/** * @file convert_basic_shapes_to_polygon.cpp */ /* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include // for max, min #include // for atan2 #include // for swap #include #include #include // for SHAPE_LINE_CHAIN #include // for SHAPE_POLY_SET, SHAPE_POLY_SE... #include #include // for VECTOR2I #include void TransformCircleToPolygon( SHAPE_LINE_CHAIN& aCornerBuffer, wxPoint aCenter, int aRadius, int aError ) { wxPoint corner_position; int numSegs = std::max( GetArcToSegmentCount( aRadius, aError, 360.0 ), 6 ); int delta = 3600 / numSegs; // rotate angle in 0.1 degree double correction = GetCircletoPolyCorrectionFactor( numSegs ); int radius = aRadius * correction; // make segments outside the circles double halfstep = delta/2.0; // the starting value for rot angles for( int ii = 0; ii < numSegs; ii++ ) { corner_position.x = radius; corner_position.y = 0; double angle = (ii * delta) + halfstep; RotatePoint( &corner_position, angle ); corner_position += aCenter; aCornerBuffer.Append( corner_position.x, corner_position.y ); } aCornerBuffer.SetClosed( true ); } void TransformCircleToPolygon( SHAPE_POLY_SET& aCornerBuffer, wxPoint aCenter, int aRadius, int aError ) { wxPoint corner_position; int numSegs = std::max( GetArcToSegmentCount( aRadius, aError, 360.0 ), 6 ); int delta = 3600 / numSegs; // rotate angle in 0.1 degree double correction = GetCircletoPolyCorrectionFactor( numSegs ); int radius = aRadius * correction; // make segments outside the circles double halfstep = delta/2.0; // the starting value for rot angles aCornerBuffer.NewOutline(); for( int ii = 0; ii < numSegs; ii++ ) { corner_position.x = radius; corner_position.y = 0; double angle = (ii * delta) + halfstep; RotatePoint( &corner_position, angle ); corner_position += aCenter; aCornerBuffer.Append( corner_position.x, corner_position.y ); } } void TransformOvalToPolygon( SHAPE_POLY_SET& aCornerBuffer, wxPoint aStart, wxPoint aEnd, int aWidth, int aError ) { // To build the polygonal shape outside the actual shape, we use a bigger // radius to build rounded ends. // However, the width of the segment is too big. // so, later, we will clamp the polygonal shape with the bounding box // of the segment. int radius = aWidth / 2; int numSegs = std::max( GetArcToSegmentCount( radius, aError, 360.0 ), 6 ); // Because we want to create 2 arcs (one at each segment end) numSegs must be // a even value (we will used numSegs/2 later) if( numSegs % 2 != 0 ) numSegs++; int delta = 3600 / numSegs; // rotate angle in 0.1 degree double correction = GetCircletoPolyCorrectionFactor( numSegs ); radius = radius * correction; // make segments outside the circles // end point is the coordinate relative to aStart wxPoint endp = aEnd - aStart; wxPoint startp = aStart; wxPoint corner; SHAPE_POLY_SET polyshape; polyshape.NewOutline(); // normalize the position in order to have endp.x >= 0 // it makes calculations more easy to understand if( endp.x < 0 ) { endp = aStart - aEnd; startp = aEnd; } // delta_angle is in radian double delta_angle = atan2( (double)endp.y, (double)endp.x ); int seg_len = KiROUND( EuclideanNorm( endp ) ); // Compute the outlines of the segment, and creates a polygon // Note: the polygonal shape is built from the equivalent horizontal // segment starting ar 0,0, and ending at seg_len,0 // add right rounded end: for( int ii = 0; ii < numSegs / 2; ii++ ) { corner = wxPoint( 0, radius ); RotatePoint( &corner, delta * ii ); corner.x += seg_len; polyshape.Append( corner.x, corner.y ); } // Finish arc: corner = wxPoint( seg_len, -radius ); polyshape.Append( corner.x, corner.y ); // add left rounded end: for( int ii = 0; ii < numSegs / 2; ii++ ) { corner = wxPoint( 0, -radius ); RotatePoint( &corner, delta * ii ); polyshape.Append( corner.x, corner.y ); } // Finish arc: corner = wxPoint( 0, radius ); polyshape.Append( corner.x, corner.y ); // Now, clamp the polygonal shape (too big) with the segment bounding box // the polygonal shape bbox equivalent to the segment has a too big height, // and the right width if( correction > 1.0 ) { SHAPE_POLY_SET bbox; bbox.NewOutline(); // Build the bbox (a horizontal rectangle). int halfwidth = aWidth / 2; // Use the exact segment width for the bbox height corner.x = -radius - 2; // use a bbox width slightly bigger to avoid // creating useless corner at segment ends corner.y = halfwidth; bbox.Append( corner.x, corner.y ); corner.y = -halfwidth; bbox.Append( corner.x, corner.y ); corner.x = radius + seg_len + 2; bbox.Append( corner.x, corner.y ); corner.y = halfwidth; bbox.Append( corner.x, corner.y ); // Now, clamp the shape polyshape.BooleanIntersection( bbox, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); // Note the final polygon is a simple, convex polygon with no hole // due to the shape of initial polygons } // Rotate and move the polygon to its right location polyshape.Rotate( delta_angle, VECTOR2I( 0, 0 ) ); polyshape.Move( startp ); aCornerBuffer.Append( polyshape); } void GetRoundRectCornerCenters( wxPoint aCenters[4], int aRadius, const wxPoint& aPosition, const wxSize& aSize, double aRotation ) { wxSize size( aSize/2 ); size.x -= aRadius; size.y -= aRadius; // Ensure size is > 0, to avoid generating unusable shapes // which can crash kicad. size.x = std::max( 1, size.x ); size.y = std::max( 1, size.y ); aCenters[0] = wxPoint( -size.x, size.y ); aCenters[1] = wxPoint( size.x, size.y ); aCenters[2] = wxPoint( size.x, -size.y ); aCenters[3] = wxPoint( -size.x, -size.y ); // Rotate the polygon if( aRotation != 0.0 ) { for( int ii = 0; ii < 4; ii++ ) RotatePoint( &aCenters[ii], aRotation ); } // move the polygon to the position for( int ii = 0; ii < 4; ii++ ) aCenters[ii] += aPosition; } void TransformRoundChamferedRectToPolygon( SHAPE_POLY_SET& aCornerBuffer, const wxPoint& aPosition, const wxSize& aSize, double aRotation, int aCornerRadius, double aChamferRatio, int aChamferCorners, int aError ) { // Build the basic shape in orientation 0.0, position 0,0 for chamfered corners // or in actual position/orientation for round rect only wxPoint corners[4]; GetRoundRectCornerCenters( corners, aCornerRadius, aChamferCorners ? wxPoint( 0, 0 ) : aPosition, aSize, aChamferCorners ? 0.0 : aRotation ); SHAPE_POLY_SET outline; outline.NewOutline(); for( const wxPoint& corner : corners) outline.Append( corner ); // These are small radius corners (of which there may be many), so peg the segs-per-circle // to no more than 16. int numSegs = std::max( GetArcToSegmentCount( aCornerRadius, aError, 360.0 ), 16 ); // To build the polygonal shape outside the actual shape, we use a bigger // radius to build rounded corners. // However, the size of the shape is too large. // so, we also clamp the polygonal shape with the bounding box // of the initial shape. double correction = GetCircletoPolyCorrectionFactor( numSegs ); int radius = aCornerRadius * correction; // make segments outside the circles outline.Inflate( radius, numSegs ); if( correction > 1.0 ) { // Refinement: clamp the inflated polygonal shape by the rectangular shape // containing the rounded polygon SHAPE_POLY_SET bbox; // the rectangular shape bbox.NewOutline(); for( const wxPoint& corner : corners ) bbox.Append( corner ); // Just build the rectangular bbox bbox.Inflate( aCornerRadius, 1, SHAPE_POLY_SET::CORNER_STRATEGY::ALLOW_ACUTE_CORNERS ); // Now, clamp the shape outline.BooleanIntersection( bbox, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); // Note the final polygon is a simple, convex polygon with no hole // due to the shape of initial polygons } if( aChamferCorners == RECT_NO_CHAMFER ) // no chamfer { // Add the outline: aCornerBuffer.Append( outline ); return; } // Now we have the round rect outline, in position 0,0 orientation 0.0. // Chamfer the corner(s). int chamfer_value = aChamferRatio * std::min( aSize.x, aSize.y ); SHAPE_POLY_SET chamfered_corner; // corner shape for the current corner to chamfer int corner_id[4] = { RECT_CHAMFER_TOP_LEFT, RECT_CHAMFER_TOP_RIGHT, RECT_CHAMFER_BOTTOM_LEFT, RECT_CHAMFER_BOTTOM_RIGHT }; // Depending on the corner position, signX[] and signY[] give the sign of chamfer // coordinates relative to the corner position // The first corner is the top left corner, then top right, bottom left and bottom right int signX[4] = {1, -1, 1,-1 }; int signY[4] = {1, 1, -1,-1 }; for( int ii = 0; ii < 4; ii++ ) { if( (corner_id[ii] & aChamferCorners) == 0 ) continue; VECTOR2I corner_pos( -signX[ii]*aSize.x/2, -signY[ii]*aSize.y/2 ); if( aCornerRadius ) { // We recreate a rectangular area covering the full rounded corner (max size = aSize/2) // to rebuild the corner before chamfering, to be sure the rounded corner shape does not // overlap the chamfered corner shape: chamfered_corner.RemoveAllContours(); chamfered_corner.NewOutline(); chamfered_corner.Append( 0, 0 ); chamfered_corner.Append( 0, signY[ii] * aSize.y / 2 ); chamfered_corner.Append( signX[ii] * aSize.x / 2, signY[ii] * aSize.y / 2 ); chamfered_corner.Append( signX[ii] * aSize.x / 2, 0 ); chamfered_corner.Move( corner_pos ); outline.BooleanAdd( chamfered_corner, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); } // Now chamfer this corner chamfered_corner.RemoveAllContours(); chamfered_corner.NewOutline(); chamfered_corner.Append( 0, 0 ); chamfered_corner.Append( 0, signY[ii] * chamfer_value ); chamfered_corner.Append( signX[ii] * chamfer_value, 0 ); chamfered_corner.Move( corner_pos ); outline.BooleanSubtract( chamfered_corner, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); } // Rotate and move the outline: if( aRotation != 0.0 ) outline.Rotate( DECIDEG2RAD( -aRotation ), VECTOR2I( 0, 0 ) ); outline.Move( VECTOR2I( aPosition ) ); // Add the outline: aCornerBuffer.Append( outline ); } void TransformSegmentToPolygon( SHAPE_POLY_SET& aCornerBuffer, wxPoint aStart, wxPoint aEnd, int aError, int aWidth ) { int radius = aWidth / 2; wxPoint endp = aEnd - aStart; // end point coordinate for the same segment starting at (0,0) wxPoint startp = aStart; wxPoint corner; VECTOR2I polypoint; int numSegs = std::max( GetArcToSegmentCount( radius, aError, 360.0 ), 6 ); double correction = GetCircletoPolyCorrectionFactor( numSegs ); int delta = 3600 / numSegs; // rotate angle in 0.1 degree radius = KiROUND( radius * correction ); aCornerBuffer.NewOutline(); // normalize the position in order to have endp.x >= 0; if( endp.x < 0 ) { endp = aStart - aEnd; startp = aEnd; } double delta_angle = ArcTangente( endp.y, endp.x ); // delta_angle is in 0.1 degrees int seg_len = KiROUND( EuclideanNorm( endp ) ); // Compute the outlines of the segment, and creates a polygon // add right rounded end: for( int ii = 0; ii < 1800; ii += delta ) { corner = wxPoint( 0, radius ); RotatePoint( &corner, ii ); corner.x += seg_len; RotatePoint( &corner, -delta_angle ); corner += startp; polypoint.x = corner.x; polypoint.y = corner.y; aCornerBuffer.Append( polypoint.x, polypoint.y ); } // Finish arc: corner = wxPoint( seg_len, -radius ); RotatePoint( &corner, -delta_angle ); corner += startp; polypoint.x = corner.x; polypoint.y = corner.y; aCornerBuffer.Append( polypoint.x, polypoint.y ); // add left rounded end: for( int ii = 0; ii < 1800; ii += delta ) { corner = wxPoint( 0, -radius ); RotatePoint( &corner, ii ); RotatePoint( &corner, -delta_angle ); corner += startp; polypoint.x = corner.x; polypoint.y = corner.y; aCornerBuffer.Append( polypoint.x, polypoint.y ); } // Finish arc: corner = wxPoint( 0, radius ); RotatePoint( &corner, -delta_angle ); corner += startp; polypoint.x = corner.x; polypoint.y = corner.y; aCornerBuffer.Append( polypoint.x, polypoint.y ); } void TransformArcToPolygon( SHAPE_POLY_SET& aCornerBuffer, wxPoint aCentre, wxPoint aStart, double aArcAngle, int aError, int aWidth ) { wxPoint arc_start, arc_end; int dist = EuclideanNorm( aCentre - aStart ); int numSegs = std::max( GetArcToSegmentCount( dist, aError, 360.0 ), 6 ); int delta = 3600 / numSegs; // rotate angle in 0.1 degree arc_end = arc_start = aStart; if( aArcAngle != 3600 ) RotatePoint( &arc_end, aCentre, -aArcAngle ); if( aArcAngle < 0 ) { std::swap( arc_start, arc_end ); aArcAngle = -aArcAngle; } // Compute the ends of segments and creates poly wxPoint curr_end = arc_start; wxPoint curr_start = arc_start; for( int ii = delta; ii < aArcAngle; ii += delta ) { curr_end = arc_start; RotatePoint( &curr_end, aCentre, -ii ); TransformSegmentToPolygon( aCornerBuffer, curr_start, curr_end, aError, aWidth ); curr_start = curr_end; } if( curr_end != arc_end ) TransformSegmentToPolygon( aCornerBuffer, curr_end, arc_end, aError, aWidth ); } void TransformRingToPolygon( SHAPE_POLY_SET& aCornerBuffer, wxPoint aCentre, int aRadius, int aError, int aWidth ) { // Compute the corners positions and creates the poly int inner_radius = aRadius - ( aWidth / 2 ); int outer_radius = inner_radius + aWidth; if( inner_radius <= 0 ) { //In this case, the ring is just a circle (no hole inside) TransformCircleToPolygon( aCornerBuffer, aCentre, aRadius + ( aWidth / 2 ), aError ); return; } SHAPE_POLY_SET buffer; TransformCircleToPolygon( buffer, aCentre, outer_radius, aError ); // Build the hole: buffer.NewHole(); TransformCircleToPolygon( buffer.Hole( 0, 0 ), aCentre, inner_radius, aError ); buffer.Fracture( SHAPE_POLY_SET::PM_FAST ); aCornerBuffer.Append( buffer ); }