/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include "MemoryFileAtOffset.h" #include "MemoryRange.h" namespace unwindstack { bool MapInfo::ElfFileNotReadable() { const std::string& map_name = name(); return memory_backed_elf() && !map_name.empty() && map_name[0] != '[' && !android::base::StartsWith(map_name, "/memfd:"); } std::shared_ptr MapInfo::GetPrevRealMap() { if (name().empty()) { return nullptr; } for (auto prev = prev_map(); prev != nullptr; prev = prev->prev_map()) { if (!prev->IsBlank()) { if (prev->name() == name()) { return prev; } return nullptr; } } return nullptr; } std::shared_ptr MapInfo::GetNextRealMap() { if (name().empty()) { return nullptr; } for (auto next = next_map(); next != nullptr; next = next->next_map()) { if (!next->IsBlank()) { if (next->name() == name()) { return next; } return nullptr; } } return nullptr; } bool MapInfo::InitFileMemoryFromPreviousReadOnlyMap(MemoryFileAtOffset* memory) { // One last attempt, see if the previous map is read-only with the // same name and stretches across this map. auto prev_real_map = GetPrevRealMap(); if (prev_real_map == nullptr || prev_real_map->flags() != PROT_READ || prev_real_map->offset() >= offset()) { return false; } uint64_t map_size = end() - prev_real_map->end(); if (!memory->Init(name(), prev_real_map->offset(), map_size)) { return false; } uint64_t max_size; if (!Elf::GetInfo(memory, &max_size) || max_size < map_size) { return false; } if (!memory->Init(name(), prev_real_map->offset(), max_size)) { return false; } set_elf_offset(offset() - prev_real_map->offset()); set_elf_start_offset(prev_real_map->offset()); return true; } Memory* MapInfo::GetFileMemory() { // Fail on device maps. if (flags() & MAPS_FLAGS_DEVICE_MAP) { return nullptr; } std::unique_ptr memory(new MemoryFileAtOffset); if (offset() == 0) { if (memory->Init(name(), 0)) { return memory.release(); } return nullptr; } // These are the possibilities when the offset is non-zero. // - There is an elf file embedded in a file, and the offset is the // the start of the elf in the file. // - There is an elf file embedded in a file, and the offset is the // the start of the executable part of the file. The actual start // of the elf is in the read-only segment preceeding this map. // - The whole file is an elf file, and the offset needs to be saved. // // Map in just the part of the file for the map. If this is not // a valid elf, then reinit as if the whole file is an elf file. // If the offset is a valid elf, then determine the size of the map // and reinit to that size. This is needed because the dynamic linker // only maps in a portion of the original elf, and never the symbol // file data. // // For maps with MAPS_FLAGS_JIT_SYMFILE_MAP, the map range is for a JIT function, // which can be smaller than elf header size. So make sure map_size is large enough // to read elf header. uint64_t map_size = std::max(end() - start(), sizeof(ElfTypes64::Ehdr)); if (!memory->Init(name(), offset(), map_size)) { return nullptr; } // Check if the start of this map is an embedded elf. uint64_t max_size = 0; if (Elf::GetInfo(memory.get(), &max_size)) { set_elf_start_offset(offset()); if (max_size > map_size) { if (memory->Init(name(), offset(), max_size)) { return memory.release(); } // Try to reinit using the default map_size. if (memory->Init(name(), offset(), map_size)) { return memory.release(); } set_elf_start_offset(0); return nullptr; } return memory.release(); } // No elf at offset, try to init as if the whole file is an elf. if (memory->Init(name(), 0) && Elf::IsValidElf(memory.get())) { set_elf_offset(offset()); return memory.release(); } // See if the map previous to this one contains a read-only map // that represents the real start of the elf data. if (InitFileMemoryFromPreviousReadOnlyMap(memory.get())) { return memory.release(); } // Failed to find elf at start of file or at read-only map, return // file object from the current map. if (memory->Init(name(), offset(), map_size)) { return memory.release(); } return nullptr; } Memory* MapInfo::CreateMemory(const std::shared_ptr& process_memory) { if (end() <= start()) { return nullptr; } set_elf_offset(0); // Fail on device maps. if (flags() & MAPS_FLAGS_DEVICE_MAP) { return nullptr; } // First try and use the file associated with the info. if (!name().empty()) { Memory* memory = GetFileMemory(); if (memory != nullptr) { return memory; } } if (process_memory == nullptr) { return nullptr; } set_memory_backed_elf(true); // Need to verify that this elf is valid. It's possible that // only part of the elf file to be mapped into memory is in the executable // map. In this case, there will be another read-only map that includes the // first part of the elf file. This is done if the linker rosegment // option is used. std::unique_ptr memory(new MemoryRange(process_memory, start(), end() - start(), 0)); if (Elf::IsValidElf(memory.get())) { set_elf_start_offset(offset()); auto next_real_map = GetNextRealMap(); // Might need to peek at the next map to create a memory object that // includes that map too. if (offset() != 0 || next_real_map == nullptr || offset() >= next_real_map->offset()) { return memory.release(); } // There is a possibility that the elf object has already been created // in the next map. Since this should be a very uncommon path, just // redo the work. If this happens, the elf for this map will eventually // be discarded. MemoryRanges* ranges = new MemoryRanges; ranges->Insert(new MemoryRange(process_memory, start(), end() - start(), 0)); ranges->Insert(new MemoryRange(process_memory, next_real_map->start(), next_real_map->end() - next_real_map->start(), next_real_map->offset() - offset())); return ranges; } auto prev_real_map = GetPrevRealMap(); // Find the read-only map by looking at the previous map. The linker // doesn't guarantee that this invariant will always be true. However, // if that changes, there is likely something else that will change and // break something. if (offset() == 0 || prev_real_map == nullptr || prev_real_map->offset() >= offset()) { set_memory_backed_elf(false); return nullptr; } // Make sure that relative pc values are corrected properly. set_elf_offset(offset() - prev_real_map->offset()); // Use this as the elf start offset, otherwise, you always get offsets into // the r-x section, which is not quite the right information. set_elf_start_offset(prev_real_map->offset()); std::unique_ptr ranges(new MemoryRanges); if (!ranges->Insert(new MemoryRange(process_memory, prev_real_map->start(), prev_real_map->end() - prev_real_map->start(), 0))) { return nullptr; } if (!ranges->Insert(new MemoryRange(process_memory, start(), end() - start(), elf_offset()))) { return nullptr; } return ranges.release(); } class ScopedElfCacheLock { public: ScopedElfCacheLock() { if (Elf::CachingEnabled()) Elf::CacheLock(); } ~ScopedElfCacheLock() { if (Elf::CachingEnabled()) Elf::CacheUnlock(); } }; Elf* MapInfo::GetElf(const std::shared_ptr& process_memory, ArchEnum expected_arch) { // Make sure no other thread is trying to add the elf to this map. std::lock_guard guard(elf_mutex()); if (elf().get() != nullptr) { return elf().get(); } ScopedElfCacheLock elf_cache_lock; if (Elf::CachingEnabled() && !name().empty()) { if (Elf::CacheGet(this)) { return elf().get(); } } elf().reset(new Elf(CreateMemory(process_memory))); // If the init fails, keep the elf around as an invalid object so we // don't try to reinit the object. elf()->Init(); if (elf()->valid() && expected_arch != elf()->arch()) { // Make the elf invalid, mismatch between arch and expected arch. elf()->Invalidate(); } if (!elf()->valid()) { set_elf_start_offset(offset()); } else if (auto prev_real_map = GetPrevRealMap(); prev_real_map != nullptr && prev_real_map->flags() == PROT_READ && prev_real_map->offset() < offset()) { // If there is a read-only map then a read-execute map that represents the // same elf object, make sure the previous map is using the same elf // object if it hasn't already been set. Locking this should not result // in a deadlock as long as the invariant that the code only ever tries // to lock the previous real map holds true. std::lock_guard guard(prev_real_map->elf_mutex()); if (prev_real_map->elf() == nullptr) { // Need to verify if the map is the previous read-only map. prev_real_map->set_elf(elf()); prev_real_map->set_memory_backed_elf(memory_backed_elf()); prev_real_map->set_elf_start_offset(elf_start_offset()); prev_real_map->set_elf_offset(prev_real_map->offset() - elf_start_offset()); } else if (prev_real_map->elf_start_offset() == elf_start_offset()) { // Discard this elf, and use the elf from the previous map instead. set_elf(prev_real_map->elf()); } } // Cache the elf only after all of the above checks since we might // discard the original elf we created. if (Elf::CachingEnabled()) { Elf::CacheAdd(this); } return elf().get(); } bool MapInfo::GetFunctionName(uint64_t addr, SharedString* name, uint64_t* func_offset) { { // Make sure no other thread is trying to update this elf object. std::lock_guard guard(elf_mutex()); if (elf() == nullptr) { return false; } } // No longer need the lock, once the elf object is created, it is not deleted // until this object is deleted. return elf()->GetFunctionName(addr, name, func_offset); } uint64_t MapInfo::GetLoadBias() { uint64_t cur_load_bias = load_bias().load(); if (cur_load_bias != UINT64_MAX) { return cur_load_bias; } Elf* elf_obj = GetElfObj(); if (elf_obj == nullptr) { return UINT64_MAX; } if (elf_obj->valid()) { cur_load_bias = elf_obj->GetLoadBias(); set_load_bias(cur_load_bias); return cur_load_bias; } set_load_bias(0); return 0; } uint64_t MapInfo::GetLoadBias(const std::shared_ptr& process_memory) { uint64_t cur_load_bias = GetLoadBias(); if (cur_load_bias != UINT64_MAX) { return cur_load_bias; } // Call lightweight static function that will only read enough of the // elf data to get the load bias. std::unique_ptr memory(CreateMemory(process_memory)); cur_load_bias = Elf::GetLoadBias(memory.get()); set_load_bias(cur_load_bias); return cur_load_bias; } MapInfo::~MapInfo() { ElfFields* elf_fields = elf_fields_.load(); if (elf_fields != nullptr) { delete elf_fields->build_id_.load(); delete elf_fields; } } std::string MapInfo::GetFullName() { Elf* elf_obj = GetElfObj(); if (elf_obj == nullptr || elf_start_offset() == 0 || name().empty()) { return name(); } std::string soname = elf_obj->GetSoname(); if (soname.empty()) { return name(); } std::string full_name(name()); full_name += '!'; full_name += soname; return full_name; } SharedString MapInfo::GetBuildID() { SharedString* id = build_id().load(); if (id != nullptr) { return *id; } // No need to lock, at worst if multiple threads do this at the same // time it should be detected and only one thread should win and // save the data. std::string result; Elf* elf_obj = GetElfObj(); if (elf_obj != nullptr) { result = elf_obj->GetBuildID(); } else { // This will only work if we can get the file associated with this memory. // If this is only available in memory, then the section name information // is not present and we will not be able to find the build id info. std::unique_ptr memory(GetFileMemory()); if (memory != nullptr) { result = Elf::GetBuildID(memory.get()); } } return SetBuildID(std::move(result)); } SharedString MapInfo::SetBuildID(std::string&& new_build_id) { std::unique_ptr new_build_id_ptr(new SharedString(std::move(new_build_id))); SharedString* expected_id = nullptr; // Strong version since we need to reliably return the stored pointer. if (build_id().compare_exchange_strong(expected_id, new_build_id_ptr.get())) { // Value saved, so make sure the memory is not freed. return *new_build_id_ptr.release(); } else { // The expected value is set to the stored value on failure. return *expected_id; } } MapInfo::ElfFields& MapInfo::GetElfFields() { ElfFields* elf_fields = elf_fields_.load(std::memory_order_acquire); if (elf_fields != nullptr) { return *elf_fields; } // Allocate and initialize the field in thread-safe way. std::unique_ptr desired(new ElfFields()); ElfFields* expected = nullptr; // Strong version is reliable. Weak version might randomly return false. if (elf_fields_.compare_exchange_strong(expected, desired.get())) { return *desired.release(); // Success: we transferred the pointer ownership to the field. } else { return *expected; // Failure: 'expected' is updated to the value set by the other thread. } } std::string MapInfo::GetPrintableBuildID() { std::string raw_build_id = GetBuildID(); return Elf::GetPrintableBuildID(raw_build_id); } } // namespace unwindstack