( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer ); private: DRC_RTREE m_copperTree; int m_drcEpsilon; std::vector m_zones; std::map> m_zoneTrees; }; bool DRC_TEST_PROVIDER_COPPER_CLEARANCE::Run() { m_board = m_drcEngine->GetBoard(); DRC_CONSTRAINT worstConstraint; if( m_drcEngine->QueryWorstConstraint( CLEARANCE_CONSTRAINT, worstConstraint ) ) { m_largestClearance = worstConstraint.GetValue().Min(); } else { reportAux( "No Clearance constraints found..." ); return false; } if( m_drcEngine->QueryWorstConstraint( HOLE_CLEARANCE_CONSTRAINT, worstConstraint ) ) { m_largestClearance = std::max( m_largestClearance, worstConstraint.GetValue().Min() ); } m_drcEpsilon = m_board->GetDesignSettings().GetDRCEpsilon(); m_zones.clear(); for( ZONE* zone : m_board->Zones() ) { if( !zone->GetIsRuleArea() ) { m_zones.push_back( zone ); m_largestClearance = std::max( m_largestClearance, zone->GetLocalClearance() ); } } for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) m_largestClearance = std::max( m_largestClearance, pad->GetLocalClearance() ); for( ZONE* zone : footprint->Zones() ) { if( !zone->GetIsRuleArea() ) { m_zones.push_back( zone ); m_largestClearance = std::max( m_largestClearance, zone->GetLocalClearance() ); } } } reportAux( "Worst clearance : %d nm", m_largestClearance ); // This is the number of tests between 2 calls to the progress bar size_t delta = 50; size_t count = 0; size_t ii = 0; m_copperTree.clear(); auto countItems = [&]( BOARD_ITEM* item ) -> bool { ++count; return true; }; auto addToCopperTree = [&]( BOARD_ITEM* item ) -> bool { if( !reportProgress( ii++, count, delta ) ) return false; m_copperTree.Insert( item, m_largestClearance ); return true; }; if( !reportPhase( _( "Gathering copper items..." ) ) ) return false; static const std::vector itemTypes = { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T, PCB_PAD_T, PCB_SHAPE_T, PCB_FP_SHAPE_T, PCB_TEXT_T, PCB_FP_TEXT_T, PCB_DIMENSION_T, PCB_DIM_ALIGNED_T, PCB_DIM_LEADER_T, PCB_DIM_CENTER_T, PCB_DIM_ORTHOGONAL_T }; forEachGeometryItem( itemTypes, LSET::AllCuMask(), countItems ); forEachGeometryItem( itemTypes, LSET::AllCuMask(), addToCopperTree ); if( !reportPhase( _( "Tessellating copper zones..." ) ) ) return false; delta = 5; ii = 0; m_zoneTrees.clear(); for( ZONE* zone : m_zones ) { if( !reportProgress( ii++, m_zones.size(), delta ) ) break; zone->CacheBoundingBox(); m_zoneTrees[ zone ] = std::make_unique(); for( int layer : zone->GetLayerSet().Seq() ) { if( IsCopperLayer( layer ) ) m_zoneTrees[ zone ]->Insert( zone, layer ); } } reportAux( "Testing %d copper items and %d zones...", count, m_zones.size() ); if( !reportPhase( _( "Checking track & via clearances..." ) ) ) return false; testTrackClearances(); if( !reportPhase( _( "Checking pad clearances..." ) ) ) return false; testPadClearances(); if( !reportPhase( _( "Checking copper zone clearances..." ) ) ) return false; testZones(); reportRuleStatistics(); return true; } bool DRC_TEST_PROVIDER_COPPER_CLEARANCE::testTrackAgainstItem( TRACK* track, SHAPE* trackShape, PCB_LAYER_ID layer, BOARD_ITEM* other ) { bool testClearance = !m_drcEngine->IsErrorLimitExceeded( DRCE_CLEARANCE ); bool testHoles = !m_drcEngine->IsErrorLimitExceeded( DRCE_HOLE_CLEARANCE ); DRC_CONSTRAINT constraint; int clearance = -1; int actual; VECTOR2I pos; if( other->Type() == PCB_PAD_T ) { PAD* pad = static_cast( other ); if( pad->GetAttribute() == PAD_ATTRIB_NPTH && !pad->FlashLayer( layer ) ) testClearance = false; } if( testClearance ) { constraint = m_drcEngine->EvalRulesForItems( CLEARANCE_CONSTRAINT, track, other, layer ); clearance = constraint.GetValue().Min(); } if( clearance >= 0 ) { // Special processing for track:track intersections if( track->Type() == PCB_TRACE_T && other->Type() == PCB_TRACE_T ) { SEG trackSeg( track->GetStart(), track->GetEnd() ); SEG otherSeg( track->GetStart(), track->GetEnd() ); if( OPT_VECTOR2I intersection = trackSeg.Intersect( otherSeg ) ) { std::shared_ptr drcItem = DRC_ITEM::Create( DRCE_TRACKS_CROSSING ); drcItem->SetItems( track, other ); drcItem->SetViolatingRule( constraint.GetParentRule() ); reportViolation( drcItem, (wxPoint) intersection.get() ); return m_drcEngine->GetReportAllTrackErrors(); } } std::shared_ptr otherShape = DRC_ENGINE::GetShape( other, layer ); if( trackShape->Collide( otherShape.get(), clearance - m_drcEpsilon, &actual, &pos ) ) { std::shared_ptr drce = DRC_ITEM::Create( DRCE_CLEARANCE ); m_msg.Printf( _( "(%s clearance %s; actual %s)" ), constraint.GetName(), MessageTextFromValue( userUnits(), clearance ), MessageTextFromValue( userUnits(), actual ) ); drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + m_msg ); drce->SetItems( track, other ); drce->SetViolatingRule( constraint.GetParentRule() ); reportViolation( drce, (wxPoint) pos ); if( !m_drcEngine->GetReportAllTrackErrors() ) return false; } } if( testHoles && ( other->Type() == PCB_VIA_T || other->Type() == PCB_PAD_T ) ) { std::unique_ptr holeShape; if( other->Type() == PCB_VIA_T ) { VIA* via = static_cast( other ); pos = via->GetPosition(); if( via->GetLayerSet().Contains( layer ) ) holeShape.reset( new SHAPE_SEGMENT( pos, pos, via->GetDrill() ) ); } else if( other->Type() == PCB_PAD_T ) { PAD* pad = static_cast( other ); if( pad->GetDrillSize().x ) holeShape.reset( new SHAPE_SEGMENT( *pad->GetEffectiveHoleShape() ) ); } if( holeShape ) { constraint = m_drcEngine->EvalRulesForItems( HOLE_CLEARANCE_CONSTRAINT, other, track ); clearance = constraint.GetValue().Min(); if( clearance >= 0 && trackShape->Collide( holeShape.get(), std::max( 0, clearance - m_drcEpsilon ), &actual, &pos ) ) { std::shared_ptr drce = DRC_ITEM::Create( DRCE_HOLE_CLEARANCE ); m_msg.Printf( _( "(%s clearance %s; actual %s)" ), constraint.GetName(), MessageTextFromValue( userUnits(), clearance ), MessageTextFromValue( userUnits(), actual ) ); drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + m_msg ); drce->SetItems( track, other ); drce->SetViolatingRule( constraint.GetParentRule() ); reportViolation( drce, (wxPoint) pos ); if( !m_drcEngine->GetReportAllTrackErrors() ) return false; } } } return true; } void DRC_TEST_PROVIDER_COPPER_CLEARANCE::testItemAgainstZones( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer ) { for( ZONE* zone : m_zones ) { if( m_drcEngine->IsErrorLimitExceeded( DRCE_CLEARANCE ) ) break; if( !zone->GetLayerSet().test( aLayer ) ) continue; if( zone->GetNetCode() && aItem->IsConnected() ) { if( zone->GetNetCode() == static_cast( aItem )->GetNetCode() ) continue; } if( aItem->GetBoundingBox().Intersects( zone->GetCachedBoundingBox() ) ) { auto constraint = m_drcEngine->EvalRulesForItems( CLEARANCE_CONSTRAINT, aItem, zone, aLayer ); int clearance = constraint.GetValue().Min(); if( clearance < 0 ) continue; int actual; VECTOR2I pos; DRC_RTREE* zoneTree = m_zoneTrees[ zone ].get(); EDA_RECT itemBBox = aItem->GetBoundingBox(); std::shared_ptr itemShape = aItem->GetEffectiveShape( aLayer ); if( aItem->Type() == PCB_PAD_T ) { PAD* pad = static_cast( aItem ); if( !pad->FlashLayer( aLayer ) ) { if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 ) continue; const SHAPE_SEGMENT* hole = pad->GetEffectiveHoleShape(); int size = hole->GetWidth(); // Note: drill size represents finish size, which means the actual hole // size is the plating thickness larger. if( pad->GetAttribute() == PAD_ATTRIB_PTH ) size += m_board->GetDesignSettings().GetHolePlatingThickness(); itemShape = std::make_shared( hole->GetSeg(), size ); } } if( zoneTree->QueryColliding( itemBBox, itemShape.get(), aLayer, clearance - m_drcEpsilon, &actual, &pos ) ) { std::shared_ptr drce = DRC_ITEM::Create( DRCE_CLEARANCE ); m_msg.Printf( _( "(%s clearance %s; actual %s)" ), constraint.GetName(), MessageTextFromValue( userUnits(), clearance ), MessageTextFromValue( userUnits(), actual ) ); drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + m_msg ); drce->SetItems( aItem, zone ); drce->SetViolatingRule( constraint.GetParentRule() ); reportViolation( drce, (wxPoint) pos ); } } } } void DRC_TEST_PROVIDER_COPPER_CLEARANCE::testTrackClearances() { // This is the number of tests between 2 calls to the progress bar const int delta = 25; int ii = 0; reportAux( "Testing %d tracks & vias...", m_board->Tracks().size() ); std::map< std::pair, int> checkedPairs; for( TRACK* track : m_board->Tracks() ) { if( !reportProgress( ii++, m_board->Tracks().size(), delta ) ) break; for( PCB_LAYER_ID layer : track->GetLayerSet().Seq() ) { std::shared_ptr trackShape = track->GetEffectiveShape( layer ); m_copperTree.QueryColliding( track, layer, layer, // Filter: [&]( BOARD_ITEM* other ) -> bool { // It would really be better to know what particular nets a nettie // should allow, but for now it is what it is. if( DRC_ENGINE::IsNetTie( other ) ) return false; auto otherCItem = dynamic_cast( other ); if( otherCItem && otherCItem->GetNetCode() == track->GetNetCode() ) return false; BOARD_ITEM* a = track; BOARD_ITEM* b = other; // store canonical order so we don't collide in both directions // (a:b and b:a) if( static_cast( a ) > static_cast( b ) ) std::swap( a, b ); if( checkedPairs.count( { a, b } ) ) { return false; } else { checkedPairs[ { a, b } ] = 1; return true; } }, // Visitor: [&]( BOARD_ITEM* other ) -> bool { return testTrackAgainstItem( track, trackShape.get(), layer, other ); }, m_largestClearance ); testItemAgainstZones( track, layer ); } } } bool DRC_TEST_PROVIDER_COPPER_CLEARANCE::testPadAgainstItem( PAD* pad, SHAPE* padShape, PCB_LAYER_ID layer, BOARD_ITEM* other ) { bool testClearance = !m_drcEngine->IsErrorLimitExceeded( DRCE_CLEARANCE ); bool testShorting = !m_drcEngine->IsErrorLimitExceeded( DRCE_SHORTING_ITEMS ); bool testHoles = !m_drcEngine->IsErrorLimitExceeded( DRCE_HOLE_CLEARANCE ); FOOTPRINT* padParent = static_cast( pad->GetParent() ); bool isNetTie = padParent->IsNetTie(); // Graphic items are allowed to act as net-ties within their own footprint if( isNetTie && ( other->Type() == PCB_FP_SHAPE_T || other->Type() == PCB_PAD_T ) && other->GetParent() == padParent ) { testClearance = false; } if( pad->GetAttribute() == PAD_ATTRIB_NPTH && !pad->FlashLayer( layer ) ) testClearance = false; if( !IsCopperLayer( layer ) ) testClearance = false; // Track clearances are tested in testTrackClearances() if( dynamic_cast( other) ) testClearance = false; if( !testClearance && !testShorting && !testHoles ) return false; std::shared_ptr otherShape = DRC_ENGINE::GetShape( other, layer ); DRC_CONSTRAINT constraint; int clearance; int actual; VECTOR2I pos; if( other->Type() == PCB_PAD_T ) { PAD* otherPad = static_cast( other ); // If pads are equivalent (ie: from the same footprint with the same pad number)... if( pad->SameLogicalPadAs( otherPad ) ) { // ...and have nets, then they must be the same net if( pad->GetNetCode() && otherPad->GetNetCode() && pad->GetNetCode() != otherPad->GetNetCode() && testShorting ) { std::shared_ptr drce = DRC_ITEM::Create( DRCE_SHORTING_ITEMS ); m_msg.Printf( _( "(nets %s and %s)" ), pad->GetNetname(), otherPad->GetNetname() ); drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + m_msg ); drce->SetItems( pad, otherPad ); reportViolation( drce, otherPad->GetPosition() ); } return true; } if( testHoles && pad->FlashLayer( layer ) && otherPad->GetDrillSize().x ) { constraint = m_drcEngine->EvalRulesForItems( HOLE_CLEARANCE_CONSTRAINT, pad, otherPad ); clearance = constraint.GetValue().Min(); if( clearance >= 0 && padShape->Collide( otherPad->GetEffectiveHoleShape(), std::max( 0, clearance - m_drcEpsilon ), &actual, &pos ) ) { std::shared_ptr drce = DRC_ITEM::Create( DRCE_HOLE_CLEARANCE ); m_msg.Printf( _( "(%s clearance %s; actual %s)" ), constraint.GetName(), MessageTextFromValue( userUnits(), clearance ), MessageTextFromValue( userUnits(), actual ) ); drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + m_msg ); drce->SetItems( pad, other ); drce->SetViolatingRule( constraint.GetParentRule() ); reportViolation( drce, (wxPoint) pos ); } } if( testHoles && otherPad->FlashLayer( layer ) && pad->GetDrillSize().x ) { constraint = m_drcEngine->EvalRulesForItems( HOLE_CLEARANCE_CONSTRAINT, pad, otherPad ); clearance = constraint.GetValue().Min(); if( clearance >= 0 && otherShape->Collide( pad->GetEffectiveHoleShape(), std::max( 0, clearance - m_drcEpsilon ), &actual, &pos ) ) { std::shared_ptr drce = DRC_ITEM::Create( DRCE_HOLE_CLEARANCE ); m_msg.Printf( _( "(%s clearance %s; actual %s)" ), constraint.GetName(), MessageTextFromValue( userUnits(), clearance ), MessageTextFromValue( userUnits(), actual ) ); drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + m_msg ); drce->SetItems( pad, other ); drce->SetViolatingRule( constraint.GetParentRule() ); reportViolation( drce, (wxPoint) pos ); } } // Pads of the same (defined) net get a waiver on clearance tests if( pad->GetNetCode() && otherPad->GetNetCode() == pad->GetNetCode() ) testClearance = false; if( otherPad->GetAttribute() == PAD_ATTRIB_NPTH && !otherPad->FlashLayer( layer ) ) testClearance = false; } if( testClearance ) { constraint = m_drcEngine->EvalRulesForItems( CLEARANCE_CONSTRAINT, pad, other, layer ); clearance = constraint.GetValue().Min(); if( clearance > 0 && padShape->Collide( otherShape.get(), std::max( 0, clearance - m_drcEpsilon ), &actual, &pos ) ) { std::shared_ptr drce = DRC_ITEM::Create( DRCE_CLEARANCE ); m_msg.Printf( _( "(%s clearance %s; actual %s)" ), constraint.GetName(), MessageTextFromValue( userUnits(), clearance ), MessageTextFromValue( userUnits(), actual ) ); drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + m_msg ); drce->SetItems( pad, other ); drce->SetViolatingRule( constraint.GetParentRule() ); reportViolation( drce, (wxPoint) pos ); } } return true; } void DRC_TEST_PROVIDER_COPPER_CLEARANCE::testPadClearances( ) { const int delta = 25; // This is the number of tests between 2 calls to the progress bar size_t count = 0; for( FOOTPRINT* footprint : m_board->Footprints() ) count += footprint->Pads().size(); reportAux( "Testing %d pads...", count ); int ii = 0; std::map< std::pair, int> checkedPairs; for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( !reportProgress( ii++, count, delta ) ) break; for( PCB_LAYER_ID layer : pad->GetLayerSet().Seq() ) { std::shared_ptr padShape = DRC_ENGINE::GetShape( pad, layer ); m_copperTree.QueryColliding( pad, layer, layer, // Filter: [&]( BOARD_ITEM* other ) -> bool { BOARD_ITEM* a = pad; BOARD_ITEM* b = other; // store canonical order so we don't collide in both directions // (a:b and b:a) if( static_cast( a ) > static_cast( b ) ) std::swap( a, b ); if( checkedPairs.count( { a, b } ) ) { return false; } else { checkedPairs[ { a, b } ] = 1; return true; } }, // Visitor [&]( BOARD_ITEM* other ) -> bool { return testPadAgainstItem( pad, padShape.get(), layer, other ); }, m_largestClearance ); testItemAgainstZones( pad, layer ); } } } } void DRC_TEST_PROVIDER_COPPER_CLEARANCE::testZones() { const int delta = 50; // This is the number of tests between 2 calls to the progress bar SHAPE_POLY_SET buffer; SHAPE_POLY_SET* boardOutline = nullptr; if( m_board->GetBoardPolygonOutlines( buffer ) ) boardOutline = &buffer; for( int layer_id = F_Cu; layer_id <= B_Cu; ++layer_id ) { PCB_LAYER_ID layer = static_cast( layer_id ); std::vector smoothed_polys; smoothed_polys.resize( m_zones.size() ); // Skip over layers not used on the current board if( !m_board->IsLayerEnabled( layer ) ) continue; for( size_t ii = 0; ii < m_zones.size(); ii++ ) { if( m_zones[ii]->IsOnLayer( layer ) ) m_zones[ii]->BuildSmoothedPoly( smoothed_polys[ii], layer, boardOutline ); } // iterate through all areas for( size_t ia = 0; ia < m_zones.size(); ia++ ) { if( !reportProgress( layer_id * m_zones.size() + ia, B_Cu * m_zones.size(), delta ) ) break; ZONE* zoneRef = m_zones[ia]; if( !zoneRef->IsOnLayer( layer ) ) continue; // If we are testing a single zone, then iterate through all other zones // Otherwise, we have already tested the zone combination for( size_t ia2 = ia + 1; ia2 < m_zones.size(); ia2++ ) { ZONE* zoneToTest = m_zones[ia2]; if( zoneRef == zoneToTest ) continue; // test for same layer if( !zoneToTest->IsOnLayer( layer ) ) continue; // Test for same net if( zoneRef->GetNetCode() == zoneToTest->GetNetCode() && zoneRef->GetNetCode() >= 0 ) continue; // test for different priorities if( zoneRef->GetPriority() != zoneToTest->GetPriority() ) continue; // rule areas may overlap at will if( zoneRef->GetIsRuleArea() || zoneToTest->GetIsRuleArea() ) continue; // Examine a candidate zone: compare zoneToTest to zoneRef // Get clearance used in zone to zone test. auto constraint = m_drcEngine->EvalRulesForItems( CLEARANCE_CONSTRAINT, zoneRef, zoneToTest ); int zone2zoneClearance = constraint.GetValue().Min(); // test for some corners of zoneRef inside zoneToTest for( auto iterator = smoothed_polys[ia].IterateWithHoles(); iterator; iterator++ ) { VECTOR2I currentVertex = *iterator; wxPoint pt( currentVertex.x, currentVertex.y ); if( smoothed_polys[ia2].Contains( currentVertex ) ) { std::shared_ptr drce = DRC_ITEM::Create( DRCE_ZONES_INTERSECT ); drce->SetItems( zoneRef, zoneToTest ); drce->SetViolatingRule( constraint.GetParentRule() ); reportViolation( drce, pt ); } } // test for some corners of zoneToTest inside zoneRef for( auto iterator = smoothed_polys[ia2].IterateWithHoles(); iterator; iterator++ ) { VECTOR2I currentVertex = *iterator; wxPoint pt( currentVertex.x, currentVertex.y ); if( smoothed_polys[ia].Contains( currentVertex ) ) { std::shared_ptr drce = DRC_ITEM::Create( DRCE_ZONES_INTERSECT ); drce->SetItems( zoneToTest, zoneRef ); drce->SetViolatingRule( constraint.GetParentRule() ); reportViolation( drce, pt ); } } // Iterate through all the segments of refSmoothedPoly std::map conflictPoints; for( auto refIt = smoothed_polys[ia].IterateSegmentsWithHoles(); refIt; refIt++ ) { // Build ref segment SEG refSegment = *refIt; // Iterate through all the segments in smoothed_polys[ia2] for( auto testIt = smoothed_polys[ia2].IterateSegmentsWithHoles(); testIt; testIt++ ) { // Build test segment SEG testSegment = *testIt; wxPoint pt; int ax1, ay1, ax2, ay2; ax1 = refSegment.A.x; ay1 = refSegment.A.y; ax2 = refSegment.B.x; ay2 = refSegment.B.y; int bx1, by1, bx2, by2; bx1 = testSegment.A.x; by1 = testSegment.A.y; bx2 = testSegment.B.x; by2 = testSegment.B.y; int d = GetClearanceBetweenSegments( bx1, by1, bx2, by2, 0, ax1, ay1, ax2, ay2, 0, zone2zoneClearance, &pt.x, &pt.y ); if( d < zone2zoneClearance ) { if( conflictPoints.count( pt ) ) conflictPoints[ pt ] = std::min( conflictPoints[ pt ], d ); else conflictPoints[ pt ] = d; } } } for( const std::pair& conflict : conflictPoints ) { int actual = conflict.second; std::shared_ptr drce; if( actual <= 0 ) { drce = DRC_ITEM::Create( DRCE_ZONES_INTERSECT ); } else { drce = DRC_ITEM::Create( DRCE_CLEARANCE ); m_msg.Printf( _( "(%s clearance %s; actual %s)" ), constraint.GetName(), MessageTextFromValue( userUnits(), zone2zoneClearance ), MessageTextFromValue( userUnits(), conflict.second ) ); drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + m_msg ); } drce->SetItems( zoneRef, zoneToTest ); drce->SetViolatingRule( constraint.GetParentRule() ); reportViolation( drce, conflict.first ); } } } } } int DRC_TEST_PROVIDER_COPPER_CLEARANCE::GetNumPhases() const { return 5; } std::set DRC_TEST_PROVIDER_COPPER_CLEARANCE::GetConstraintTypes() const { return { CLEARANCE_CONSTRAINT, HOLE_CLEARANCE_CONSTRAINT }; } namespace detail { static DRC_REGISTER_TEST_PROVIDER dummy; }