/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2009 Jean-Pierre Charras, jaen-pierre.charras@gipsa-lab.inpg.com * Copyright (C) 1992-2021 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifndef _SCH_LINE_H_ #define _SCH_LINE_H_ #include #include // for wxPenStyle #include // for std::list class NETLIST_OBJECT_LIST; /** * Segment description base class to describe items which have 2 end points (track, wire, * draw line ...) */ class SCH_LINE : public SCH_ITEM { public: static const enum wxPenStyle PenStyle[]; SCH_LINE( const VECTOR2I& pos = VECTOR2I( 0, 0 ), int layer = LAYER_NOTES ); SCH_LINE( const VECTOR2D& pos, int layer = LAYER_NOTES ) : SCH_LINE( VECTOR2I( pos.x, pos.y ), layer ) {} SCH_LINE( const SCH_LINE& aLine ); ~SCH_LINE() { } static inline bool ClassOf( const EDA_ITEM* aItem ) { return aItem && SCH_LINE_T == aItem->Type(); } wxString GetClass() const override { return wxT( "SCH_LINE" ); } /** * @brief This function travel though all the connected wire segments * to look for connected labels. * @param aSheet - the sheet where the current wire segment is located * @return returns the name of the wire if connected labels found, otherwise empty string */ wxString GetNetname(const SCH_SHEET_PATH &aSheet); bool IsType( const std::vector& aScanTypes ) const override { if( SCH_ITEM::IsType( aScanTypes ) ) return true; for( KICAD_T scanType : aScanTypes ) { if( scanType == SCH_ITEM_LOCATE_WIRE_T && m_layer == LAYER_WIRE ) return true; if ( scanType == SCH_ITEM_LOCATE_BUS_T && m_layer == LAYER_BUS ) return true; if ( scanType == SCH_ITEM_LOCATE_GRAPHIC_LINE_T && m_layer == LAYER_NOTES ) return true; } return false; } bool IsEndPoint( const VECTOR2I& aPoint ) const { return aPoint == m_start || aPoint == m_end; } int GetAngleFrom( const VECTOR2I& aPoint ) const; int GetReverseAngleFrom( const VECTOR2I& aPoint ) const; /** * Gets the angle between the start and end lines. * * @return Line angle in radians. */ inline EDA_ANGLE Angle() const { return ( EDA_ANGLE( (VECTOR2I) m_end - (VECTOR2I) m_start ) ); } /** * Saves the current line angle. Useful when dragging a line and its important to * be able to restart the line from length 0 in the correct direction. */ inline void StoreAngle() { if( !IsNull() ) m_storedAngle = Angle(); } inline void StoreAngle( const EDA_ANGLE& aAngle ) { m_storedAngle = aAngle; } /** * Returns the angle stored by StoreAngle() * * @return Stored angle in radians. */ inline EDA_ANGLE GetStoredAngle() const { return m_storedAngle; } /** * Checks if line is orthogonal (to the grid). * * @return True if orthogonal, false if not or the line is zero length. */ inline bool IsOrthogonal() const { return Angle().IsCardinal(); } bool IsNull() const { return m_start == m_end; } VECTOR2I GetStartPoint() const { return m_start; } void SetStartPoint( const VECTOR2I& aPosition ) { m_start = aPosition; } VECTOR2I GetMidPoint() const { return ( m_start + m_end ) / 2; } VECTOR2I GetEndPoint() const { return m_end; } void SetEndPoint( const VECTOR2I& aPosition ) { m_end = aPosition; } void SetLastResolvedState( const SCH_ITEM* aItem ) override { const SCH_LINE* aLine = dynamic_cast( aItem ); if( aLine ) { m_lastResolvedLineStyle = aLine->m_lastResolvedLineStyle; m_lastResolvedWidth = aLine->m_lastResolvedWidth; m_lastResolvedColor = aLine->m_lastResolvedColor; } } void SetLineStyle( const PLOT_DASH_TYPE aStyle ); void SetLineStyle( const int aStyleId ); PLOT_DASH_TYPE GetLineStyle() const; /// @return the style that the line should be drawn in /// this might be set on the line or inherited from the line's netclass PLOT_DASH_TYPE GetEffectiveLineStyle() const; void SetLineColor( const COLOR4D& aColor ); void SetLineColor( const double r, const double g, const double b, const double a ); /// Returns COLOR4D::UNSPECIFIED if a custom color hasn't been set for this line COLOR4D GetLineColor() const; void SetLineWidth( const int aSize ); virtual bool HasLineStroke() const override { return true; } virtual STROKE_PARAMS GetStroke() const override { return m_stroke; } virtual void SetStroke( const STROKE_PARAMS& aStroke ) override { m_stroke = aStroke; } bool IsStrokeEquivalent( const SCH_LINE* aLine ) { if( m_stroke.GetWidth() != aLine->GetStroke().GetWidth() ) return false; if( m_stroke.GetColor() != aLine->GetStroke().GetColor() ) return false; PLOT_DASH_TYPE style_a = m_stroke.GetPlotStyle(); PLOT_DASH_TYPE style_b = aLine->GetStroke().GetPlotStyle(); return style_a == style_b || ( style_a == PLOT_DASH_TYPE::DEFAULT && style_b == PLOT_DASH_TYPE::SOLID ) || ( style_a == PLOT_DASH_TYPE::SOLID && style_b == PLOT_DASH_TYPE::DEFAULT ); } int GetLineSize() const { return m_stroke.GetWidth(); } void ViewGetLayers( int aLayers[], int& aCount ) const override; const BOX2I GetBoundingBox() const override; /** * @return The length of the line segment. */ double GetLength() const; void Print( const RENDER_SETTINGS* aSettings, const VECTOR2I& aOffset ) override; int GetPenWidth() const override; void Move( const VECTOR2I& aMoveVector ) override; void MoveStart( const VECTOR2I& aMoveVector ); void MoveEnd( const VECTOR2I& aMoveVector ); void MirrorVertically( int aCenter ) override; void MirrorHorizontally( int aCenter ) override; void Rotate( const VECTOR2I& aCenter ) override; void RotateStart( const VECTOR2I& aCenter ); void RotateEnd( const VECTOR2I& aCenter ); /** * Check line against \a aLine to see if it overlaps and merge if it does. * * This method will return an equivalent of the union of line and \a aLine if the * two lines overlap. This method is used to merge multiple line segments into a single * line. * * @param aScreen is the current screen. * @param aLine is the line to compare. * @param aCheckJunctions is used to indicate if we need to check for a junction if the two * segments are colinear and touch. * @return New line that combines the two or NULL on non-overlapping segments. */ SCH_LINE* MergeOverlap( SCH_SCREEN* aScreen, SCH_LINE* aLine, bool aCheckJunctions ); /** * Break this segment into two at the specified point. * * @note No checks are made to verify if aPoint is contained within the segment. That is * the responsibility of the caller. * * @note It is the responsibility of the caller to add the newly created segment * to the screen. * * @param aPoint Point at which to break the segment * @return The newly created segment. */ SCH_LINE* BreakAt( const VECTOR2I& aPoint ); bool IsParallel( const SCH_LINE* aLine ) const; void GetEndPoints( std::vector& aItemList ) override; bool UpdateDanglingState( std::vector& aItemList, const SCH_SHEET_PATH* aPath = nullptr ) override; bool IsStartDangling() const { return m_startIsDangling; } bool IsEndDangling() const { return m_endIsDangling; } bool IsDangling() const override { return m_startIsDangling || m_endIsDangling; } bool IsConnectable() const override; std::vector GetConnectionPoints() const override; bool ConnectionPropagatesTo( const EDA_ITEM* aItem ) const override; void GetSelectedPoints( std::vector& aPoints ) const; bool CanConnect( const SCH_ITEM* aItem ) const override; wxString GetItemDescription( UNITS_PROVIDER* aUnitsProvider ) const override; BITMAPS GetMenuImage() const override; bool operator <( const SCH_ITEM& aItem ) const override; VECTOR2I GetPosition() const override { return m_start; } void SetPosition( const VECTOR2I& aPosition ) override; VECTOR2I GetSortPosition() const override { return GetMidPoint(); } bool IsPointClickableAnchor( const VECTOR2I& aPos ) const override { return ( GetStartPoint() == aPos && IsStartDangling() ) || ( GetEndPoint() == aPos && IsEndDangling() ); } bool HitTest( const VECTOR2I& aPosition, int aAccuracy = 0 ) const override; bool HitTest( const BOX2I& aRect, bool aContained, int aAccuracy = 0 ) const override; void Plot( PLOTTER* aPlotter, bool aBackground ) const override; EDA_ITEM* Clone() const override; void SwapData( SCH_ITEM* aItem ) override; void GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) override; #if defined(DEBUG) void Show( int nestLevel, std::ostream& os ) const override; #endif /** * Return if the line is a graphic (non electrical line) * * Currently, anything on the internal NOTES layer is a graphic line */ bool IsGraphicLine() const; /** * Return true if the line is a wire. * * @return true if this line is on the wire layer. */ bool IsWire() const; /** * Return true if the line is a bus. * * @return true if this line is on the bus layer. */ bool IsBus() const; private: /** * @brief Recursively called function to travel through the connected wires and find a connected * net name label * @param line - the wire segment to start the recursive lookup * @param checkedLines - a lsit containing the already checked wire segments, to prevent the * infinite recursion in the case if someone draws a rectangle for e.g. * @param aSheet - the sheet where the lookup is performed * @return With the net name if a connected label found, otherwise with an empty string */ wxString FindWireSegmentNetNameRecursive( SCH_LINE *line, std::list& checkedLines, const SCH_SHEET_PATH &aSheet ) const; bool doIsConnected( const VECTOR2I& aPosition ) const override; bool m_startIsDangling; ///< True if start point is not connected. bool m_endIsDangling; ///< True if end point is not connected. VECTOR2I m_start; ///< Line start point VECTOR2I m_end; ///< Line end point EDA_ANGLE m_storedAngle; ///< Stored angle STROKE_PARAMS m_stroke; ///< Line stroke properties. // If real-time connectivity gets disabled (due to being too slow on a particular // design), we can no longer rely on getting the NetClass to find netclass-specific // linestyles, linewidths and colors. mutable PLOT_DASH_TYPE m_lastResolvedLineStyle; mutable int m_lastResolvedWidth; mutable COLOR4D m_lastResolvedColor; }; #endif // _SCH_LINE_H_