//TITLE // // R-TREES: A DYNAMIC INDEX STRUCTURE FOR SPATIAL SEARCHING // //DESCRIPTION // // A C++ templated version of the RTree algorithm. // For more information please read the comments in RTree.h // //AUTHORS // // * 1983 Original algorithm and test code by Antonin Guttman and Michael Stonebraker, UC Berkely // * 1994 ANCI C ported from original test code by Melinda Green - melinda@superliminal.com // * 1995 Sphere volume fix for degeneracy problem submitted by Paul Brook // * 2004 Templated C++ port by Greg Douglas // * 2013 CERN (www.cern.ch) // * 2020 KiCad Developers - Add std::iterator support for searching // * 2020 KiCad Developers - Add container nearest neighbor based on Hjaltason & Samet // * 2022 KiCad Developers - Slight optimizations in RectSphericalVolume // /* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2020 KiCad Developers, see AUTHORS.txt for contributors. * Copyright (C) 2013 CERN * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 3 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-3.0.html * or you may search the http://www.gnu.org website for the version 3 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifndef RTREE_H #define RTREE_H // NOTE This file compiles under MSVC 6 SP5 and MSVC .Net 2003 it may not work on other compilers without modification. // NOTE These next few lines may be win32 specific, you may need to modify them to compile on other platform #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG #define ASSERT assert // RTree uses ASSERT( condition ) #else #define ASSERT( _x ) #endif // // RTree.h // #define RTREE_TEMPLATE template #define RTREE_SEARCH_TEMPLATE template #define RTREE_QUAL RTree #define RTREE_SEARCH_QUAL RTree #define RTREE_DONT_USE_MEMPOOLS // This version does not contain a fixed memory allocator, fill in lines with EXAMPLE to implement one. #define RTREE_USE_SPHERICAL_VOLUME // Better split classification, may be slower on some systems // Fwd decl class RTFileStream; // File I/O helper class, look below for implementation and notes. /// \class RTree /// Implementation of RTree, a multidimensional bounding rectangle tree. /// Example usage: For a 3-dimensional tree use RTree myTree; /// /// This modified, templated C++ version by Greg Douglas at Auran (http://www.auran.com) /// /// DATATYPE Referenced data, should be int, void*, obj* etc. no larger than sizeof and simple type /// ELEMTYPE Type of element such as int or float /// NUMDIMS Number of dimensions such as 2 or 3 /// ELEMTYPEREAL Type of element that allows fractional and large values such as float or double, for use in volume calcs /// /// NOTES: Inserting and removing data requires the knowledge of its constant Minimal Bounding Rectangle. /// This version uses new/delete for nodes, I recommend using a fixed size allocator for efficiency. /// Instead of using a callback function for returned results, I recommend and efficient pre-sized, grow-only memory /// array similar to MFC CArray or STL Vector for returning search query result. /// template class RTree { protected: struct Node; // Fwd decl. Used by other internal structs and iterator public: /// Minimal bounding rectangle (n-dimensional) struct Rect { ELEMTYPE m_min[NUMDIMS]; ///< Min dimensions of bounding box ELEMTYPE m_max[NUMDIMS]; ///< Max dimensions of bounding box }; // These constant must be declared after Branch and before Node struct // Stuck up here for MSVC 6 compiler. NSVC .NET 2003 is much happier. enum { MAXNODES = TMAXNODES, ///< Max elements in node MINNODES = TMINNODES ///< Min elements in node }; struct Statistics { int maxDepth; int avgDepth; int maxNodeLoad; int avgNodeLoad; int totalItems; }; public: RTree(); virtual ~RTree(); /// Insert entry /// \param a_min Min of bounding rect /// \param a_max Max of bounding rect /// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed. void Insert( const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId ); /// Remove entry /// \param a_min Min of bounding rect /// \param a_max Max of bounding rect /// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed. /// \return 1 if record not found, 0 if success. bool Remove( const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId ); /// Find all within search rectangle /// \param a_min Min of search bounding rect /// \param a_max Max of search bounding rect /// \param a_callback Callback function to return result. Callback should return 'true' to continue searching /// \return Returns the number of entries found int Search( const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], std::function a_callback ) const; /// Find all within search rectangle /// \param a_min Min of search bounding rect /// \param a_max Max of search bounding rect /// \param a_callback Callback function to return result. Callback should return 'true' to continue searching /// \param aFinished This is set to true if the search completed and false if it was interupted /// \return Returns the number of entries found int Search( const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], std::function a_callback, bool& aFinished ) const; template int Search( const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], VISITOR& a_visitor ) const { #ifdef _DEBUG for( int index = 0; index < NUMDIMS; ++index ) { ASSERT( a_min[index] <= a_max[index] ); } #endif // _DEBUG Rect rect; for( int axis = 0; axis < NUMDIMS; ++axis ) { rect.m_min[axis] = a_min[axis]; rect.m_max[axis] = a_max[axis]; } // NOTE: May want to return search result another way, perhaps returning the number of found elements here. int cnt = 0; Search( m_root, &rect, a_visitor, cnt ); return cnt; } /// Calculate Statistics Statistics CalcStats(); /// Remove all entries from tree void RemoveAll(); /// Count the data elements in this container. This is slow as no internal counter is maintained. int Count() const; /// Load tree contents from file bool Load( const char* a_fileName ); /// Load tree contents from stream bool Load( RTFileStream& a_stream ) const; /// Save tree contents to file bool Save( const char* a_fileName ); /// Save tree contents to stream bool Save( RTFileStream& a_stream ) const; /** * Gets an ordered vector of the nearest data elements to a specified point * @param aPoint coordinate to measure against * @param aTerminate Callback routine to check when we have gathered sufficient elements * @param aFilter Callback routine to remove specific elements from the query results * @param aSquaredDist Callback routine to measure the distance from the point to the data element * @return vector of matching elements and their distance to the point */ std::vector> NearestNeighbors( const ELEMTYPE aPoint[NUMDIMS], std::function aTerminate, std::function aFilter, std::function aSquaredDist ) const; public: /// Iterator is not remove safe. class Iterator { private: enum { MAX_STACK = 32 }; // Max stack size. Allows almost n^32 where n is number of branches in node struct StackElement { Node* m_node; int m_branchIndex; }; public: typedef std::forward_iterator_tag iterator_category; typedef DATATYPE value_type; typedef ptrdiff_t difference_type; typedef DATATYPE* pointer; typedef DATATYPE& reference; public: Iterator() : m_stack( {} ), m_tos( 0 ) { for( int i = 0; i < NUMDIMS; ++i ) { m_rect.m_min[i] = std::numeric_limits::min(); m_rect.m_max[i] = std::numeric_limits::max(); } } Iterator( const Rect& aRect ) : m_stack( {} ), m_tos( 0 ), m_rect( aRect ) { } ~Iterator() { } /// Is iterator pointing to valid data constexpr bool IsNotNull() const { return m_tos > 0; } /// Access the current data element. Caller must be sure iterator is not NULL first. DATATYPE& operator*() { ASSERT( IsNotNull() ); StackElement& curTos = m_stack[m_tos - 1]; return curTos.m_node->m_branch[curTos.m_branchIndex].m_data; } /// Access the current data element. Caller must be sure iterator is not NULL first. const DATATYPE& operator*() const { ASSERT( IsNotNull() ); StackElement& curTos = m_stack[m_tos - 1]; return curTos.m_node->m_branch[curTos.m_branchIndex].m_data; } DATATYPE* operator->() { ASSERT( IsNotNull() ); StackElement& curTos = m_stack[m_tos - 1]; return &( curTos.m_node->m_branch[curTos.m_branchIndex].m_data ); } /// Prefix ++ operator Iterator& operator++() { FindNextData(); return *this; } /// Postfix ++ operator Iterator operator++( int ) { Iterator retval = *this; FindNextData(); return retval; } bool operator==( const Iterator& rhs ) const { return ( ( m_tos <= 0 && rhs.m_tos <= 0 ) || ( m_tos == rhs.m_tos && m_stack[m_tos].m_node == rhs.m_stack[m_tos].m_node && m_stack[m_tos].m_branchIndex == rhs.m_stack[m_tos].m_branchIndex ) ); } bool operator!=( const Iterator& rhs ) const { return ( ( m_tos > 0 || rhs.m_tos > 0 ) && ( m_tos != rhs.m_tos || m_stack[m_tos].m_node != rhs.m_stack[m_tos].m_node || m_stack[m_tos].m_branchIndex != rhs.m_stack[m_tos].m_branchIndex ) ); } private: /// Find the next data element in the tree (For internal use only) void FindNextData() { while( m_tos > 0 ) { StackElement curTos = Pop(); int nextBranch = curTos.m_branchIndex + 1; if( curTos.m_node->IsLeaf() ) { // Keep walking through siblings until we find an overlapping leaf for( int i = nextBranch; i < curTos.m_node->m_count; i++ ) { if( RTree::Overlap( &m_rect, &curTos.m_node->m_branch[i].m_rect ) ) { Push( curTos.m_node, i ); return; } } // No more data, so it will fall back to previous level } else { // Look for an overlapping sibling that we can use as the fall-back node // when we've iterated down the current branch for( int i = nextBranch; i < curTos.m_node->m_count; i++ ) { if( RTree::Overlap( &m_rect, &curTos.m_node->m_branch[i].m_rect ) ) { Push( curTos.m_node, i ); break; } } Node* nextLevelnode = curTos.m_node->m_branch[curTos.m_branchIndex].m_child; // Since cur node is not a leaf, push first of next level, // zero-th branch to get deeper into the tree Push( nextLevelnode, 0 ); // If the branch is a leaf, and it overlaps, then break with the current data // Otherwise, we allow it to seed our next iteration as it may have siblings that // do overlap if( nextLevelnode->IsLeaf() && RTree::Overlap( &m_rect, &nextLevelnode->m_branch[0].m_rect ) ) return; } } } /// Push node and branch onto iteration stack (For internal use only) void Push( Node* a_node, int a_branchIndex ) { m_stack[m_tos].m_node = a_node; m_stack[m_tos].m_branchIndex = a_branchIndex; ++m_tos; ASSERT( m_tos <= MAX_STACK ); } /// Pop element off iteration stack (For internal use only) StackElement& Pop() { ASSERT( m_tos > 0 ); --m_tos; return m_stack[m_tos]; } std::array m_stack; ///< Stack for iteration int m_tos; ///< Top Of Stack index Rect m_rect; ///< Search rectangle friend class RTree; // Allow hiding of non-public functions while allowing manipulation by logical owner }; using iterator = Iterator; using const_iterator = const Iterator; iterator begin( const Rect& aRect ) const { iterator retval( aRect ); if( !m_root->m_count ) return retval; retval.Push( m_root, 0 ); // If the first leaf matches, return the root pointer, otherwise, // increment to the first match or empty if none. if( m_root->IsLeaf() && Overlap( &aRect, &m_root->m_branch[0].m_rect ) ) return retval; ++retval; return retval; } iterator begin() const { Rect full_rect; std::fill_n( full_rect.m_min, NUMDIMS, INT_MIN ); std::fill_n( full_rect.m_max, NUMDIMS, INT_MAX ); return begin( full_rect ); } iterator end() const { iterator retval; return retval; } iterator end( const Rect& aRect ) const { return end(); } protected: /// May be data or may be another subtree /// The parents level determines this. /// If the parents level is 0, then this is data struct Branch { Rect m_rect; ///< Bounds union { Node* m_child; ///< Child node DATATYPE m_data; ///< Data Id or Ptr }; }; /// Node for each branch level struct Node { constexpr bool IsInternalNode() const { return m_level > 0; } // Not a leaf, but a internal node constexpr bool IsLeaf() const { return m_level == 0; } // A leaf, contains data int m_count; ///< Count int m_level; ///< Leaf is zero, others positive Branch m_branch[MAXNODES]; ///< Branch }; /// A link list of nodes for reinsertion after a delete operation struct ListNode { ListNode* m_next; ///< Next in list Node* m_node; ///< Node }; /// Variables for finding a split partition struct PartitionVars { int m_partition[MAXNODES + 1]; int m_total; int m_minFill; bool m_taken[MAXNODES + 1]; int m_count[2]; Rect m_cover[2]; ELEMTYPEREAL m_area[2]; Branch m_branchBuf[MAXNODES + 1]; int m_branchCount; Rect m_coverSplit; ELEMTYPEREAL m_coverSplitArea; }; /// Data structure used for Nearest Neighbor search implementation struct NNNode { Branch m_branch; ELEMTYPE minDist; bool isLeaf; inline bool operator<(const NNNode &other) const { /// This is reversed on purpose to use std::priority_queue return other.minDist < minDist; } }; Node* AllocNode() const; void FreeNode( Node* a_node ) const; void InitNode( Node* a_node ) const; void InitRect( Rect* a_rect ) const; bool InsertRectRec( const Rect* a_rect, const DATATYPE& a_id, Node* a_node, Node** a_newNode, int a_level ) const; bool InsertRect( const Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level ) const; Rect NodeCover( Node* a_node ) const; bool AddBranch( const Branch* a_branch, Node* a_node, Node** a_newNode ) const; void DisconnectBranch( Node* a_node, int a_index ) const; int PickBranch( const Rect* a_rect, Node* a_node ) const; Rect CombineRect( const Rect* a_rectA, const Rect* a_rectB ) const; void SplitNode( Node* a_node, const Branch* a_branch, Node** a_newNode ) const; ELEMTYPEREAL RectSphericalVolume( const Rect* a_rect ) const; ELEMTYPEREAL RectVolume( const Rect* a_rect ) const; ELEMTYPEREAL CalcRectVolume( const Rect* a_rect ) const; void GetBranches( Node* a_node, const Branch* a_branch, PartitionVars* a_parVars ) const; void ChoosePartition( PartitionVars* a_parVars, int a_minFill ) const; void LoadNodes( Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars ) const; void InitParVars( PartitionVars* a_parVars, int a_maxRects, int a_minFill ) const; void PickSeeds( PartitionVars* a_parVars ) const; void Classify( int a_index, int a_group, PartitionVars* a_parVars ) const; bool RemoveRect( const Rect* a_rect, const DATATYPE& a_id, Node** a_root ) const; bool RemoveRectRec( const Rect* a_rect, const DATATYPE& a_id, Node* a_node, ListNode** a_listNode ) const; ListNode* AllocListNode() const; void FreeListNode( ListNode* a_listNode ) const; static bool Overlap( const Rect* a_rectA, const Rect* a_rectB ); void ReInsert( Node* a_node, ListNode** a_listNode ) const; ELEMTYPE MinDist( const ELEMTYPE a_point[NUMDIMS], const Rect& a_rect ) const; bool Search( const Node* a_node, const Rect* a_rect, int& a_foundCount, std::function a_callback ) const; template bool Search( const Node* a_node, const Rect* a_rect, VISITOR& a_visitor, int& a_foundCount ) const { ASSERT( a_node ); ASSERT( a_node->m_level >= 0 ); ASSERT( a_rect ); if( a_node->IsInternalNode() ) // This is an internal node in the tree { for( int index = 0; index < a_node->m_count; ++index ) { if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) ) { if( !Search( a_node->m_branch[index].m_child, a_rect, a_visitor, a_foundCount ) ) { return false; // Don't continue searching } } } } else // This is a leaf node { for( int index = 0; index < a_node->m_count; ++index ) { if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) ) { const DATATYPE& id = a_node->m_branch[index].m_data; if( !a_visitor( id ) ) return false; a_foundCount++; } } } return true; // Continue searching } void RemoveAllRec( Node* a_node ) const; void Reset() const; void CountRec( const Node* a_node, int& a_count ) const; bool SaveRec( const Node* a_node, RTFileStream& a_stream ) const; bool LoadRec( const Node* a_node, RTFileStream& a_stream ) const; Node* m_root; ///< Root of tree ELEMTYPEREAL m_unitSphereVolume; ///< Unit sphere constant for required number of dimensions }; // Because there is not stream support, this is a quick and dirty file I/O helper. // Users will likely replace its usage with a Stream implementation from their favorite API. class RTFileStream { FILE* m_file; public: RTFileStream() { m_file = NULL; } ~RTFileStream() { Close(); } bool OpenRead( const char* a_fileName ) { m_file = std::fopen( a_fileName, "rb" ); if( !m_file ) { return false; } return true; } bool OpenWrite( const char* a_fileName ) { m_file = std::fopen( a_fileName, "wb" ); if( !m_file ) { return false; } return true; } void Close() { if( m_file ) { std::fclose( m_file ); m_file = NULL; } } template size_t Write( const TYPE& a_value ) { ASSERT( m_file ); return std::fwrite( (void*) &a_value, sizeof(a_value), 1, m_file ); } template size_t WriteArray( const TYPE* a_array, int a_count ) { ASSERT( m_file ); return std::fwrite( (void*) a_array, sizeof(TYPE) * a_count, 1, m_file ); } template size_t Read( TYPE& a_value ) { ASSERT( m_file ); return std::fread( (void*) &a_value, sizeof(a_value), 1, m_file ); } template size_t ReadArray( TYPE* a_array, int a_count ) { ASSERT( m_file ); return std::fread( (void*) a_array, sizeof(TYPE) * a_count, 1, m_file ); } }; RTREE_TEMPLATE RTREE_QUAL::RTree() { ASSERT( MAXNODES > MINNODES ); ASSERT( MINNODES > 0 ); // We only support machine word size simple data type eg. integer index or object pointer. // Since we are storing as union with non data branch ASSERT( sizeof(DATATYPE) == sizeof(void*) || sizeof(DATATYPE) == sizeof(int) ); // Precomputed volumes of the unit spheres for the first few dimensions const float UNIT_SPHERE_VOLUMES[] = { 0.000000f, 2.000000f, 3.141593f, // Dimension 0,1,2 4.188790f, 4.934802f, 5.263789f, // Dimension 3,4,5 5.167713f, 4.724766f, 4.058712f, // Dimension 6,7,8 3.298509f, 2.550164f, 1.884104f, // Dimension 9,10,11 1.335263f, 0.910629f, 0.599265f, // Dimension 12,13,14 0.381443f, 0.235331f, 0.140981f, // Dimension 15,16,17 0.082146f, 0.046622f, 0.025807f, // Dimension 18,19,20 }; m_root = AllocNode(); m_root->m_level = 0; m_unitSphereVolume = (ELEMTYPEREAL) UNIT_SPHERE_VOLUMES[NUMDIMS]; } RTREE_TEMPLATE RTREE_QUAL::~RTree() { Reset(); // Free, or reset node memory } RTREE_TEMPLATE void RTREE_QUAL::Insert( const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId ) { #ifdef _DEBUG for( int index = 0; index a_callback ) const { #ifdef _DEBUG for( int index = 0; index < NUMDIMS; ++index ) { ASSERT( a_min[index] <= a_max[index] ); } #endif // _DEBUG Rect rect; for( int axis = 0; axis < NUMDIMS; ++axis ) { rect.m_min[axis] = a_min[axis]; rect.m_max[axis] = a_max[axis]; } // NOTE: May want to return search result another way, perhaps returning the number of found elements here. int foundCount = 0; Search( m_root, &rect, foundCount, a_callback ); return foundCount; } RTREE_TEMPLATE int RTREE_QUAL::Search( const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], std::function a_callback, bool& aFinished ) const { #ifdef _DEBUG for( int index = 0; index < NUMDIMS; ++index ) { ASSERT( a_min[index] <= a_max[index] ); } #endif // _DEBUG Rect rect; for( int axis = 0; axis < NUMDIMS; ++axis ) { rect.m_min[axis] = a_min[axis]; rect.m_max[axis] = a_max[axis]; } // NOTE: May want to return search result another way, perhaps returning the number of found elements here. int foundCount = 0; aFinished = Search( m_root, &rect, foundCount, a_callback ); return foundCount; } RTREE_TEMPLATE std::vector> RTREE_QUAL::NearestNeighbors( const ELEMTYPE a_point[NUMDIMS], std::function aTerminate, std::function aFilter, std::function aSquaredDist ) const { std::vector> result; std::priority_queue search_q; for( int i = 0; i < m_root->m_count; ++i ) { if( m_root->IsLeaf() ) { search_q.push( NNNode{ m_root->m_branch[i], aSquaredDist( a_point, m_root->m_branch[i].m_data ), m_root->IsLeaf() }); } else { search_q.push( NNNode{ m_root->m_branch[i], MinDist(a_point, m_root->m_branch[i].m_rect), m_root->IsLeaf() }); } } while( !search_q.empty() ) { const NNNode curNode = search_q.top(); if( aTerminate( result.size(), curNode.minDist ) ) break; search_q.pop(); if( curNode.isLeaf ) { if( aFilter( curNode.m_branch.m_data ) ) result.emplace_back( curNode.minDist, curNode.m_branch.m_data ); } else { Node* node = curNode.m_branch.m_child; for( int i = 0; i < node->m_count; ++i ) { NNNode newNode; newNode.isLeaf = node->IsLeaf(); newNode.m_branch = node->m_branch[i]; if( newNode.isLeaf ) newNode.minDist = aSquaredDist( a_point, newNode.m_branch.m_data ); else newNode.minDist = this->MinDist( a_point, node->m_branch[i].m_rect ); search_q.push( newNode ); } } } return result; } RTREE_TEMPLATE int RTREE_QUAL::Count() const { int count = 0; CountRec( m_root, count ); return count; } RTREE_TEMPLATE void RTREE_QUAL::CountRec( const Node* a_node, int& a_count ) const { if( a_node->IsInternalNode() ) // not a leaf node { for( int index = 0; index < a_node->m_count; ++index ) { CountRec( a_node->m_branch[index].m_child, a_count ); } } else // A leaf node { a_count += a_node->m_count; } } RTREE_TEMPLATE bool RTREE_QUAL::Load( const char* a_fileName ) { RemoveAll(); // Clear existing tree RTFileStream stream; if( !stream.OpenRead( a_fileName ) ) { return false; } bool result = Load( stream ); stream.Close(); return result; } RTREE_TEMPLATE bool RTREE_QUAL::Load( RTFileStream& a_stream ) const { // Write some kind of header int _dataFileId = ('R' << 0) | ('T' << 8) | ('R' << 16) | ('E' << 24); int _dataSize = sizeof(DATATYPE); int _dataNumDims = NUMDIMS; int _dataElemSize = sizeof(ELEMTYPE); int _dataElemRealSize = sizeof(ELEMTYPEREAL); int _dataMaxNodes = TMAXNODES; int _dataMinNodes = TMINNODES; int dataFileId = 0; int dataSize = 0; int dataNumDims = 0; int dataElemSize = 0; int dataElemRealSize = 0; int dataMaxNodes = 0; int dataMinNodes = 0; a_stream.Read( dataFileId ); a_stream.Read( dataSize ); a_stream.Read( dataNumDims ); a_stream.Read( dataElemSize ); a_stream.Read( dataElemRealSize ); a_stream.Read( dataMaxNodes ); a_stream.Read( dataMinNodes ); bool result = false; // Test if header was valid and compatible if( (dataFileId == _dataFileId) && (dataSize == _dataSize) && (dataNumDims == _dataNumDims) && (dataElemSize == _dataElemSize) && (dataElemRealSize == _dataElemRealSize) && (dataMaxNodes == _dataMaxNodes) && (dataMinNodes == _dataMinNodes) ) { // Recursively load tree result = LoadRec( m_root, a_stream ); } return result; } RTREE_TEMPLATE bool RTREE_QUAL::LoadRec( const Node* a_node, RTFileStream& a_stream ) const { a_stream.Read( a_node->m_level ); a_stream.Read( a_node->m_count ); if( a_node->IsInternalNode() ) // not a leaf node { for( int index = 0; index < a_node->m_count; ++index ) { const Branch* curBranch = &a_node->m_branch[index]; a_stream.ReadArray( curBranch->m_rect.m_min, NUMDIMS ); a_stream.ReadArray( curBranch->m_rect.m_max, NUMDIMS ); curBranch->m_child = AllocNode(); LoadRec( curBranch->m_child, a_stream ); } } else // A leaf node { for( int index = 0; index < a_node->m_count; ++index ) { const Branch* curBranch = &a_node->m_branch[index]; a_stream.ReadArray( curBranch->m_rect.m_min, NUMDIMS ); a_stream.ReadArray( curBranch->m_rect.m_max, NUMDIMS ); a_stream.Read( curBranch->m_data ); } } return true; // Should do more error checking on I/O operations } RTREE_TEMPLATE bool RTREE_QUAL::Save( const char* a_fileName ) { RTFileStream stream; if( !stream.OpenWrite( a_fileName ) ) { return false; } bool result = Save( stream ); stream.Close(); return result; } RTREE_TEMPLATE bool RTREE_QUAL::Save( RTFileStream& a_stream ) const { // Write some kind of header int dataFileId = ('R' << 0) | ('T' << 8) | ('R' << 16) | ('E' << 24); int dataSize = sizeof(DATATYPE); int dataNumDims = NUMDIMS; int dataElemSize = sizeof(ELEMTYPE); int dataElemRealSize = sizeof(ELEMTYPEREAL); int dataMaxNodes = TMAXNODES; int dataMinNodes = TMINNODES; a_stream.Write( dataFileId ); a_stream.Write( dataSize ); a_stream.Write( dataNumDims ); a_stream.Write( dataElemSize ); a_stream.Write( dataElemRealSize ); a_stream.Write( dataMaxNodes ); a_stream.Write( dataMinNodes ); // Recursively save tree bool result = SaveRec( m_root, a_stream ); return result; } RTREE_TEMPLATE bool RTREE_QUAL::SaveRec( const Node* a_node, RTFileStream& a_stream ) const { a_stream.Write( a_node->m_level ); a_stream.Write( a_node->m_count ); if( a_node->IsInternalNode() ) // not a leaf node { for( int index = 0; index < a_node->m_count; ++index ) { const Branch* curBranch = &a_node->m_branch[index]; a_stream.WriteArray( curBranch->m_rect.m_min, NUMDIMS ); a_stream.WriteArray( curBranch->m_rect.m_max, NUMDIMS ); SaveRec( curBranch->m_child, a_stream ); } } else // A leaf node { for( int index = 0; index < a_node->m_count; ++index ) { const Branch* curBranch = &a_node->m_branch[index]; a_stream.WriteArray( curBranch->m_rect.m_min, NUMDIMS ); a_stream.WriteArray( curBranch->m_rect.m_max, NUMDIMS ); a_stream.Write( curBranch->m_data ); } } return true; // Should do more error checking on I/O operations } RTREE_TEMPLATE void RTREE_QUAL::RemoveAll() { // Delete all existing nodes Reset(); m_root = AllocNode(); m_root->m_level = 0; } RTREE_TEMPLATE void RTREE_QUAL::Reset() const { #ifdef RTREE_DONT_USE_MEMPOOLS // Delete all existing nodes RemoveAllRec( m_root ); #else // RTREE_DONT_USE_MEMPOOLS // Just reset memory pools. We are not using complex types // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS } RTREE_TEMPLATE void RTREE_QUAL::RemoveAllRec( Node* a_node ) const { ASSERT( a_node ); ASSERT( a_node->m_level >= 0 ); if( a_node->IsInternalNode() ) // This is an internal node in the tree { for( int index = 0; index < a_node->m_count; ++index ) { RemoveAllRec( a_node->m_branch[index].m_child ); } } FreeNode( a_node ); } RTREE_TEMPLATE typename RTREE_QUAL::Node* RTREE_QUAL::AllocNode() const { Node* newNode; #ifdef RTREE_DONT_USE_MEMPOOLS newNode = new Node; #else // RTREE_DONT_USE_MEMPOOLS // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS InitNode( newNode ); return newNode; } RTREE_TEMPLATE void RTREE_QUAL::FreeNode( Node* a_node ) const { ASSERT( a_node ); #ifdef RTREE_DONT_USE_MEMPOOLS delete a_node; #else // RTREE_DONT_USE_MEMPOOLS // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS } // Allocate space for a node in the list used in DeletRect to // store Nodes that are too empty. RTREE_TEMPLATE typename RTREE_QUAL::ListNode* RTREE_QUAL::AllocListNode() const { #ifdef RTREE_DONT_USE_MEMPOOLS return new ListNode; #else // RTREE_DONT_USE_MEMPOOLS // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS } RTREE_TEMPLATE void RTREE_QUAL::FreeListNode( ListNode* a_listNode ) const { #ifdef RTREE_DONT_USE_MEMPOOLS delete a_listNode; #else // RTREE_DONT_USE_MEMPOOLS // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS } RTREE_TEMPLATE void RTREE_QUAL::InitNode( Node* a_node ) const { a_node->m_count = 0; a_node->m_level = -1; } RTREE_TEMPLATE void RTREE_QUAL::InitRect( Rect* a_rect ) const { for( int index = 0; index < NUMDIMS; ++index ) { a_rect->m_min[index] = (ELEMTYPE) 0; a_rect->m_max[index] = (ELEMTYPE) 0; } } // Inserts a new data rectangle into the index structure. // Recursively descends tree, propagates splits back up. // Returns 0 if node was not split. Old node updated. // If node was split, returns 1 and sets the pointer pointed to by // new_node to point to the new node. Old node updated to become one of two. // The level argument specifies the number of steps up from the leaf // level to insert; e.g. a data rectangle goes in at level = 0. RTREE_TEMPLATE bool RTREE_QUAL::InsertRectRec( const Rect* a_rect, const DATATYPE& a_id, Node* a_node, Node** a_newNode, int a_level ) const { ASSERT( a_rect && a_node && a_newNode ); ASSERT( a_level >= 0 && a_level <= a_node->m_level ); int index; Branch branch; Node* otherNode; // Still above level for insertion, go down tree recursively if( a_node->m_level > a_level ) { index = PickBranch( a_rect, a_node ); if( !InsertRectRec( a_rect, a_id, a_node->m_branch[index].m_child, &otherNode, a_level ) ) { // Child was not split a_node->m_branch[index].m_rect = CombineRect( a_rect, &(a_node->m_branch[index].m_rect) ); return false; } else // Child was split { a_node->m_branch[index].m_rect = NodeCover( a_node->m_branch[index].m_child ); branch.m_child = otherNode; branch.m_rect = NodeCover( otherNode ); return AddBranch( &branch, a_node, a_newNode ); } } else if( a_node->m_level == a_level ) // Have reached level for insertion. Add rect, split if necessary { branch.m_rect = *a_rect; branch.m_child = (Node*) a_id; // Child field of leaves contains id of data record return AddBranch( &branch, a_node, a_newNode ); } else { // Should never occur ASSERT( 0 ); return false; } } // Insert a data rectangle into an index structure. // InsertRect provides for splitting the root; // returns 1 if root was split, 0 if it was not. // The level argument specifies the number of steps up from the leaf // level to insert; e.g. a data rectangle goes in at level = 0. // InsertRect2 does the recursion. // RTREE_TEMPLATE bool RTREE_QUAL::InsertRect( const Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level ) const { ASSERT( a_rect && a_root ); ASSERT( a_level >= 0 && a_level <= (*a_root)->m_level ); #ifdef _DEBUG for( int index = 0; index < NUMDIMS; ++index ) { ASSERT( a_rect->m_min[index] <= a_rect->m_max[index] ); } #endif // _DEBUG Node* newRoot; Node* newNode; Branch branch; if( InsertRectRec( a_rect, a_id, *a_root, &newNode, a_level ) ) // Root split { newRoot = AllocNode(); // Grow tree taller and new root newRoot->m_level = (*a_root)->m_level + 1; branch.m_rect = NodeCover( *a_root ); branch.m_child = *a_root; AddBranch( &branch, newRoot, NULL ); branch.m_rect = NodeCover( newNode ); branch.m_child = newNode; AddBranch( &branch, newRoot, NULL ); *a_root = newRoot; return true; } return false; } // Find the smallest rectangle that includes all rectangles in branches of a node. RTREE_TEMPLATE typename RTREE_QUAL::Rect RTREE_QUAL::NodeCover( Node* a_node ) const { ASSERT( a_node ); bool firstTime = true; Rect rect; InitRect( &rect ); for( int index = 0; index < a_node->m_count; ++index ) { if( firstTime ) { rect = a_node->m_branch[index].m_rect; firstTime = false; } else { rect = CombineRect( &rect, &(a_node->m_branch[index].m_rect) ); } } return rect; } // Add a branch to a node. Split the node if necessary. // Returns 0 if node not split. Old node updated. // Returns 1 if node split, sets *new_node to address of new node. // Old node updated, becomes one of two. RTREE_TEMPLATE bool RTREE_QUAL::AddBranch( const Branch* a_branch, Node* a_node, Node** a_newNode ) const { ASSERT( a_branch ); ASSERT( a_node ); if( a_node->m_count < MAXNODES ) // Split won't be necessary { a_node->m_branch[a_node->m_count] = *a_branch; ++a_node->m_count; return false; } else { ASSERT( a_newNode ); SplitNode( a_node, a_branch, a_newNode ); return true; } } // Disconnect a dependent node. // Caller must return (or stop using iteration index) after this as count has changed RTREE_TEMPLATE void RTREE_QUAL::DisconnectBranch( Node* a_node, int a_index ) const { ASSERT( a_node && (a_index >= 0) && (a_index < MAXNODES) ); ASSERT( a_node->m_count > 0 ); // Remove element by swapping with the last element to prevent gaps in array a_node->m_branch[a_index] = a_node->m_branch[a_node->m_count - 1]; --a_node->m_count; } // Pick a branch. Pick the one that will need the smallest increase // in area to accomodate the new rectangle. This will result in the // least total area for the covering rectangles in the current node. // In case of a tie, pick the one which was smaller before, to get // the best resolution when searching. RTREE_TEMPLATE int RTREE_QUAL::PickBranch( const Rect* a_rect, Node* a_node ) const { ASSERT( a_rect && a_node ); bool firstTime = true; ELEMTYPEREAL increase; ELEMTYPEREAL bestIncr = (ELEMTYPEREAL) -1; ELEMTYPEREAL area; ELEMTYPEREAL bestArea = 0; int best = 0; Rect tempRect; for( int index = 0; index < a_node->m_count; ++index ) { Rect* curRect = &a_node->m_branch[index].m_rect; area = CalcRectVolume( curRect ); tempRect = CombineRect( a_rect, curRect ); increase = CalcRectVolume( &tempRect ) - area; if( (increase < bestIncr) || firstTime ) { best = index; bestArea = area; bestIncr = increase; firstTime = false; } else if( (increase == bestIncr) && (area < bestArea) ) { best = index; bestArea = area; bestIncr = increase; } } return best; } // Combine two rectangles into larger one containing both RTREE_TEMPLATE typename RTREE_QUAL::Rect RTREE_QUAL::CombineRect( const Rect* a_rectA, const Rect* a_rectB ) const { ASSERT( a_rectA && a_rectB ); Rect newRect; for( int index = 0; index < NUMDIMS; ++index ) { newRect.m_min[index] = std::min( a_rectA->m_min[index], a_rectB->m_min[index] ); newRect.m_max[index] = std::max( a_rectA->m_max[index], a_rectB->m_max[index] ); } return newRect; } // Split a node. // Divides the nodes branches and the extra one between two nodes. // Old node is one of the new ones, and one really new one is created. // Tries more than one method for choosing a partition, uses best result. RTREE_TEMPLATE void RTREE_QUAL::SplitNode( Node* a_node, const Branch* a_branch, Node** a_newNode ) const { ASSERT( a_node ); ASSERT( a_branch ); // Could just use local here, but member or external is faster since it is reused PartitionVars localVars; PartitionVars* parVars = &localVars; int level; // Load all the branches into a buffer, initialize old node level = a_node->m_level; GetBranches( a_node, a_branch, parVars ); // Find partition ChoosePartition( parVars, MINNODES ); // Put branches from buffer into 2 nodes according to chosen partition *a_newNode = AllocNode(); (*a_newNode)->m_level = a_node->m_level = level; LoadNodes( a_node, *a_newNode, parVars ); ASSERT( (a_node->m_count + (*a_newNode)->m_count) == parVars->m_total ); } // Calculate the n-dimensional volume of a rectangle RTREE_TEMPLATE ELEMTYPEREAL RTREE_QUAL::RectVolume( const Rect* a_rect ) const { ASSERT( a_rect ); ELEMTYPEREAL volume = (ELEMTYPEREAL) 1; for( int index = 0; indexm_max[index] - a_rect->m_min[index]; } ASSERT( volume >= (ELEMTYPEREAL) 0 ); return volume; } // The exact volume of the bounding sphere for the given Rect RTREE_TEMPLATE ELEMTYPEREAL RTREE_QUAL::RectSphericalVolume( const Rect* a_rect ) const { ASSERT( a_rect ); ELEMTYPEREAL sumOfSquares = (ELEMTYPEREAL) 0; for( int index = 0; index < NUMDIMS; ++index ) { ELEMTYPEREAL halfExtent = ( (ELEMTYPEREAL) a_rect->m_max[index] - (ELEMTYPEREAL) a_rect->m_min[index] ) * 0.5f; sumOfSquares += halfExtent * halfExtent; } // Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x. if( NUMDIMS == 2 ) { return sumOfSquares * m_unitSphereVolume; } else if( NUMDIMS == 3 ) { ELEMTYPEREAL radius = (ELEMTYPEREAL) std::sqrt( sumOfSquares ); return radius * radius * radius * m_unitSphereVolume; } else { ELEMTYPEREAL radius = (ELEMTYPEREAL) std::sqrt( sumOfSquares ); return (ELEMTYPEREAL) (std::pow( radius, NUMDIMS ) * m_unitSphereVolume); } } // Use one of the methods to calculate retangle volume RTREE_TEMPLATE ELEMTYPEREAL RTREE_QUAL::CalcRectVolume( const Rect* a_rect ) const { #ifdef RTREE_USE_SPHERICAL_VOLUME return RectSphericalVolume( a_rect ); // Slower but helps certain merge cases #else // RTREE_USE_SPHERICAL_VOLUME return RectVolume( a_rect ); // Faster but can cause poor merges #endif // RTREE_USE_SPHERICAL_VOLUME } // Load branch buffer with branches from full node plus the extra branch. RTREE_TEMPLATE void RTREE_QUAL::GetBranches( Node* a_node, const Branch* a_branch, PartitionVars* a_parVars ) const { ASSERT( a_node ); ASSERT( a_branch ); ASSERT( a_node->m_count == MAXNODES ); // Load the branch buffer for( int index = 0; index < MAXNODES; ++index ) { a_parVars->m_branchBuf[index] = a_node->m_branch[index]; } a_parVars->m_branchBuf[MAXNODES] = *a_branch; a_parVars->m_branchCount = MAXNODES + 1; // Calculate rect containing all in the set a_parVars->m_coverSplit = a_parVars->m_branchBuf[0].m_rect; for( int index = 1; index < MAXNODES + 1; ++index ) { a_parVars->m_coverSplit = CombineRect( &a_parVars->m_coverSplit, &a_parVars->m_branchBuf[index].m_rect ); } a_parVars->m_coverSplitArea = CalcRectVolume( &a_parVars->m_coverSplit ); InitNode( a_node ); } // Method #0 for choosing a partition: // As the seeds for the two groups, pick the two rects that would waste the // most area if covered by a single rectangle, i.e. evidently the worst pair // to have in the same group. // Of the remaining, one at a time is chosen to be put in one of the two groups. // The one chosen is the one with the greatest difference in area expansion // depending on which group - the rect most strongly attracted to one group // and repelled from the other. // If one group gets too full (more would force other group to violate min // fill requirement) then other group gets the rest. // These last are the ones that can go in either group most easily. RTREE_TEMPLATE void RTREE_QUAL::ChoosePartition( PartitionVars* a_parVars, int a_minFill ) const { ASSERT( a_parVars ); ELEMTYPEREAL biggestDiff; int group, chosen = 0, betterGroup = 0; InitParVars( a_parVars, a_parVars->m_branchCount, a_minFill ); PickSeeds( a_parVars ); while( ( (a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total ) && ( a_parVars->m_count[0] < (a_parVars->m_total - a_parVars->m_minFill) ) && ( a_parVars->m_count[1] < (a_parVars->m_total - a_parVars->m_minFill) ) ) { biggestDiff = (ELEMTYPEREAL) -1; for( int index = 0; indexm_total; ++index ) { if( !a_parVars->m_taken[index] ) { const Rect* curRect = &a_parVars->m_branchBuf[index].m_rect; const Rect rect0 = CombineRect( curRect, &a_parVars->m_cover[0] ); const Rect rect1 = CombineRect( curRect, &a_parVars->m_cover[1] ); ELEMTYPEREAL growth0 = CalcRectVolume( &rect0 ) - a_parVars->m_area[0]; ELEMTYPEREAL growth1 = CalcRectVolume( &rect1 ) - a_parVars->m_area[1]; ELEMTYPEREAL diff = growth1 - growth0; if( diff >= 0 ) { group = 0; } else { group = 1; diff = -diff; } if( diff > biggestDiff ) { biggestDiff = diff; chosen = index; betterGroup = group; } else if( (diff == biggestDiff) && (a_parVars->m_count[group] < a_parVars->m_count[betterGroup]) ) { chosen = index; betterGroup = group; } } } Classify( chosen, betterGroup, a_parVars ); } // If one group too full, put remaining rects in the other if( (a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total ) { if( a_parVars->m_count[0] >= a_parVars->m_total - a_parVars->m_minFill ) { group = 1; } else { group = 0; } for( int index = 0; indexm_total; ++index ) { if( !a_parVars->m_taken[index] ) { Classify( index, group, a_parVars ); } } } ASSERT( (a_parVars->m_count[0] + a_parVars->m_count[1]) == a_parVars->m_total ); ASSERT( (a_parVars->m_count[0] >= a_parVars->m_minFill) && (a_parVars->m_count[1] >= a_parVars->m_minFill) ); } // Copy branches from the buffer into two nodes according to the partition. RTREE_TEMPLATE void RTREE_QUAL::LoadNodes( Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars ) const { ASSERT( a_nodeA ); ASSERT( a_nodeB ); ASSERT( a_parVars ); for( int index = 0; index < a_parVars->m_total; ++index ) { ASSERT( a_parVars->m_partition[index] == 0 || a_parVars->m_partition[index] == 1 ); if( a_parVars->m_partition[index] == 0 ) { AddBranch( &a_parVars->m_branchBuf[index], a_nodeA, NULL ); } else if( a_parVars->m_partition[index] == 1 ) { AddBranch( &a_parVars->m_branchBuf[index], a_nodeB, NULL ); } } } // Initialize a PartitionVars structure. RTREE_TEMPLATE void RTREE_QUAL::InitParVars( PartitionVars* a_parVars, int a_maxRects, int a_minFill ) const { ASSERT( a_parVars ); a_parVars->m_count[0] = a_parVars->m_count[1] = 0; a_parVars->m_area[0] = a_parVars->m_area[1] = (ELEMTYPEREAL) 0; a_parVars->m_total = a_maxRects; a_parVars->m_minFill = a_minFill; for( int index = 0; index < a_maxRects; ++index ) { a_parVars->m_taken[index] = false; a_parVars->m_partition[index] = -1; } } RTREE_TEMPLATE void RTREE_QUAL::PickSeeds( PartitionVars* a_parVars ) const { int seed0 = 0, seed1 = 0; ELEMTYPEREAL worst, waste; ELEMTYPEREAL area[MAXNODES + 1]; for( int index = 0; indexm_total; ++index ) { area[index] = CalcRectVolume( &a_parVars->m_branchBuf[index].m_rect ); } worst = -a_parVars->m_coverSplitArea - 1; for( int indexA = 0; indexA < a_parVars->m_total - 1; ++indexA ) { for( int indexB = indexA + 1; indexB < a_parVars->m_total; ++indexB ) { Rect oneRect = CombineRect( &a_parVars->m_branchBuf[indexA].m_rect, &a_parVars->m_branchBuf[indexB].m_rect ); waste = CalcRectVolume( &oneRect ) - area[indexA] - area[indexB]; if( waste >= worst ) { worst = waste; seed0 = indexA; seed1 = indexB; } } } Classify( seed0, 0, a_parVars ); Classify( seed1, 1, a_parVars ); } // Put a branch in one of the groups. RTREE_TEMPLATE void RTREE_QUAL::Classify( int a_index, int a_group, PartitionVars* a_parVars ) const { ASSERT( a_parVars ); ASSERT( !a_parVars->m_taken[a_index] ); a_parVars->m_partition[a_index] = a_group; a_parVars->m_taken[a_index] = true; if( a_parVars->m_count[a_group] == 0 ) { a_parVars->m_cover[a_group] = a_parVars->m_branchBuf[a_index].m_rect; } else { a_parVars->m_cover[a_group] = CombineRect( &a_parVars->m_branchBuf[a_index].m_rect, &a_parVars->m_cover[a_group] ); } a_parVars->m_area[a_group] = CalcRectVolume( &a_parVars->m_cover[a_group] ); ++a_parVars->m_count[a_group]; } // Delete a data rectangle from an index structure. // Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node. // Returns 1 if record not found, 0 if success. // RemoveRect provides for eliminating the root. RTREE_TEMPLATE bool RTREE_QUAL::RemoveRect( const Rect* a_rect, const DATATYPE& a_id, Node** a_root ) const { ASSERT( a_rect && a_root ); ASSERT( *a_root ); Node* tempNode; ListNode* reInsertList = NULL; if( !RemoveRectRec( a_rect, a_id, *a_root, &reInsertList ) ) { // Found and deleted a data item // Reinsert any branches from eliminated nodes while( reInsertList ) { tempNode = reInsertList->m_node; for( int index = 0; index < tempNode->m_count; ++index ) { InsertRect( &(tempNode->m_branch[index].m_rect), tempNode->m_branch[index].m_data, a_root, tempNode->m_level ); } ListNode* remLNode = reInsertList; reInsertList = reInsertList->m_next; FreeNode( remLNode->m_node ); FreeListNode( remLNode ); } // Check for redundant root (not leaf, 1 child) and eliminate if( (*a_root)->m_count == 1 && (*a_root)->IsInternalNode() ) { tempNode = (*a_root)->m_branch[0].m_child; ASSERT( tempNode ); FreeNode( *a_root ); *a_root = tempNode; } return false; } else { return true; } } // Delete a rectangle from non-root part of an index structure. // Called by RemoveRect. Descends tree recursively, // merges branches on the way back up. // Returns 1 if record not found, 0 if success. RTREE_TEMPLATE bool RTREE_QUAL::RemoveRectRec( const Rect* a_rect, const DATATYPE& a_id, Node* a_node, ListNode** a_listNode ) const { ASSERT( a_rect && a_node && a_listNode ); ASSERT( a_node->m_level >= 0 ); if( a_node->IsInternalNode() ) // not a leaf node { for( int index = 0; index < a_node->m_count; ++index ) { if( Overlap( a_rect, &(a_node->m_branch[index].m_rect) ) ) { if( !RemoveRectRec( a_rect, a_id, a_node->m_branch[index].m_child, a_listNode ) ) { if( a_node->m_branch[index].m_child->m_count >= MINNODES ) { // child removed, just resize parent rect a_node->m_branch[index].m_rect = NodeCover( a_node->m_branch[index].m_child ); } else { // child removed, not enough entries in node, eliminate node ReInsert( a_node->m_branch[index].m_child, a_listNode ); DisconnectBranch( a_node, index ); // Must return after this call as count has changed } return false; } } } return true; } else // A leaf node { for( int index = 0; index < a_node->m_count; ++index ) { if( a_node->m_branch[index].m_child == (Node*) a_id ) { DisconnectBranch( a_node, index ); // Must return after this call as count has changed return false; } } return true; } } // Decide whether two rectangles overlap. RTREE_TEMPLATE bool RTREE_QUAL::Overlap( const Rect* a_rectA, const Rect* a_rectB ) { ASSERT( a_rectA && a_rectB ); for( int index = 0; index < NUMDIMS; ++index ) { if( a_rectA->m_min[index] > a_rectB->m_max[index] || a_rectB->m_min[index] > a_rectA->m_max[index] ) { return false; } } return true; } // Add a node to the reinsertion list. All its branches will later // be reinserted into the index structure. RTREE_TEMPLATE void RTREE_QUAL::ReInsert( Node* a_node, ListNode** a_listNode ) const { ListNode* newListNode; newListNode = AllocListNode(); newListNode->m_node = a_node; newListNode->m_next = *a_listNode; *a_listNode = newListNode; } // Search in an index tree or subtree for all data rectangles that overlap the argument rectangle. RTREE_TEMPLATE bool RTREE_QUAL::Search( const Node* a_node, const Rect* a_rect, int& a_foundCount, std::function a_callback ) const { ASSERT( a_node ); ASSERT( a_node->m_level >= 0 ); ASSERT( a_rect ); if( a_node->IsInternalNode() ) // This is an internal node in the tree { for( int index = 0; index < a_node->m_count; ++index ) { if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) ) { if( !Search( a_node->m_branch[index].m_child, a_rect, a_foundCount, a_callback ) ) { return false; // Don't continue searching } } } } else // This is a leaf node { for( int index = 0; index < a_node->m_count; ++index ) { if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) ) { DATATYPE& id = a_node->m_branch[index].m_data; ++a_foundCount; if( a_callback && !a_callback( id ) ) { return false; // Don't continue searching } } } } return true; // Continue searching } //calculate the minimum distance between a point and a rectangle as defined by Manolopoulos et al. // returns Euclidean norm to ensure value fits in ELEMTYPE RTREE_TEMPLATE ELEMTYPE RTREE_QUAL::MinDist( const ELEMTYPE a_point[NUMDIMS], const Rect& a_rect ) const { const ELEMTYPE *q, *s, *t; q = a_point; s = a_rect.m_min; t = a_rect.m_max; double minDist = 0.0; for( int index = 0; index < NUMDIMS; index++ ) { int r = q[index]; if( q[index] < s[index] ) { r = s[index]; } else if( q[index] > t[index] ) { r = t[index]; } double addend = q[index] - r; minDist += addend * addend; } return std::lround( std::sqrt( minDist ) ); } #undef RTREE_TEMPLATE #undef RTREE_QUAL #undef RTREE_SEARCH_TEMPLATE #undef RTREE_SEARCH_QUAL #endif // RTREE_H