/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2007-2014 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 1992-2012 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file ratsnest.cpp * @brief Ratsnets functions. */ #include <fctsys.h> #include <gr_basic.h> #include <common.h> #include <class_drawpanel.h> #include <colors_selection.h> #include <wxBasePcbFrame.h> #include <macros.h> #include <class_board.h> #include <class_module.h> #include <class_track.h> #include <pcbnew.h> #include <minimun_spanning_tree.h> /** * @brief class MIN_SPAN_TREE_PADS (derived from MIN_SPAN_TREE) specializes * the base class to calculate a minimum spanning tree from a list of pads, * and to add this tree as ratsnest to the main ratsnest list. */ class MIN_SPAN_TREE_PADS: public MIN_SPAN_TREE { friend class MIN_SPAN_TREE; public: std::vector <D_PAD*>* m_PadsList; // list of pads: /* these pads are the parents of nodes of the tree. * Each node position is the corresponding pad position. * This pad list is used to evaluate the weight of an edge in tree. * -> edge = link between 2 nodes = links between 2 pads. * -> weight of a link = rectilinear distance between the 2 pads */ public: MIN_SPAN_TREE_PADS(): MIN_SPAN_TREE() { m_PadsList = NULL; } void MSP_Init( std::vector <D_PAD*>* aPadsList ) { m_PadsList = aPadsList; MIN_SPAN_TREE::MSP_Init( (int) m_PadsList->size() ); } /** * Function AddTreeToRatsnest * Adds the current minimum spanning tree as ratsnest items * to the main ratsnest list * @param aRatsnestList = a ratsnest list to add to */ void AddTreeToRatsnest( std::vector<RATSNEST_ITEM>* aRatsnestList ); /** * Function GetWeight * calculates the weight between 2 items * NOTE: The weight between a node and itself should be 0 * @param aItem1 = first item * @param aItem2 = other item * @return the weight between items ( the rectilinear distance ) */ int GetWeight( int aItem1, int aItem2 ); }; void MIN_SPAN_TREE_PADS::AddTreeToRatsnest( std::vector<RATSNEST_ITEM>* aRatsnestList ) { std::vector<D_PAD*>& padsBuffer = *m_PadsList; if( padsBuffer.empty() ) return; int netcode = padsBuffer[0]->GetNetCode(); // Note: to get edges in minimum spanning tree, // the index value 0 is not used: it is just // the entry point of the minimum spanning tree. // The first edge (i.e. rastnest) starts at index 1 for( int ii = 1; ii < m_Size; ii++ ) { // Create the new ratsnest RATSNEST_ITEM net; net.SetNet( netcode ); net.m_Status = CH_ACTIF | CH_VISIBLE; net.m_Length = GetDist(ii); net.m_PadStart = padsBuffer[ii]; net.m_PadEnd = padsBuffer[ GetWhoTo(ii) ]; aRatsnestList->push_back( net ); } } /* Function GetWeight * calculates the weight between 2 items * Here it calculate the rectilinear distance between 2 pads (2 items) * NOTE: The weight between a node and itself should be <=0 * aItem1 and aItem2 are the 2 items * return the rectilinear distance */ int MIN_SPAN_TREE_PADS::GetWeight( int aItem1, int aItem2 ) { // NOTE: The distance (weight) between a node and itself should be 0 // so we add 1 to other distances to be sure we never have 0 // in cases other than a node and itself D_PAD* pad1 = (*m_PadsList)[aItem1]; D_PAD* pad2 = (*m_PadsList)[aItem2]; if( pad1 == pad2 ) return 0; int weight = abs( pad2->GetPosition().x - pad1->GetPosition().x ) + abs( pad2->GetPosition().y - pad1->GetPosition().y ); return weight + 1; } /* Note about the ratsnest computation: * Building the general ratsnest: * For each net, the ratsnest is the set of lines connecting pads, * using the shorter distance * Therefore this problem is well known in graph therory, and sloved * using the "minimum spanning tree". * We use here an algorithm to build the minimum spanning tree known as Prim's algorithm */ /** * Function Compile_Ratsnest * Create the entire board ratsnest. * Must be called after a board change (changes for * pads, footprints or a read netlist ). * @param aDC = the current device context (can be NULL) * @param aDisplayStatus : if true, display the computation results */ void PCB_BASE_FRAME::Compile_Ratsnest( wxDC* aDC, bool aDisplayStatus ) { wxString msg; GetBoard()->m_Status_Pcb = 0; // we want a full ratsnest computation, from the scratch ClearMsgPanel(); // Rebuild the full pads and net info list RecalculateAllTracksNetcode(); if( aDisplayStatus ) { msg.Printf( wxT( " %d" ), m_Pcb->GetPadCount() ); AppendMsgPanel( wxT( "Pads" ), msg, RED ); msg.Printf( wxT( " %d" ), m_Pcb->GetNetCount() ); AppendMsgPanel( wxT( "Nets" ), msg, CYAN ); } /* Compute the full ratsnest * which can be see like all the possible links or logical connections. * some of them are active (no track connected) and others are inactive * (when tracks connect pads) * This full ratsnest is not modified by track editing. * It changes only when a netlist is read, or footprints are modified */ Build_Board_Ratsnest(); // Compute the pad connections due to the existing tracks (physical connections) TestConnections(); /* Compute the active ratsnest, i.e. the unconnected links */ TestForActiveLinksInRatsnest( 0 ); // Redraw the active ratsnest ( if enabled ) if( GetBoard()->IsElementVisible(RATSNEST_VISIBLE) && aDC ) DrawGeneralRatsnest( aDC, 0 ); if( aDisplayStatus ) SetMsgPanel( m_Pcb ); } /* Sort function used by QSORT * Sort pads by net code */ static bool sortByNetcode( const D_PAD* const & ref, const D_PAD* const & item ) { return ref->GetNetCode() < item->GetNetCode(); } /** * Function to compute the full ratsnest * This is the "basic" ratsnest depending only on pads. * * Create the sorted pad list (if necessary) * The active pads (i.e included in a net ) are called nodes * This pad list is sorted by net codes * A ratsnest can be seen as a logical connection. * * Update : * nb_nodes = Active pads count for the board * nb_links = link count for the board (logical connection count) * (there are n-1 links in a net which counting n active pads) . */ void PCB_BASE_FRAME::Build_Board_Ratsnest() { D_PAD* pad; int noconn; m_Pcb->SetUnconnectedNetCount( 0 ); m_Pcb->m_FullRatsnest.clear(); if( m_Pcb->GetPadCount() == 0 ) return; // Created pad list and the net_codes if needed if( (m_Pcb->m_Status_Pcb & NET_CODES_OK) == 0 ) m_Pcb->BuildListOfNets(); for( unsigned ii = 0; ii<m_Pcb->GetPadCount(); ++ii ) { pad = m_Pcb->GetPad( ii ); pad->SetSubRatsnest( 0 ); } if( m_Pcb->GetNodesCount() == 0 ) return; // No useful connections. // Ratsnest computation unsigned current_net_code = 1; // First net code is analyzed. // (net_code = 0 -> no connect) noconn = 0; MIN_SPAN_TREE_PADS min_spanning_tree; for( ; current_net_code < m_Pcb->GetNetCount(); current_net_code++ ) { NETINFO_ITEM* net = m_Pcb->FindNet( current_net_code ); if( !net ) // Should not occur { UTF8 msg = StrPrintf( "%s: error, net %d not found", __func__, current_net_code ); wxMessageBox( msg ); // BTW, it does happen. return; } net->m_RatsnestStartIdx = m_Pcb->GetRatsnestsCount(); min_spanning_tree.MSP_Init( &net->m_PadInNetList ); min_spanning_tree.BuildTree(); min_spanning_tree.AddTreeToRatsnest( &m_Pcb->m_FullRatsnest ); net->m_RatsnestEndIdx = m_Pcb->GetRatsnestsCount(); } m_Pcb->SetUnconnectedNetCount( noconn ); m_Pcb->m_Status_Pcb |= LISTE_RATSNEST_ITEM_OK; // Update the ratsnest display option (visible/invisible) flag for( unsigned ii = 0; ii < m_Pcb->GetRatsnestsCount(); ii++ ) { if( !GetBoard()->IsElementVisible( RATSNEST_VISIBLE ) ) // Clear VISIBLE flag m_Pcb->m_FullRatsnest[ii].m_Status &= ~CH_VISIBLE; } } /** * function DrawGeneralRatsnest * Only ratsnest items with the status bit CH_VISIBLE set are displayed * @param aDC = the current device context (can be NULL) * @param aNetcode: if > 0, Display only the ratsnest relative to the * corresponding net_code */ void PCB_BASE_FRAME::DrawGeneralRatsnest( wxDC* aDC, int aNetcode ) { if( ( m_Pcb->m_Status_Pcb & LISTE_RATSNEST_ITEM_OK ) == 0 ) return; if( ( m_Pcb->m_Status_Pcb & DO_NOT_SHOW_GENERAL_RASTNEST ) ) return; if( aDC == NULL ) return; const int state = CH_VISIBLE | CH_ACTIF; for( unsigned ii = 0; ii < m_Pcb->GetRatsnestsCount(); ii++ ) { RATSNEST_ITEM& item = m_Pcb->m_FullRatsnest[ii]; if( ( item.m_Status & state ) != state ) continue; if( ( aNetcode <= 0 ) || ( aNetcode == item.GetNet() ) ) { item.Draw( m_canvas, aDC, GR_XOR, wxPoint( 0, 0 ) ); } } } /** * Function used by TestForActiveLinksInRatsnest * Function testing the ratsnest between 2 blocks ( of the same net ) * The search is made between pads in block 1 and the others blocks * The block n ( n > 1 ) is merged with block 1 and linked by the smallest ratsnest * between block 1 and the block n (activate the logical connection) * @param aRatsnestBuffer = the buffer to store NETINFO_ITEM* items * @param aNetinfo = the current NETINFO_ITEM for the current net * output: .state member, bit CH_ACTIF of the ratsnest item * @return last subratsnest id in use */ static int tst_links_between_blocks( NETINFO_ITEM* aNetinfo, std::vector<RATSNEST_ITEM>& aRatsnestBuffer ) { int subratsnest_id, min_id; RATSNEST_ITEM* link, * best_link; // Search a link from a block to an other block best_link = NULL; for( unsigned ii = aNetinfo->m_RatsnestStartIdx; ii < aNetinfo->m_RatsnestEndIdx; ii++ ) { link = &aRatsnestBuffer[ii]; // If this link joints 2 pads inside the same block, do nothing // (these pads are already connected) if( link->m_PadStart->GetSubRatsnest() == link->m_PadEnd->GetSubRatsnest() ) continue; // This link joints 2 pads of different blocks: this is a candidate, // but we want to select the shorter link, so use it only if it is shorter // than the previous candidate: if( best_link == NULL ) // no candidate best_link = link; else if( best_link->m_Length > link->m_Length ) // It is a better candidate. best_link = link; } if( best_link == NULL ) return 1; /* At this point we have found a link between 2 different blocks (subratsnest) * we must set its status to ACTIVE and merge the 2 blocks */ best_link->m_Status |= CH_ACTIF; subratsnest_id = best_link->m_PadStart->GetSubRatsnest(); min_id = best_link->m_PadEnd->GetSubRatsnest(); if( min_id > subratsnest_id ) std::swap( min_id, subratsnest_id ); // Merge the 2 blocks in one sub ratsnest: for( unsigned ii = 0; ii < aNetinfo->m_PadInNetList.size(); ii++ ) { if( aNetinfo->m_PadInNetList[ii]->GetSubRatsnest() == subratsnest_id ) { aNetinfo->m_PadInNetList[ii]->SetSubRatsnest( min_id ); } } return subratsnest_id; } /** * Function used by TestForActiveLinksInRatsnest_general * The general ratsnest list must exists because this function explores this ratsnest * Activates (i.e. set the CH_ACTIF flag) the ratsnest links between 2 pads when * at least one pad not already connected (SubRatsnest = 0) * and actives the corresponding link * * @param aFirstItem = starting address for the ratsnest list * @param aLastItem = ending address for the ratsnest list * @param aCurrSubRatsnestId = last sub ratsnest id in use (computed from the track * analysis) * * output: * ratsnest list (status member bit CH_ACTIF set) * and pads linked (m_SubRatsnest value set) * * @return new block number */ static void tst_links_between_pads( int & aCurrSubRatsnestId, RATSNEST_ITEM* aFirstItem, RATSNEST_ITEM* aLastItem ) { for( RATSNEST_ITEM* item = aFirstItem; item < aLastItem; item++ ) { D_PAD* pad_start = item->m_PadStart; D_PAD* pad_end = item->m_PadEnd; /* Update the current SubRatsnest if the 2 pads are not connected : * a new cluster is created and the link activated */ if( (pad_start->GetSubRatsnest() == 0) && (pad_end->GetSubRatsnest() == 0) ) { aCurrSubRatsnestId++; pad_start->SetSubRatsnest( aCurrSubRatsnestId ); pad_end->SetSubRatsnest( aCurrSubRatsnestId ); item->m_Status |= CH_ACTIF; } /* If a pad is already connected to a subratsnest: activate the link * the pad other is merged in the existing subratsnest */ else if( pad_start->GetSubRatsnest() == 0 ) { pad_start->SetSubRatsnest( pad_end->GetSubRatsnest() ); item->m_Status |= CH_ACTIF; } else if( pad_end->GetSubRatsnest() == 0 ) { pad_end->SetSubRatsnest( pad_start->GetSubRatsnest() ); item->m_Status |= CH_ACTIF; } } } /* function TestForActiveLinksInRatsnest * determine the active links inside the full ratsnest * * I used an algorithm inspired by the "Lee algorithm". * The idea is all pads must be connected by a physical track or a logical track * a physical track is the existing track on copper layers. * a logical track is the link that must be activated (visible) if * no track found between 2 pads. * The algorithm explore the existing full ratnest * This is a 2 steps algorithm (executed for each net). * - First: * Initialise for each pad the subratsnest id to its subnet value * explore the full ratnest (relative to the net) and active a link each time at least one pad of * the given link is not connected to an other pad by a track ( subratsnest = 0) * If the 2 pads linked have both the subratsnest id = 0, a new subratsnest value is created * - Second: * explore the full ratnest (relative to the net) and find a link that links * 2 pads having different subratsnest values * Active the link and merge the 2 subratsnest value. * * This is usually fast because the ratsnest is not built here: it is just explored * to see what link must be activated */ void PCB_BASE_FRAME::TestForActiveLinksInRatsnest( int aNetCode ) { RATSNEST_ITEM* rats; D_PAD* pad; NETINFO_ITEM* net; if( m_Pcb->GetPadCount() == 0 ) return; if( (m_Pcb->m_Status_Pcb & LISTE_RATSNEST_ITEM_OK) == 0 ) Build_Board_Ratsnest(); for( int net_code = 1; net_code < (int) m_Pcb->GetNetCount(); net_code++ ) { net = m_Pcb->FindNet( net_code ); wxCHECK_RET( net != NULL, wxString::Format( wxT( "Net code %d not found!" ), net_code ) ); if( aNetCode && (net_code != aNetCode) ) continue; // Create subratsnests id from subnets created by existing tracks: int subratsnest = 0; for( unsigned ip = 0; ip < net->m_PadInNetList.size(); ip++ ) { pad = net->m_PadInNetList[ip]; int subnet = pad->GetSubNet(); pad->SetSubRatsnest( subnet ); subratsnest = std::max( subratsnest, subnet ); } for( unsigned ii = net->m_RatsnestStartIdx; ii < net->m_RatsnestEndIdx; ii++ ) { m_Pcb->m_FullRatsnest[ii].m_Status &= ~CH_ACTIF; } // First pass - activate links for not connected pads rats = &m_Pcb->m_FullRatsnest[0]; tst_links_between_pads( subratsnest, rats + net->m_RatsnestStartIdx, rats + net->m_RatsnestEndIdx ); // Second pass activate links between blocks (Iteration) while( subratsnest > 1 ) { subratsnest = tst_links_between_blocks( net, m_Pcb->m_FullRatsnest ); } } m_Pcb->SetUnconnectedNetCount( 0 ); unsigned cnt = 0; for( unsigned ii = 0; ii < m_Pcb->GetRatsnestsCount(); ii++ ) { if( m_Pcb->m_FullRatsnest[ii].IsActive() ) cnt++; } m_Pcb->SetUnconnectedNetCount( cnt ); } void PCB_BASE_FRAME::build_ratsnest_module( MODULE* aModule ) { // for local ratsnest calculation when moving a footprint: // list of pads to use for this local ratsnets: // this is the list of connected pads of the current module, // and all pads connected to these pads: static std::vector <D_PAD*> localPadList; static unsigned pads_module_count; // node count (node = pad with a net // code) for the footprint being moved static unsigned internalRatsCount; // number of internal links (links // between pads of the module) D_PAD* pad_ref; D_PAD* pad_externe; int current_net_code; int distance; wxPoint pad_pos; // True pad position according to the // current footprint position if( (GetBoard()->m_Status_Pcb & LISTE_PAD_OK) == 0 ) { GetBoard()->m_Status_Pcb = 0; GetBoard()->BuildListOfNets(); } /* Compute the "local" ratsnest if needed (when this footprint starts move) * and the list of external pads to consider, i.e pads in others * footprints which are "connected" to * a pad in the current footprint */ if( (m_Pcb->m_Status_Pcb & RATSNEST_ITEM_LOCAL_OK) == 0 ) { // Compute the "internal" ratsnest, i.e the links between the current // footprint pads localPadList.clear(); m_Pcb->m_LocalRatsnest.clear(); // collect active pads of the module: for( pad_ref = aModule->Pads(); pad_ref; pad_ref = pad_ref->Next() ) { if( pad_ref->GetNetCode() == NETINFO_LIST::UNCONNECTED ) continue; localPadList.push_back( pad_ref ); pad_ref->SetSubRatsnest( 0 ); pad_ref->SetSubNet( 0 ); } pads_module_count = localPadList.size(); if( pads_module_count == 0 ) return; // no connection! sort( localPadList.begin(), localPadList.end(), sortByNetcode ); // Build the list of pads linked to the current footprint pads current_net_code = 0; for( unsigned ii = 0; ii < pads_module_count; ii++ ) { pad_ref = localPadList[ii]; if( pad_ref->GetNetCode() == current_net_code ) continue; // A new net was found, load all pads of others modules members of this net: NETINFO_ITEM* net = pad_ref->GetNet(); if( net == NULL ) //Should not occur { wxMessageBox( wxT( "build_ratsnest_module() error: net not found" ) ); return; } for( unsigned jj = 0; jj < net->m_PadInNetList.size(); jj++ ) { pad_externe = net->m_PadInNetList[jj]; if( pad_externe->GetParent() == aModule ) continue; pad_externe->SetSubRatsnest( 0 ); pad_externe->SetSubNet( 0 ); localPadList.push_back( pad_externe ); } } // Sort the pad list by net_code sort( localPadList.begin() + pads_module_count, localPadList.end(), sortByNetcode ); /* Compute the internal rats nest: * this is the same as general ratsnest, but considers only the current * footprint pads it is therefore not time consuming, and it is made only * once */ current_net_code = localPadList[0]->GetNetCode(); MIN_SPAN_TREE_PADS min_spanning_tree; std::vector<D_PAD*> padsBuffer; // contains pads of only one net for( unsigned ii = 0; ii < pads_module_count; ii++ ) { // Search the end of pad list relative to the current net unsigned jj = ii + 1; for( ; jj <= pads_module_count; jj++ ) { if( jj >= pads_module_count ) break; if( localPadList[jj]->GetNetCode() != current_net_code ) break; } for( unsigned kk = ii; kk < jj; kk++ ) padsBuffer.push_back( localPadList[kk] ); min_spanning_tree.MSP_Init( &padsBuffer ); min_spanning_tree.BuildTree(); min_spanning_tree.AddTreeToRatsnest( &m_Pcb->m_LocalRatsnest ); padsBuffer.clear(); ii = jj; if( ii < localPadList.size() ) current_net_code = localPadList[ii]->GetNetCode(); } internalRatsCount = m_Pcb->m_LocalRatsnest.size(); // set the flag LOCAL_RATSNEST_ITEM of the ratsnest status: for( unsigned ii = 0; ii < m_Pcb->m_LocalRatsnest.size(); ii++ ) m_Pcb->m_LocalRatsnest[ii].m_Status = LOCAL_RATSNEST_ITEM; m_Pcb->m_Status_Pcb |= RATSNEST_ITEM_LOCAL_OK; } // End of internal ratsnest build /* This section computes the "external" ratsnest: it is done when the * footprint position changes * * This section search: * for each current module pad the nearest neighbor external pad (of * course for the same net code). * For each current footprint cluster of pad (pads having the same net * code), * we search the smaller rats nest. * so, for each net, only one rats nest item is created */ RATSNEST_ITEM local_rats; local_rats.m_Length = INT_MAX; local_rats.m_Status = 0; bool addRats = false; // Erase external ratsnest items: if( internalRatsCount < m_Pcb->m_LocalRatsnest.size() ) m_Pcb->m_LocalRatsnest.erase( m_Pcb->m_LocalRatsnest.begin() + internalRatsCount, m_Pcb->m_LocalRatsnest.end() ); current_net_code = localPadList[0]->GetNetCode(); for( unsigned ii = 0; ii < pads_module_count; ii++ ) { pad_ref = localPadList[ii]; if( pad_ref->GetNetCode() != current_net_code ) { // if needed, creates a new ratsnest for the old net if( addRats ) { m_Pcb->m_LocalRatsnest.push_back( local_rats ); } addRats = false; current_net_code = pad_ref->GetNetCode(); local_rats.m_Length = INT_MAX; } pad_pos = pad_ref->GetPosition() - g_Offset_Module; // Search the nearest external pad of this current pad for( unsigned jj = pads_module_count; jj < localPadList.size(); jj++ ) { pad_externe = localPadList[jj]; // we search pads having the same net code if( pad_externe->GetNetCode() < pad_ref->GetNetCode() ) continue; if( pad_externe->GetNetCode() > pad_ref->GetNetCode() ) // pads are sorted by net code break; distance = abs( pad_externe->GetPosition().x - pad_pos.x ) + abs( pad_externe->GetPosition().y - pad_pos.y ); if( distance < local_rats.m_Length ) { local_rats.m_PadStart = pad_ref; local_rats.m_PadEnd = pad_externe; local_rats.SetNet( pad_ref->GetNetCode() ); local_rats.m_Length = distance; local_rats.m_Status = 0; addRats = true; } } } if( addRats ) // Ensure the last created rats nest item is stored in buffer m_Pcb->m_LocalRatsnest.push_back( local_rats ); } void PCB_BASE_FRAME::TraceModuleRatsNest( wxDC* DC ) { if( DC == NULL ) return; if( ( m_Pcb->m_Status_Pcb & RATSNEST_ITEM_LOCAL_OK ) == 0 ) return; EDA_COLOR_T tmpcolor = g_ColorsSettings.GetItemColor(RATSNEST_VISIBLE); for( unsigned ii = 0; ii < m_Pcb->m_LocalRatsnest.size(); ii++ ) { RATSNEST_ITEM* rats = &m_Pcb->m_LocalRatsnest[ii]; if( rats->m_Status & LOCAL_RATSNEST_ITEM ) { g_ColorsSettings.SetItemColor(RATSNEST_VISIBLE, YELLOW); rats->Draw( m_canvas, DC, GR_XOR, g_Offset_Module ); } else { g_ColorsSettings.SetItemColor(RATSNEST_VISIBLE, tmpcolor); wxPoint tmp = rats->m_PadStart->GetPosition(); rats->m_PadStart->SetPosition( tmp - g_Offset_Module ); rats->Draw( m_canvas, DC, GR_XOR, wxPoint( 0, 0 ) ); rats->m_PadStart->SetPosition( tmp ); } } g_ColorsSettings.SetItemColor( RATSNEST_VISIBLE, tmpcolor ); } /* * PCB_BASE_FRAME::BuildAirWiresTargetsList and * PCB_BASE_FRAME::TraceAirWiresToTargets * are 2 function to show the near connecting points when * a new track is created, by displaying g_MaxLinksShowed airwires * between the on grid mouse cursor and these connecting points * during the creation of a track */ /* Buffer to store pads coordinates when creating a track. * these pads are members of the net * and when the mouse is moved, the g_MaxLinksShowed links to neighbors are * drawn */ static std::vector <wxPoint> s_TargetsLocations; static wxPoint s_CursorPos; // Coordinate of the moving point (mouse cursor and // end of current track segment) /* Used by BuildAirWiresTargetsList(): sort function by link length * (rectilinear distance between s_CursorPos and item pos) */ static bool sort_by_distance( const wxPoint& ref, const wxPoint& compare ) { wxPoint deltaref = ref - s_CursorPos; // relative coordinate of ref wxPoint deltacmp = compare - s_CursorPos; // relative coordinate of compare // rectilinear distance between ref and s_CursorPos: int lengthref = abs( deltaref.x ) + abs( deltaref.y ); // rectilinear distance between compare and s_CursorPos: int lengthcmp = abs( deltacmp.x ) + abs( deltacmp.y ); return lengthref < lengthcmp; } static bool sort_by_point( const wxPoint& ref, const wxPoint& compare ) { if( ref.x == compare.x ) return ref.y < compare.y; return ref.x < compare.x; } /* Function BuildAirWiresTargetsList * Build a list of candidates that can be a coonection point * when a track is started. * This functions prepares data to show airwires to nearest connecting points (pads) * from the current new track to candidates during track creation */ void PCB_BASE_FRAME::BuildAirWiresTargetsList( BOARD_CONNECTED_ITEM* aItemRef, const wxPoint& aPosition, bool aInit ) { if( ( ( m_Pcb->m_Status_Pcb & LISTE_RATSNEST_ITEM_OK ) == 0 ) || ( ( m_Pcb->m_Status_Pcb & LISTE_PAD_OK ) == 0 ) || ( ( m_Pcb->m_Status_Pcb & NET_CODES_OK ) == 0 ) ) { s_TargetsLocations.clear(); return; } s_CursorPos = aPosition; // needed for sort_by_distance if( aInit ) { s_TargetsLocations.clear(); if( aItemRef == NULL ) return; int net_code = aItemRef->GetNetCode(); int subnet = aItemRef->GetSubNet(); if( net_code <= 0 ) return; NETINFO_ITEM* net = m_Pcb->FindNet( net_code ); if( net == NULL ) // Should not occur { wxMessageBox( wxT( "BuildAirWiresTargetsList() error: net not found" ) ); return; } // Create a list of pads candidates ( pads not already connected to the // current track ): for( unsigned ii = 0; ii < net->m_PadInNetList.size(); ii++ ) { D_PAD* pad = net->m_PadInNetList[ii]; if( pad == aItemRef ) continue; if( !pad->GetSubNet() || (pad->GetSubNet() != subnet) ) s_TargetsLocations.push_back( pad->GetPosition() ); } // Create a list of tracks ends candidates, not already connected to the // current track: for( TRACK* track = m_Pcb->m_Track; track; track = track->Next() ) { if( track->GetNetCode() < net_code ) continue; if( track->GetNetCode() > net_code ) break; if( !track->GetSubNet() || (track->GetSubNet() != subnet) ) { if( aPosition != track->GetStart() ) s_TargetsLocations.push_back( track->GetStart() ); if( aPosition != track->GetEnd() && track->GetStart() != track->GetEnd() ) s_TargetsLocations.push_back( track->GetEnd() ); } } // Remove duplicate targets, using the C++ unique algorithm sort( s_TargetsLocations.begin(), s_TargetsLocations.end(), sort_by_point ); std::vector< wxPoint >::iterator it = unique( s_TargetsLocations.begin(), s_TargetsLocations.end() ); // Using the C++ unique algorithm only moves the duplicate entries to the end of // of the array. This removes the duplicate entries from the array. s_TargetsLocations.resize( it - s_TargetsLocations.begin() ); } // end if Init // in all cases, sort by distances: sort( s_TargetsLocations.begin(), s_TargetsLocations.end(), sort_by_distance ); } void PCB_BASE_FRAME::TraceAirWiresToTargets( wxDC* aDC ) { if( aDC == NULL ) return; if( s_TargetsLocations.size() == 0 ) return; GRSetDrawMode( aDC, GR_XOR ); DISPLAY_OPTIONS* displ_opts = (DISPLAY_OPTIONS*)GetDisplayOptions(); for( int ii = 0; ii < (int) s_TargetsLocations.size(); ii++ ) { if( ii >= displ_opts->m_MaxLinksShowed ) break; GRLine( m_canvas->GetClipBox(), aDC, s_CursorPos, s_TargetsLocations[ii], 0, YELLOW ); } }