/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com> * Copyright (C) 2012 Kicad Developers, see change_log.txt for contributors. * Copyright (C) 2013 CERN * @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifndef __BOX2_H #define __BOX2_H #include <math/vector2d.h> #include <limits> #include <core/optional.h> /** * Class BOX2 * handles a 2-D bounding box, built on top of an origin point * and size vector, both of templated class Vec */ template <class Vec> class BOX2 { private: Vec m_Pos; // Rectangle Origin Vec m_Size; // Rectangle Size public: typedef typename Vec::coord_type coord_type; typedef typename Vec::extended_type ecoord_type; typedef std::numeric_limits<coord_type> coord_limits; BOX2() {}; BOX2( const Vec& aPos, const Vec& aSize ) : m_Pos( aPos ), m_Size( aSize ) { Normalize(); } void SetMaximum() { m_Pos.x = m_Pos.y = coord_limits::min() / 2 + coord_limits::epsilon(); m_Size.x = m_Size.y = coord_limits::max() - coord_limits::epsilon(); } Vec Centre() const { return Vec( m_Pos.x + ( m_Size.x / 2 ), m_Pos.y + ( m_Size.y / 2 ) ); } /** * @brief Compute the bounding box from a given list of points. * * @param aPointList is the list points of the object. */ template <class Container> void Compute( const Container& aPointList ) { Vec vmin, vmax; typename Container::const_iterator i; if( !aPointList.size() ) return; vmin = vmax = aPointList[0]; for( i = aPointList.begin(); i != aPointList.end(); ++i ) { Vec p( *i ); vmin.x = std::min( vmin.x, p.x ); vmin.y = std::min( vmin.y, p.y ); vmax.x = std::max( vmax.x, p.x ); vmax.y = std::max( vmax.y, p.y ); } SetOrigin( vmin ); SetSize( vmax - vmin ); } /** * Function Move * moves the rectangle by the \a aMoveVector. * @param aMoveVector A point that is the value to move this rectangle */ void Move( const Vec& aMoveVector ) { m_Pos += aMoveVector; } /** * Function Normalize * ensures that the height ant width are positive. */ BOX2<Vec>& Normalize() { if( m_Size.y < 0 ) { m_Size.y = -m_Size.y; m_Pos.y -= m_Size.y; } if( m_Size.x < 0 ) { m_Size.x = -m_Size.x; m_Pos.x -= m_Size.x; } return *this; } /** * Function Contains * @param aPoint = the point to test * @return true if aPoint is inside the boundary box. A point on a edge is seen as inside */ bool Contains( const Vec& aPoint ) const { Vec rel_pos = aPoint - m_Pos; Vec size = m_Size; if( size.x < 0 ) { size.x = -size.x; rel_pos.x += size.x; } if( size.y < 0 ) { size.y = -size.y; rel_pos.y += size.y; } return ( rel_pos.x >= 0 ) && ( rel_pos.y >= 0 ) && ( rel_pos.y <= size.y) && ( rel_pos.x <= size.x); } /** * Function Contains * @param x = the x coordinate of the point to test * @param y = the x coordinate of the point to test * @return true if point is inside the boundary box. A point on a edge is seen as inside */ bool Contains( coord_type x, coord_type y ) const { return Contains( Vec( x, y ) ); } /** * Function Contains * @param aRect = the BOX2 to test * @return true if aRect is Contained. A common edge is seen as contained */ bool Contains( const BOX2<Vec>& aRect ) const { return Contains( aRect.GetOrigin() ) && Contains( aRect.GetEnd() ); } const Vec& GetSize() const { return m_Size; } coord_type GetX() const { return m_Pos.x; } coord_type GetY() const { return m_Pos.y; } const Vec& GetOrigin() const { return m_Pos; } const Vec& GetPosition() const { return m_Pos; } const Vec GetEnd() const { return Vec( GetRight(), GetBottom() ); } coord_type GetWidth() const { return m_Size.x; } coord_type GetHeight() const { return m_Size.y; } coord_type GetRight() const { return m_Pos.x + m_Size.x; } coord_type GetBottom() const { return m_Pos.y + m_Size.y; } // Compatibility aliases coord_type GetLeft() const { return GetX(); } coord_type GetTop() const { return GetY(); } void MoveTopTo( coord_type aTop ) { m_Pos.y = aTop; } void MoveBottomTo( coord_type aBottom ) { m_Size.y = aBottom - m_Pos.y; } void MoveLeftTo( coord_type aLeft ) { m_Pos.x = aLeft; } void MoveRightTo( coord_type aRight ) { m_Size.x = aRight - m_Pos.x; } void SetOrigin( const Vec& pos ) { m_Pos = pos; } void SetOrigin( coord_type x, coord_type y ) { m_Pos.x = x; m_Pos.y = y; } void SetSize( const Vec& size ) { m_Size = size; } void SetSize( coord_type w, coord_type h ) { m_Size.x = w; m_Size.y = h; } void Offset( coord_type dx, coord_type dy ) { m_Pos.x += dx; m_Pos.y += dy; } void Offset( const Vec& offset ) { m_Pos.x += offset.x; m_Pos.y += offset.y; } void SetX( coord_type val ) { m_Pos.x = val; } void SetY( coord_type val ) { m_Pos.y = val; } void SetWidth( coord_type val ) { m_Size.x = val; } void SetHeight( coord_type val ) { m_Size.y = val; } void SetEnd( coord_type x, coord_type y ) { SetEnd( Vec( x, y ) ); } void SetEnd( const Vec& pos ) { m_Size.x = pos.x - m_Pos.x; m_Size.y = pos.y - m_Pos.y; } /** * Function Intersects * @return bool - true if the argument rectangle intersects this rectangle. * (i.e. if the 2 rectangles have at least a common point) */ bool Intersects( const BOX2<Vec>& aRect ) const { // this logic taken from wxWidgets' geometry.cpp file: bool rc; BOX2<Vec> me( *this ); BOX2<Vec> rect( aRect ); me.Normalize(); // ensure size is >= 0 rect.Normalize(); // ensure size is >= 0 // calculate the left common area coordinate: int left = std::max( me.m_Pos.x, rect.m_Pos.x ); // calculate the right common area coordinate: int right = std::min( me.m_Pos.x + me.m_Size.x, rect.m_Pos.x + rect.m_Size.x ); // calculate the upper common area coordinate: int top = std::max( me.m_Pos.y, aRect.m_Pos.y ); // calculate the lower common area coordinate: int bottom = std::min( me.m_Pos.y + me.m_Size.y, rect.m_Pos.y + rect.m_Size.y ); // if a common area exists, it must have a positive (null accepted) size if( left <= right && top <= bottom ) rc = true; else rc = false; return rc; } const std::string Format() const { std::stringstream ss; ss << "( box corner " << m_Pos.Format() << " w " << m_Size.x << " h " << m_Size.y << " )"; return ss.str(); } /** * Function Inflate * inflates the rectangle horizontally by \a dx and vertically by \a dy. If \a dx * and/or \a dy is negative the rectangle is deflated. */ BOX2<Vec>& Inflate( coord_type dx, coord_type dy ) { if( m_Size.x >= 0 ) { if( m_Size.x < -2 * dx ) { // Don't allow deflate to eat more width than we have, m_Pos.x += m_Size.x / 2; m_Size.x = 0; } else { // The inflate is valid. m_Pos.x -= dx; m_Size.x += 2 * dx; } } else // size.x < 0: { if( m_Size.x > -2 * dx ) { // Don't allow deflate to eat more width than we have, m_Pos.x -= m_Size.x / 2; m_Size.x = 0; } else { // The inflate is valid. m_Pos.x += dx; m_Size.x -= 2 * dx; // m_Size.x <0: inflate when dx > 0 } } if( m_Size.y >= 0 ) { if( m_Size.y < -2 * dy ) { // Don't allow deflate to eat more height than we have, m_Pos.y += m_Size.y / 2; m_Size.y = 0; } else { // The inflate is valid. m_Pos.y -= dy; m_Size.y += 2 * dy; } } else // size.y < 0: { if( m_Size.y > 2 * dy ) { // Don't allow deflate to eat more height than we have, m_Pos.y -= m_Size.y / 2; m_Size.y = 0; } else { // The inflate is valid. m_Pos.y += dy; m_Size.y -= 2 * dy; // m_Size.y <0: inflate when dy > 0 } } return *this; } /** * Function Inflate * inflates the rectangle horizontally and vertically by \a aDelta. If \a aDelta * is negative the rectangle is deflated. */ BOX2<Vec>& Inflate( int aDelta ) { Inflate( aDelta, aDelta ); return *this; } /** * Function Merge * modifies the position and size of the rectangle in order to contain \a aRect. It is * mainly used to calculate bounding boxes. * @param aRect The rectangle to merge with this rectangle. */ BOX2<Vec>& Merge( const BOX2<Vec>& aRect ) { Normalize(); // ensure width and height >= 0 BOX2<Vec> rect = aRect; rect.Normalize(); // ensure width and height >= 0 Vec end = GetEnd(); Vec rect_end = rect.GetEnd(); // Change origin and size in order to contain the given rect m_Pos.x = std::min( m_Pos.x, rect.m_Pos.x ); m_Pos.y = std::min( m_Pos.y, rect.m_Pos.y ); end.x = std::max( end.x, rect_end.x ); end.y = std::max( end.y, rect_end.y ); SetEnd( end ); return *this; } /** * Function Merge * modifies the position and size of the rectangle in order to contain the given point. * @param aPoint The point to merge with the rectangle. */ BOX2<Vec>& Merge( const Vec& aPoint ) { Normalize(); // ensure width and height >= 0 Vec end = GetEnd(); // Change origin and size in order to contain the given rect m_Pos.x = std::min( m_Pos.x, aPoint.x ); m_Pos.y = std::min( m_Pos.y, aPoint.y ); end.x = std::max( end.x, aPoint.x ); end.y = std::max( end.y, aPoint.y ); SetEnd( end ); return *this; } /** * Function GetArea * returns the area of the rectangle. * @return The area of the rectangle. */ ecoord_type GetArea() const { return (ecoord_type) GetWidth() * (ecoord_type) GetHeight(); } /** * Function GetArea * returns the length of the diagonal of the rectangle. * @return The area of the diagonal. */ ecoord_type Diagonal() const { return m_Size.EuclideanNorm(); } ecoord_type SquaredDistance( const Vec& aP ) const { ecoord_type x2 = m_Pos.x + m_Size.x; ecoord_type y2 = m_Pos.y + m_Size.y; ecoord_type xdiff = std::max( aP.x < m_Pos.x ? m_Pos.x - aP.x : m_Pos.x - x2, (ecoord_type) 0 ); ecoord_type ydiff = std::max( aP.y < m_Pos.y ? m_Pos.y - aP.y : m_Pos.y - y2, (ecoord_type) 0 ); return xdiff * xdiff + ydiff * ydiff; } ecoord_type Distance( const Vec& aP ) const { return sqrt( SquaredDistance( aP ) ); } /** * Function SquaredDistance * returns the square of the minimum distance between self and box aBox * @param aBox: the other box * @return The distance, squared */ ecoord_type SquaredDistance( const BOX2<Vec>& aBox ) const { ecoord_type s = 0; if( aBox.m_Pos.x + aBox.m_Size.x < m_Pos.x ) { ecoord_type d = aBox.m_Pos.x + aBox.m_Size.x - m_Pos.x; s += d * d; } else if( aBox.m_Pos.x > m_Pos.x + m_Size.x ) { ecoord_type d = aBox.m_Pos.x - m_Size.x - m_Pos.x; s += d * d; } if( aBox.m_Pos.y + aBox.m_Size.y < m_Pos.y ) { ecoord_type d = aBox.m_Pos.y + aBox.m_Size.y - m_Pos.y; s += d * d; } else if( aBox.m_Pos.y > m_Pos.y + m_Size.y ) { ecoord_type d = aBox.m_Pos.y - m_Size.y - m_Pos.y; s += d * d; } return s; } /** * Function Distance * returns the minimum distance between self and box aBox * @param aBox: the other box * @return The distance */ ecoord_type Distance( const BOX2<Vec>& aBox ) const { return sqrt( SquaredDistance( aBox ) ); } }; /* Default specializations */ typedef BOX2<VECTOR2I> BOX2I; typedef BOX2<VECTOR2D> BOX2D; typedef OPT<BOX2I> OPT_BOX2I; // FIXME should be removed to avoid multiple typedefs for the same type typedef BOX2D DBOX; #endif