//TITLE // // R-TREES: A DYNAMIC INDEX STRUCTURE FOR SPATIAL SEARCHING // //DESCRIPTION // // A C++ templated version of the RTree algorithm. // For more information please read the comments in RTree.h // //AUTHORS // // * 1983 Original algorithm and test code by Antonin Guttman and Michael Stonebraker, UC Berkely // * 1994 ANCI C ported from original test code by Melinda Green - melinda@superliminal.com // * 1995 Sphere volume fix for degeneracy problem submitted by Paul Brook // * 2004 Templated C++ port by Greg Douglas // * 2013 CERN (www.cern.ch) // //LICENSE: // // Entirely free for all uses. Enjoy! #ifndef RTREE_H #define RTREE_H // NOTE This file compiles under MSVC 6 SP5 and MSVC .Net 2003 it may not work on other compilers without modification. // NOTE These next few lines may be win32 specific, you may need to modify them to compile on other platform #include #include #include #include #define ASSERT assert // RTree uses ASSERT( condition ) #ifndef rMin #define rMin std::min #endif // rMin #ifndef rMax #define rMax std::max #endif // rMax // // RTree.h // #define RTREE_TEMPLATE template #define RTREE_SEARCH_TEMPLATE template #define RTREE_QUAL RTree #define RTREE_SEARCH_QUAL RTree #define RTREE_DONT_USE_MEMPOOLS // This version does not contain a fixed memory allocator, fill in lines with EXAMPLE to implement one. #define RTREE_USE_SPHERICAL_VOLUME // Better split classification, may be slower on some systems // Fwd decl class RTFileStream; // File I/O helper class, look below for implementation and notes. /// \class RTree /// Implementation of RTree, a multidimensional bounding rectangle tree. /// Example usage: For a 3-dimensional tree use RTree myTree; /// /// This modified, templated C++ version by Greg Douglas at Auran (http://www.auran.com) /// /// DATATYPE Referenced data, should be int, void*, obj* etc. no larger than sizeof and simple type /// ELEMTYPE Type of element such as int or float /// NUMDIMS Number of dimensions such as 2 or 3 /// ELEMTYPEREAL Type of element that allows fractional and large values such as float or double, for use in volume calcs /// /// NOTES: Inserting and removing data requires the knowledge of its constant Minimal Bounding Rectangle. /// This version uses new/delete for nodes, I recommend using a fixed size allocator for efficiency. /// Instead of using a callback function for returned results, I recommend and efficient pre-sized, grow-only memory /// array similar to MFC CArray or STL Vector for returning search query result. /// template class RTree { protected: struct Node; // Fwd decl. Used by other internal structs and iterator public: // These constant must be declared after Branch and before Node struct // Stuck up here for MSVC 6 compiler. NSVC .NET 2003 is much happier. enum { MAXNODES = TMAXNODES, ///< Max elements in node MINNODES = TMINNODES, ///< Min elements in node }; struct Statistics { int maxDepth; int avgDepth; int maxNodeLoad; int avgNodeLoad; int totalItems; }; public: RTree(); virtual ~RTree(); /// Insert entry /// \param a_min Min of bounding rect /// \param a_max Max of bounding rect /// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed. void Insert( const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId ); /// Remove entry /// \param a_min Min of bounding rect /// \param a_max Max of bounding rect /// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed. void Remove( const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId ); /// Find all within search rectangle /// \param a_min Min of search bounding rect /// \param a_max Max of search bounding rect /// \param a_resultCallback Callback function to return result. Callback should return 'true' to continue searching /// \param a_context User context to pass as parameter to a_resultCallback /// \return Returns the number of entries found int Search( const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], bool a_resultCallback( DATATYPE a_data, void* a_context ), void* a_context ); template int Search( const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], VISITOR& a_visitor ) { #ifdef _DEBUG for( int index = 0; index 0; } /// Access the current data element. Caller must be sure iterator is not NULL first. DATATYPE& operator*() { ASSERT( IsNotNull() ); StackElement& curTos = m_stack[m_tos - 1]; return curTos.m_node->m_branch[curTos.m_branchIndex].m_data; } /// Access the current data element. Caller must be sure iterator is not NULL first. const DATATYPE& operator*() const { ASSERT( IsNotNull() ); StackElement& curTos = m_stack[m_tos - 1]; return curTos.m_node->m_branch[curTos.m_branchIndex].m_data; } /// Find the next data element bool operator++() { return FindNextData(); } /// Get the bounds for this node void GetBounds( ELEMTYPE a_min[NUMDIMS], ELEMTYPE a_max[NUMDIMS] ) { ASSERT( IsNotNull() ); StackElement& curTos = m_stack[m_tos - 1]; Branch& curBranch = curTos.m_node->m_branch[curTos.m_branchIndex]; for( int index = 0; index < NUMDIMS; ++index ) { a_min[index] = curBranch.m_rect.m_min[index]; a_max[index] = curBranch.m_rect.m_max[index]; } } private: /// Reset iterator void Init() { m_tos = 0; } /// Find the next data element in the tree (For internal use only) bool FindNextData() { for( ; ; ) { if( m_tos <= 0 ) { return false; } StackElement curTos = Pop(); // Copy stack top cause it may change as we use it if( curTos.m_node->IsLeaf() ) { // Keep walking through data while we can if( curTos.m_branchIndex + 1 < curTos.m_node->m_count ) { // There is more data, just point to the next one Push( curTos.m_node, curTos.m_branchIndex + 1 ); return true; } // No more data, so it will fall back to previous level } else { if( curTos.m_branchIndex + 1 < curTos.m_node->m_count ) { // Push sibling on for future tree walk // This is the 'fall back' node when we finish with the current level Push( curTos.m_node, curTos.m_branchIndex + 1 ); } // Since cur node is not a leaf, push first of next level to get deeper into the tree Node* nextLevelnode = curTos.m_node->m_branch[curTos.m_branchIndex].m_child; Push( nextLevelnode, 0 ); // If we pushed on a new leaf, exit as the data is ready at TOS if( nextLevelnode->IsLeaf() ) { return true; } } } } /// Push node and branch onto iteration stack (For internal use only) void Push( Node* a_node, int a_branchIndex ) { m_stack[m_tos].m_node = a_node; m_stack[m_tos].m_branchIndex = a_branchIndex; ++m_tos; ASSERT( m_tos <= MAX_STACK ); } /// Pop element off iteration stack (For internal use only) StackElement& Pop() { ASSERT( m_tos > 0 ); --m_tos; return m_stack[m_tos]; } StackElement m_stack[MAX_STACK]; ///< Stack as we are doing iteration instead of recursion int m_tos; ///< Top Of Stack index friend class RTree; // Allow hiding of non-public functions while allowing manipulation by logical owner }; /// Get 'first' for iteration void GetFirst( Iterator& a_it ) { a_it.Init(); Node* first = m_root; while( first ) { if( first->IsInternalNode() && first->m_count > 1 ) { a_it.Push( first, 1 ); // Descend sibling branch later } else if( first->IsLeaf() ) { if( first->m_count ) { a_it.Push( first, 0 ); } break; } first = first->m_branch[0].m_child; } } /// Get Next for iteration void GetNext( Iterator& a_it ) { ++a_it; } /// Is iterator NULL, or at end? bool IsNull( Iterator& a_it ) { return a_it.IsNull(); } /// Get object at iterator position DATATYPE& GetAt( Iterator& a_it ) { return *a_it; } protected: /// Minimal bounding rectangle (n-dimensional) struct Rect { ELEMTYPE m_min[NUMDIMS]; ///< Min dimensions of bounding box ELEMTYPE m_max[NUMDIMS]; ///< Max dimensions of bounding box }; /// May be data or may be another subtree /// The parents level determines this. /// If the parents level is 0, then this is data struct Branch { Rect m_rect; ///< Bounds union { Node* m_child; ///< Child node DATATYPE m_data; ///< Data Id or Ptr }; }; /// Node for each branch level struct Node { bool IsInternalNode() { return m_level > 0; } // Not a leaf, but a internal node bool IsLeaf() { return m_level == 0; } // A leaf, contains data int m_count; ///< Count int m_level; ///< Leaf is zero, others positive Branch m_branch[MAXNODES]; ///< Branch }; /// A link list of nodes for reinsertion after a delete operation struct ListNode { ListNode* m_next; ///< Next in list Node* m_node; ///< Node }; /// Variables for finding a split partition struct PartitionVars { int m_partition[MAXNODES + 1]; int m_total; int m_minFill; int m_taken[MAXNODES + 1]; int m_count[2]; Rect m_cover[2]; ELEMTYPEREAL m_area[2]; Branch m_branchBuf[MAXNODES + 1]; int m_branchCount; Rect m_coverSplit; ELEMTYPEREAL m_coverSplitArea; }; /// Data structure used for Nearest Neighbor search implementation struct NNNode { Branch m_branch; ELEMTYPE minDist; bool isLeaf; }; Node* AllocNode(); void FreeNode( Node* a_node ); void InitNode( Node* a_node ); void InitRect( Rect* a_rect ); bool InsertRectRec( Rect* a_rect, const DATATYPE& a_id, Node* a_node, Node** a_newNode, int a_level ); bool InsertRect( Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level ); Rect NodeCover( Node* a_node ); bool AddBranch( Branch* a_branch, Node* a_node, Node** a_newNode ); void DisconnectBranch( Node* a_node, int a_index ); int PickBranch( Rect* a_rect, Node* a_node ); Rect CombineRect( Rect* a_rectA, Rect* a_rectB ); void SplitNode( Node* a_node, Branch* a_branch, Node** a_newNode ); ELEMTYPEREAL RectSphericalVolume( Rect* a_rect ); ELEMTYPEREAL RectVolume( Rect* a_rect ); ELEMTYPEREAL CalcRectVolume( Rect* a_rect ); void GetBranches( Node* a_node, Branch* a_branch, PartitionVars* a_parVars ); void ChoosePartition( PartitionVars* a_parVars, int a_minFill ); void LoadNodes( Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars ); void InitParVars( PartitionVars* a_parVars, int a_maxRects, int a_minFill ); void PickSeeds( PartitionVars* a_parVars ); void Classify( int a_index, int a_group, PartitionVars* a_parVars ); bool RemoveRect( Rect* a_rect, const DATATYPE& a_id, Node** a_root ); bool RemoveRectRec( Rect* a_rect, const DATATYPE& a_id, Node* a_node, ListNode** a_listNode ); ListNode* AllocListNode(); void FreeListNode( ListNode* a_listNode ); bool Overlap( Rect* a_rectA, Rect* a_rectB ); void ReInsert( Node* a_node, ListNode** a_listNode ); ELEMTYPE MinDist( const ELEMTYPE a_point[NUMDIMS], Rect* a_rect ); void InsertNNListSorted( std::vector* nodeList, NNNode* newNode ); bool Search( Node * a_node, Rect * a_rect, int& a_foundCount, bool a_resultCallback( DATATYPE a_data, void* a_context ), void* a_context ); template bool Search( Node* a_node, Rect* a_rect, VISITOR& a_visitor, int& a_foundCount ) { ASSERT( a_node ); ASSERT( a_node->m_level >= 0 ); ASSERT( a_rect ); if( a_node->IsInternalNode() ) // This is an internal node in the tree { for( int index = 0; index < a_node->m_count; ++index ) { if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) ) { if( !Search( a_node->m_branch[index].m_child, a_rect, a_visitor, a_foundCount ) ) { return false; // Don't continue searching } } } } else // This is a leaf node { for( int index = 0; index < a_node->m_count; ++index ) { if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) ) { DATATYPE& id = a_node->m_branch[index].m_data; if( !a_visitor( id ) ) return false; a_foundCount++; } } } return true; // Continue searching } void RemoveAllRec( Node* a_node ); void Reset(); void CountRec( Node* a_node, int& a_count ); bool SaveRec( Node* a_node, RTFileStream& a_stream ); bool LoadRec( Node* a_node, RTFileStream& a_stream ); Node* m_root; ///< Root of tree ELEMTYPEREAL m_unitSphereVolume; ///< Unit sphere constant for required number of dimensions }; // Because there is not stream support, this is a quick and dirty file I/O helper. // Users will likely replace its usage with a Stream implementation from their favorite API. class RTFileStream { FILE* m_file; public: RTFileStream() { m_file = NULL; } ~RTFileStream() { Close(); } bool OpenRead( const char* a_fileName ) { m_file = fopen( a_fileName, "rb" ); if( !m_file ) { return false; } return true; } bool OpenWrite( const char* a_fileName ) { m_file = fopen( a_fileName, "wb" ); if( !m_file ) { return false; } return true; } void Close() { if( m_file ) { fclose( m_file ); m_file = NULL; } } template size_t Write( const TYPE& a_value ) { ASSERT( m_file ); return fwrite( (void*) &a_value, sizeof(a_value), 1, m_file ); } template size_t WriteArray( const TYPE* a_array, int a_count ) { ASSERT( m_file ); return fwrite( (void*) a_array, sizeof(TYPE) * a_count, 1, m_file ); } template size_t Read( TYPE& a_value ) { ASSERT( m_file ); return fread( (void*) &a_value, sizeof(a_value), 1, m_file ); } template size_t ReadArray( TYPE* a_array, int a_count ) { ASSERT( m_file ); return fread( (void*) a_array, sizeof(TYPE) * a_count, 1, m_file ); } }; RTREE_TEMPLATE RTREE_QUAL::RTree() { ASSERT( MAXNODES > MINNODES ); ASSERT( MINNODES > 0 ); // We only support machine word size simple data type eg. integer index or object pointer. // Since we are storing as union with non data branch ASSERT( sizeof(DATATYPE) == sizeof(void*) || sizeof(DATATYPE) == sizeof(int) ); // Precomputed volumes of the unit spheres for the first few dimensions const float UNIT_SPHERE_VOLUMES[] = { 0.000000f, 2.000000f, 3.141593f, // Dimension 0,1,2 4.188790f, 4.934802f, 5.263789f, // Dimension 3,4,5 5.167713f, 4.724766f, 4.058712f, // Dimension 6,7,8 3.298509f, 2.550164f, 1.884104f, // Dimension 9,10,11 1.335263f, 0.910629f, 0.599265f, // Dimension 12,13,14 0.381443f, 0.235331f, 0.140981f, // Dimension 15,16,17 0.082146f, 0.046622f, 0.025807f, // Dimension 18,19,20 }; m_root = AllocNode(); m_root->m_level = 0; m_unitSphereVolume = (ELEMTYPEREAL) UNIT_SPHERE_VOLUMES[NUMDIMS]; } RTREE_TEMPLATE RTREE_QUAL::~RTree() { Reset(); // Free, or reset node memory } RTREE_TEMPLATE void RTREE_QUAL::Insert( const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId ) { #ifdef _DEBUG for( int index = 0; indexNearestNeighbor( a_point, 0, 0 ); } RTREE_TEMPLATE DATATYPE RTREE_QUAL::NearestNeighbor( const ELEMTYPE a_point[NUMDIMS], ELEMTYPE a_squareDistanceCallback( const ELEMTYPE a_point[NUMDIMS], DATATYPE a_data ), ELEMTYPE* a_squareDistance ) { typedef typename std::vector::iterator iterator; std::vector nodeList; Node* node = m_root; NNNode* closestNode = 0; while( !closestNode || !closestNode->isLeaf ) { //check every node on this level for( int index = 0; index < node->m_count; ++index ) { NNNode* newNode = new NNNode; newNode->isLeaf = node->IsLeaf(); newNode->m_branch = node->m_branch[index]; if( newNode->isLeaf && a_squareDistanceCallback ) newNode->minDist = a_squareDistanceCallback( a_point, newNode->m_branch.m_data ); else newNode->minDist = this->MinDist( a_point, &(node->m_branch[index].m_rect) ); //TODO: a custom list could be more efficient than a vector this->InsertNNListSorted( &nodeList, newNode ); } if( nodeList.size() == 0 ) { return 0; } closestNode = nodeList.back(); node = closestNode->m_branch.m_child; nodeList.pop_back(); free(closestNode); } // free memory used for remaining NNNodes in nodeList for( iterator iter = nodeList.begin(); iter != nodeList.end(); ++iter ) { NNNode* node = *iter; free(node); } *a_squareDistance = closestNode->minDist; return closestNode->m_branch.m_data; } RTREE_TEMPLATE int RTREE_QUAL::Count() { int count = 0; CountRec( m_root, count ); return count; } RTREE_TEMPLATE void RTREE_QUAL::CountRec( Node* a_node, int& a_count ) { if( a_node->IsInternalNode() ) // not a leaf node { for( int index = 0; index < a_node->m_count; ++index ) { CountRec( a_node->m_branch[index].m_child, a_count ); } } else // A leaf node { a_count += a_node->m_count; } } RTREE_TEMPLATE bool RTREE_QUAL::Load( const char* a_fileName ) { RemoveAll(); // Clear existing tree RTFileStream stream; if( !stream.OpenRead( a_fileName ) ) { return false; } bool result = Load( stream ); stream.Close(); return result; }; RTREE_TEMPLATE bool RTREE_QUAL::Load( RTFileStream& a_stream ) { // Write some kind of header int _dataFileId = ('R' << 0) | ('T' << 8) | ('R' << 16) | ('E' << 24); int _dataSize = sizeof(DATATYPE); int _dataNumDims = NUMDIMS; int _dataElemSize = sizeof(ELEMTYPE); int _dataElemRealSize = sizeof(ELEMTYPEREAL); int _dataMaxNodes = TMAXNODES; int _dataMinNodes = TMINNODES; int dataFileId = 0; int dataSize = 0; int dataNumDims = 0; int dataElemSize = 0; int dataElemRealSize = 0; int dataMaxNodes = 0; int dataMinNodes = 0; a_stream.Read( dataFileId ); a_stream.Read( dataSize ); a_stream.Read( dataNumDims ); a_stream.Read( dataElemSize ); a_stream.Read( dataElemRealSize ); a_stream.Read( dataMaxNodes ); a_stream.Read( dataMinNodes ); bool result = false; // Test if header was valid and compatible if( (dataFileId == _dataFileId) && (dataSize == _dataSize) && (dataNumDims == _dataNumDims) && (dataElemSize == _dataElemSize) && (dataElemRealSize == _dataElemRealSize) && (dataMaxNodes == _dataMaxNodes) && (dataMinNodes == _dataMinNodes) ) { // Recursively load tree result = LoadRec( m_root, a_stream ); } return result; } RTREE_TEMPLATE bool RTREE_QUAL::LoadRec( Node* a_node, RTFileStream& a_stream ) { a_stream.Read( a_node->m_level ); a_stream.Read( a_node->m_count ); if( a_node->IsInternalNode() ) // not a leaf node { for( int index = 0; index < a_node->m_count; ++index ) { Branch* curBranch = &a_node->m_branch[index]; a_stream.ReadArray( curBranch->m_rect.m_min, NUMDIMS ); a_stream.ReadArray( curBranch->m_rect.m_max, NUMDIMS ); curBranch->m_child = AllocNode(); LoadRec( curBranch->m_child, a_stream ); } } else // A leaf node { for( int index = 0; index < a_node->m_count; ++index ) { Branch* curBranch = &a_node->m_branch[index]; a_stream.ReadArray( curBranch->m_rect.m_min, NUMDIMS ); a_stream.ReadArray( curBranch->m_rect.m_max, NUMDIMS ); a_stream.Read( curBranch->m_data ); } } return true; // Should do more error checking on I/O operations } RTREE_TEMPLATE bool RTREE_QUAL::Save( const char* a_fileName ) { RTFileStream stream; if( !stream.OpenWrite( a_fileName ) ) { return false; } bool result = Save( stream ); stream.Close(); return result; } RTREE_TEMPLATE bool RTREE_QUAL::Save( RTFileStream& a_stream ) { // Write some kind of header int dataFileId = ('R' << 0) | ('T' << 8) | ('R' << 16) | ('E' << 24); int dataSize = sizeof(DATATYPE); int dataNumDims = NUMDIMS; int dataElemSize = sizeof(ELEMTYPE); int dataElemRealSize = sizeof(ELEMTYPEREAL); int dataMaxNodes = TMAXNODES; int dataMinNodes = TMINNODES; a_stream.Write( dataFileId ); a_stream.Write( dataSize ); a_stream.Write( dataNumDims ); a_stream.Write( dataElemSize ); a_stream.Write( dataElemRealSize ); a_stream.Write( dataMaxNodes ); a_stream.Write( dataMinNodes ); // Recursively save tree bool result = SaveRec( m_root, a_stream ); return result; } RTREE_TEMPLATE bool RTREE_QUAL::SaveRec( Node* a_node, RTFileStream& a_stream ) { a_stream.Write( a_node->m_level ); a_stream.Write( a_node->m_count ); if( a_node->IsInternalNode() ) // not a leaf node { for( int index = 0; index < a_node->m_count; ++index ) { Branch* curBranch = &a_node->m_branch[index]; a_stream.WriteArray( curBranch->m_rect.m_min, NUMDIMS ); a_stream.WriteArray( curBranch->m_rect.m_max, NUMDIMS ); SaveRec( curBranch->m_child, a_stream ); } } else // A leaf node { for( int index = 0; index < a_node->m_count; ++index ) { Branch* curBranch = &a_node->m_branch[index]; a_stream.WriteArray( curBranch->m_rect.m_min, NUMDIMS ); a_stream.WriteArray( curBranch->m_rect.m_max, NUMDIMS ); a_stream.Write( curBranch->m_data ); } } return true; // Should do more error checking on I/O operations } RTREE_TEMPLATE void RTREE_QUAL::RemoveAll() { // Delete all existing nodes Reset(); m_root = AllocNode(); m_root->m_level = 0; } RTREE_TEMPLATE void RTREE_QUAL::Reset() { #ifdef RTREE_DONT_USE_MEMPOOLS // Delete all existing nodes RemoveAllRec( m_root ); #else // RTREE_DONT_USE_MEMPOOLS // Just reset memory pools. We are not using complex types // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS } RTREE_TEMPLATE void RTREE_QUAL::RemoveAllRec( Node* a_node ) { ASSERT( a_node ); ASSERT( a_node->m_level >= 0 ); if( a_node->IsInternalNode() ) // This is an internal node in the tree { for( int index = 0; index < a_node->m_count; ++index ) { RemoveAllRec( a_node->m_branch[index].m_child ); } } FreeNode( a_node ); } RTREE_TEMPLATE typename RTREE_QUAL::Node* RTREE_QUAL::AllocNode() { Node* newNode; #ifdef RTREE_DONT_USE_MEMPOOLS newNode = new Node; #else // RTREE_DONT_USE_MEMPOOLS // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS InitNode( newNode ); return newNode; } RTREE_TEMPLATE void RTREE_QUAL::FreeNode( Node* a_node ) { ASSERT( a_node ); #ifdef RTREE_DONT_USE_MEMPOOLS delete a_node; #else // RTREE_DONT_USE_MEMPOOLS // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS } // Allocate space for a node in the list used in DeletRect to // store Nodes that are too empty. RTREE_TEMPLATE typename RTREE_QUAL::ListNode* RTREE_QUAL::AllocListNode() { #ifdef RTREE_DONT_USE_MEMPOOLS return new ListNode; #else // RTREE_DONT_USE_MEMPOOLS // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS } RTREE_TEMPLATE void RTREE_QUAL::FreeListNode( ListNode* a_listNode ) { #ifdef RTREE_DONT_USE_MEMPOOLS delete a_listNode; #else // RTREE_DONT_USE_MEMPOOLS // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS } RTREE_TEMPLATE void RTREE_QUAL::InitNode( Node* a_node ) { a_node->m_count = 0; a_node->m_level = -1; } RTREE_TEMPLATE void RTREE_QUAL::InitRect( Rect* a_rect ) { for( int index = 0; index < NUMDIMS; ++index ) { a_rect->m_min[index] = (ELEMTYPE) 0; a_rect->m_max[index] = (ELEMTYPE) 0; } } // Inserts a new data rectangle into the index structure. // Recursively descends tree, propagates splits back up. // Returns 0 if node was not split. Old node updated. // If node was split, returns 1 and sets the pointer pointed to by // new_node to point to the new node. Old node updated to become one of two. // The level argument specifies the number of steps up from the leaf // level to insert; e.g. a data rectangle goes in at level = 0. RTREE_TEMPLATE bool RTREE_QUAL::InsertRectRec( Rect* a_rect, const DATATYPE& a_id, Node* a_node, Node** a_newNode, int a_level ) { ASSERT( a_rect && a_node && a_newNode ); ASSERT( a_level >= 0 && a_level <= a_node->m_level ); int index; Branch branch; Node* otherNode; // Still above level for insertion, go down tree recursively if( a_node->m_level > a_level ) { index = PickBranch( a_rect, a_node ); if( !InsertRectRec( a_rect, a_id, a_node->m_branch[index].m_child, &otherNode, a_level ) ) { // Child was not split a_node->m_branch[index].m_rect = CombineRect( a_rect, &(a_node->m_branch[index].m_rect) ); return false; } else // Child was split { a_node->m_branch[index].m_rect = NodeCover( a_node->m_branch[index].m_child ); branch.m_child = otherNode; branch.m_rect = NodeCover( otherNode ); return AddBranch( &branch, a_node, a_newNode ); } } else if( a_node->m_level == a_level ) // Have reached level for insertion. Add rect, split if necessary { branch.m_rect = *a_rect; branch.m_child = (Node*) a_id; // Child field of leaves contains id of data record return AddBranch( &branch, a_node, a_newNode ); } else { // Should never occur ASSERT( 0 ); return false; } } // Insert a data rectangle into an index structure. // InsertRect provides for splitting the root; // returns 1 if root was split, 0 if it was not. // The level argument specifies the number of steps up from the leaf // level to insert; e.g. a data rectangle goes in at level = 0. // InsertRect2 does the recursion. // RTREE_TEMPLATE bool RTREE_QUAL::InsertRect( Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level ) { ASSERT( a_rect && a_root ); ASSERT( a_level >= 0 && a_level <= (*a_root)->m_level ); #ifdef _DEBUG for( int index = 0; index < NUMDIMS; ++index ) { ASSERT( a_rect->m_min[index] <= a_rect->m_max[index] ); } #endif // _DEBUG Node* newRoot; Node* newNode; Branch branch; if( InsertRectRec( a_rect, a_id, *a_root, &newNode, a_level ) ) // Root split { newRoot = AllocNode(); // Grow tree taller and new root newRoot->m_level = (*a_root)->m_level + 1; branch.m_rect = NodeCover( *a_root ); branch.m_child = *a_root; AddBranch( &branch, newRoot, NULL ); branch.m_rect = NodeCover( newNode ); branch.m_child = newNode; AddBranch( &branch, newRoot, NULL ); *a_root = newRoot; return true; } return false; } // Find the smallest rectangle that includes all rectangles in branches of a node. RTREE_TEMPLATE typename RTREE_QUAL::Rect RTREE_QUAL::NodeCover( Node* a_node ) { ASSERT( a_node ); int firstTime = true; Rect rect; InitRect( &rect ); for( int index = 0; index < a_node->m_count; ++index ) { if( firstTime ) { rect = a_node->m_branch[index].m_rect; firstTime = false; } else { rect = CombineRect( &rect, &(a_node->m_branch[index].m_rect) ); } } return rect; } // Add a branch to a node. Split the node if necessary. // Returns 0 if node not split. Old node updated. // Returns 1 if node split, sets *new_node to address of new node. // Old node updated, becomes one of two. RTREE_TEMPLATE bool RTREE_QUAL::AddBranch( Branch* a_branch, Node* a_node, Node** a_newNode ) { ASSERT( a_branch ); ASSERT( a_node ); if( a_node->m_count < MAXNODES ) // Split won't be necessary { a_node->m_branch[a_node->m_count] = *a_branch; ++a_node->m_count; return false; } else { ASSERT( a_newNode ); SplitNode( a_node, a_branch, a_newNode ); return true; } } // Disconnect a dependent node. // Caller must return (or stop using iteration index) after this as count has changed RTREE_TEMPLATE void RTREE_QUAL::DisconnectBranch( Node* a_node, int a_index ) { ASSERT( a_node && (a_index >= 0) && (a_index < MAXNODES) ); ASSERT( a_node->m_count > 0 ); // Remove element by swapping with the last element to prevent gaps in array a_node->m_branch[a_index] = a_node->m_branch[a_node->m_count - 1]; --a_node->m_count; } // Pick a branch. Pick the one that will need the smallest increase // in area to accomodate the new rectangle. This will result in the // least total area for the covering rectangles in the current node. // In case of a tie, pick the one which was smaller before, to get // the best resolution when searching. RTREE_TEMPLATE int RTREE_QUAL::PickBranch( Rect* a_rect, Node* a_node ) { ASSERT( a_rect && a_node ); bool firstTime = true; ELEMTYPEREAL increase; ELEMTYPEREAL bestIncr = (ELEMTYPEREAL) -1; ELEMTYPEREAL area; ELEMTYPEREAL bestArea = 0; int best = 0; Rect tempRect; for( int index = 0; index < a_node->m_count; ++index ) { Rect* curRect = &a_node->m_branch[index].m_rect; area = CalcRectVolume( curRect ); tempRect = CombineRect( a_rect, curRect ); increase = CalcRectVolume( &tempRect ) - area; if( (increase < bestIncr) || firstTime ) { best = index; bestArea = area; bestIncr = increase; firstTime = false; } else if( (increase == bestIncr) && (area < bestArea) ) { best = index; bestArea = area; bestIncr = increase; } } return best; } // Combine two rectangles into larger one containing both RTREE_TEMPLATE typename RTREE_QUAL::Rect RTREE_QUAL::CombineRect( Rect* a_rectA, Rect* a_rectB ) { ASSERT( a_rectA && a_rectB ); Rect newRect; for( int index = 0; index < NUMDIMS; ++index ) { newRect.m_min[index] = rMin( a_rectA->m_min[index], a_rectB->m_min[index] ); newRect.m_max[index] = rMax( a_rectA->m_max[index], a_rectB->m_max[index] ); } return newRect; } // Split a node. // Divides the nodes branches and the extra one between two nodes. // Old node is one of the new ones, and one really new one is created. // Tries more than one method for choosing a partition, uses best result. RTREE_TEMPLATE void RTREE_QUAL::SplitNode( Node* a_node, Branch* a_branch, Node** a_newNode ) { ASSERT( a_node ); ASSERT( a_branch ); // Could just use local here, but member or external is faster since it is reused PartitionVars localVars; PartitionVars* parVars = &localVars; int level; // Load all the branches into a buffer, initialize old node level = a_node->m_level; GetBranches( a_node, a_branch, parVars ); // Find partition ChoosePartition( parVars, MINNODES ); // Put branches from buffer into 2 nodes according to chosen partition *a_newNode = AllocNode(); (*a_newNode)->m_level = a_node->m_level = level; LoadNodes( a_node, *a_newNode, parVars ); ASSERT( (a_node->m_count + (*a_newNode)->m_count) == parVars->m_total ); } // Calculate the n-dimensional volume of a rectangle RTREE_TEMPLATE ELEMTYPEREAL RTREE_QUAL::RectVolume( Rect* a_rect ) { ASSERT( a_rect ); ELEMTYPEREAL volume = (ELEMTYPEREAL) 1; for( int index = 0; indexm_max[index] - a_rect->m_min[index]; } ASSERT( volume >= (ELEMTYPEREAL) 0 ); return volume; } // The exact volume of the bounding sphere for the given Rect RTREE_TEMPLATE ELEMTYPEREAL RTREE_QUAL::RectSphericalVolume( Rect* a_rect ) { ASSERT( a_rect ); ELEMTYPEREAL sumOfSquares = (ELEMTYPEREAL) 0; ELEMTYPEREAL radius; for( int index = 0; index < NUMDIMS; ++index ) { ELEMTYPEREAL halfExtent = ( (ELEMTYPEREAL) a_rect->m_max[index] - (ELEMTYPEREAL) a_rect->m_min[index] ) * 0.5f; sumOfSquares += halfExtent * halfExtent; } radius = (ELEMTYPEREAL) sqrt( sumOfSquares ); // Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x. if( NUMDIMS == 3 ) { return radius * radius * radius * m_unitSphereVolume; } else if( NUMDIMS == 2 ) { return radius * radius * m_unitSphereVolume; } else { return (ELEMTYPEREAL) (pow( radius, NUMDIMS ) * m_unitSphereVolume); } } // Use one of the methods to calculate retangle volume RTREE_TEMPLATE ELEMTYPEREAL RTREE_QUAL::CalcRectVolume( Rect* a_rect ) { #ifdef RTREE_USE_SPHERICAL_VOLUME return RectSphericalVolume( a_rect ); // Slower but helps certain merge cases #else // RTREE_USE_SPHERICAL_VOLUME return RectVolume( a_rect ); // Faster but can cause poor merges #endif // RTREE_USE_SPHERICAL_VOLUME } // Load branch buffer with branches from full node plus the extra branch. RTREE_TEMPLATE void RTREE_QUAL::GetBranches( Node* a_node, Branch* a_branch, PartitionVars* a_parVars ) { ASSERT( a_node ); ASSERT( a_branch ); ASSERT( a_node->m_count == MAXNODES ); // Load the branch buffer for( int index = 0; index < MAXNODES; ++index ) { a_parVars->m_branchBuf[index] = a_node->m_branch[index]; } a_parVars->m_branchBuf[MAXNODES] = *a_branch; a_parVars->m_branchCount = MAXNODES + 1; // Calculate rect containing all in the set a_parVars->m_coverSplit = a_parVars->m_branchBuf[0].m_rect; for( int index = 1; index < MAXNODES + 1; ++index ) { a_parVars->m_coverSplit = CombineRect( &a_parVars->m_coverSplit, &a_parVars->m_branchBuf[index].m_rect ); } a_parVars->m_coverSplitArea = CalcRectVolume( &a_parVars->m_coverSplit ); InitNode( a_node ); } // Method #0 for choosing a partition: // As the seeds for the two groups, pick the two rects that would waste the // most area if covered by a single rectangle, i.e. evidently the worst pair // to have in the same group. // Of the remaining, one at a time is chosen to be put in one of the two groups. // The one chosen is the one with the greatest difference in area expansion // depending on which group - the rect most strongly attracted to one group // and repelled from the other. // If one group gets too full (more would force other group to violate min // fill requirement) then other group gets the rest. // These last are the ones that can go in either group most easily. RTREE_TEMPLATE void RTREE_QUAL::ChoosePartition( PartitionVars* a_parVars, int a_minFill ) { ASSERT( a_parVars ); ELEMTYPEREAL biggestDiff; int group, chosen = 0, betterGroup = 0; InitParVars( a_parVars, a_parVars->m_branchCount, a_minFill ); PickSeeds( a_parVars ); while( ( (a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total ) && ( a_parVars->m_count[0] < (a_parVars->m_total - a_parVars->m_minFill) ) && ( a_parVars->m_count[1] < (a_parVars->m_total - a_parVars->m_minFill) ) ) { biggestDiff = (ELEMTYPEREAL) -1; for( int index = 0; indexm_total; ++index ) { if( !a_parVars->m_taken[index] ) { Rect* curRect = &a_parVars->m_branchBuf[index].m_rect; Rect rect0 = CombineRect( curRect, &a_parVars->m_cover[0] ); Rect rect1 = CombineRect( curRect, &a_parVars->m_cover[1] ); ELEMTYPEREAL growth0 = CalcRectVolume( &rect0 ) - a_parVars->m_area[0]; ELEMTYPEREAL growth1 = CalcRectVolume( &rect1 ) - a_parVars->m_area[1]; ELEMTYPEREAL diff = growth1 - growth0; if( diff >= 0 ) { group = 0; } else { group = 1; diff = -diff; } if( diff > biggestDiff ) { biggestDiff = diff; chosen = index; betterGroup = group; } else if( (diff == biggestDiff) && (a_parVars->m_count[group] < a_parVars->m_count[betterGroup]) ) { chosen = index; betterGroup = group; } } } Classify( chosen, betterGroup, a_parVars ); } // If one group too full, put remaining rects in the other if( (a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total ) { if( a_parVars->m_count[0] >= a_parVars->m_total - a_parVars->m_minFill ) { group = 1; } else { group = 0; } for( int index = 0; indexm_total; ++index ) { if( !a_parVars->m_taken[index] ) { Classify( index, group, a_parVars ); } } } ASSERT( (a_parVars->m_count[0] + a_parVars->m_count[1]) == a_parVars->m_total ); ASSERT( (a_parVars->m_count[0] >= a_parVars->m_minFill) && (a_parVars->m_count[1] >= a_parVars->m_minFill) ); } // Copy branches from the buffer into two nodes according to the partition. RTREE_TEMPLATE void RTREE_QUAL::LoadNodes( Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars ) { ASSERT( a_nodeA ); ASSERT( a_nodeB ); ASSERT( a_parVars ); for( int index = 0; index < a_parVars->m_total; ++index ) { ASSERT( a_parVars->m_partition[index] == 0 || a_parVars->m_partition[index] == 1 ); if( a_parVars->m_partition[index] == 0 ) { AddBranch( &a_parVars->m_branchBuf[index], a_nodeA, NULL ); } else if( a_parVars->m_partition[index] == 1 ) { AddBranch( &a_parVars->m_branchBuf[index], a_nodeB, NULL ); } } } // Initialize a PartitionVars structure. RTREE_TEMPLATE void RTREE_QUAL::InitParVars( PartitionVars* a_parVars, int a_maxRects, int a_minFill ) { ASSERT( a_parVars ); a_parVars->m_count[0] = a_parVars->m_count[1] = 0; a_parVars->m_area[0] = a_parVars->m_area[1] = (ELEMTYPEREAL) 0; a_parVars->m_total = a_maxRects; a_parVars->m_minFill = a_minFill; for( int index = 0; index < a_maxRects; ++index ) { a_parVars->m_taken[index] = false; a_parVars->m_partition[index] = -1; } } RTREE_TEMPLATE void RTREE_QUAL::PickSeeds( PartitionVars* a_parVars ) { int seed0 = 0, seed1 = 0; ELEMTYPEREAL worst, waste; ELEMTYPEREAL area[MAXNODES + 1]; for( int index = 0; indexm_total; ++index ) { area[index] = CalcRectVolume( &a_parVars->m_branchBuf[index].m_rect ); } worst = -a_parVars->m_coverSplitArea - 1; for( int indexA = 0; indexA < a_parVars->m_total - 1; ++indexA ) { for( int indexB = indexA + 1; indexB < a_parVars->m_total; ++indexB ) { Rect oneRect = CombineRect( &a_parVars->m_branchBuf[indexA].m_rect, &a_parVars->m_branchBuf[indexB].m_rect ); waste = CalcRectVolume( &oneRect ) - area[indexA] - area[indexB]; if( waste >= worst ) { worst = waste; seed0 = indexA; seed1 = indexB; } } } Classify( seed0, 0, a_parVars ); Classify( seed1, 1, a_parVars ); } // Put a branch in one of the groups. RTREE_TEMPLATE void RTREE_QUAL::Classify( int a_index, int a_group, PartitionVars* a_parVars ) { ASSERT( a_parVars ); ASSERT( !a_parVars->m_taken[a_index] ); a_parVars->m_partition[a_index] = a_group; a_parVars->m_taken[a_index] = true; if( a_parVars->m_count[a_group] == 0 ) { a_parVars->m_cover[a_group] = a_parVars->m_branchBuf[a_index].m_rect; } else { a_parVars->m_cover[a_group] = CombineRect( &a_parVars->m_branchBuf[a_index].m_rect, &a_parVars->m_cover[a_group] ); } a_parVars->m_area[a_group] = CalcRectVolume( &a_parVars->m_cover[a_group] ); ++a_parVars->m_count[a_group]; } // Delete a data rectangle from an index structure. // Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node. // Returns 1 if record not found, 0 if success. // RemoveRect provides for eliminating the root. RTREE_TEMPLATE bool RTREE_QUAL::RemoveRect( Rect* a_rect, const DATATYPE& a_id, Node** a_root ) { ASSERT( a_rect && a_root ); ASSERT( *a_root ); Node* tempNode; ListNode* reInsertList = NULL; if( !RemoveRectRec( a_rect, a_id, *a_root, &reInsertList ) ) { // Found and deleted a data item // Reinsert any branches from eliminated nodes while( reInsertList ) { tempNode = reInsertList->m_node; for( int index = 0; index < tempNode->m_count; ++index ) { InsertRect( &(tempNode->m_branch[index].m_rect), tempNode->m_branch[index].m_data, a_root, tempNode->m_level ); } ListNode* remLNode = reInsertList; reInsertList = reInsertList->m_next; FreeNode( remLNode->m_node ); FreeListNode( remLNode ); } // Check for redundant root (not leaf, 1 child) and eliminate if( (*a_root)->m_count == 1 && (*a_root)->IsInternalNode() ) { tempNode = (*a_root)->m_branch[0].m_child; ASSERT( tempNode ); FreeNode( *a_root ); *a_root = tempNode; } return false; } else { return true; } } // Delete a rectangle from non-root part of an index structure. // Called by RemoveRect. Descends tree recursively, // merges branches on the way back up. // Returns 1 if record not found, 0 if success. RTREE_TEMPLATE bool RTREE_QUAL::RemoveRectRec( Rect* a_rect, const DATATYPE& a_id, Node* a_node, ListNode** a_listNode ) { ASSERT( a_rect && a_node && a_listNode ); ASSERT( a_node->m_level >= 0 ); if( a_node->IsInternalNode() ) // not a leaf node { for( int index = 0; index < a_node->m_count; ++index ) { if( Overlap( a_rect, &(a_node->m_branch[index].m_rect) ) ) { if( !RemoveRectRec( a_rect, a_id, a_node->m_branch[index].m_child, a_listNode ) ) { if( a_node->m_branch[index].m_child->m_count >= MINNODES ) { // child removed, just resize parent rect a_node->m_branch[index].m_rect = NodeCover( a_node->m_branch[index].m_child ); } else { // child removed, not enough entries in node, eliminate node ReInsert( a_node->m_branch[index].m_child, a_listNode ); DisconnectBranch( a_node, index ); // Must return after this call as count has changed } return false; } } } return true; } else // A leaf node { for( int index = 0; index < a_node->m_count; ++index ) { if( a_node->m_branch[index].m_child == (Node*) a_id ) { DisconnectBranch( a_node, index ); // Must return after this call as count has changed return false; } } return true; } } // Decide whether two rectangles overlap. RTREE_TEMPLATE bool RTREE_QUAL::Overlap( Rect* a_rectA, Rect* a_rectB ) { ASSERT( a_rectA && a_rectB ); for( int index = 0; index < NUMDIMS; ++index ) { if( a_rectA->m_min[index] > a_rectB->m_max[index] || a_rectB->m_min[index] > a_rectA->m_max[index] ) { return false; } } return true; } // Add a node to the reinsertion list. All its branches will later // be reinserted into the index structure. RTREE_TEMPLATE void RTREE_QUAL::ReInsert( Node* a_node, ListNode** a_listNode ) { ListNode* newListNode; newListNode = AllocListNode(); newListNode->m_node = a_node; newListNode->m_next = *a_listNode; *a_listNode = newListNode; } // Search in an index tree or subtree for all data retangles that overlap the argument rectangle. RTREE_TEMPLATE bool RTREE_QUAL::Search( Node* a_node, Rect* a_rect, int& a_foundCount, bool a_resultCallback( DATATYPE a_data, void* a_context ), void* a_context ) { ASSERT( a_node ); ASSERT( a_node->m_level >= 0 ); ASSERT( a_rect ); if( a_node->IsInternalNode() ) // This is an internal node in the tree { for( int index = 0; index < a_node->m_count; ++index ) { if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) ) { if( !Search( a_node->m_branch[index].m_child, a_rect, a_foundCount, a_resultCallback, a_context ) ) { return false; // Don't continue searching } } } } else // This is a leaf node { for( int index = 0; index < a_node->m_count; ++index ) { if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) ) { DATATYPE& id = a_node->m_branch[index].m_data; // NOTE: There are different ways to return results. Here's where to modify if( &a_resultCallback ) { ++a_foundCount; if( !a_resultCallback( id, a_context ) ) { return false; // Don't continue searching } } } } } return true; // Continue searching } //calculate the minimum distance between a point and a rectangle as defined by Manolopoulos et al. //it uses the square distance to avoid the use of ELEMTYPEREAL values, which are slower. RTREE_TEMPLATE ELEMTYPE RTREE_QUAL::MinDist( const ELEMTYPE a_point[NUMDIMS], Rect* a_rect ) { ELEMTYPE *q, *s, *t; q = (ELEMTYPE*) a_point; s = a_rect->m_min; t = a_rect->m_max; int minDist = 0; for( int index = 0; index < NUMDIMS; index++ ) { int r = q[index]; if( q[index] < s[index] ) { r = s[index]; } else if( q[index] >t[index] ) { r = t[index]; } int addend = q[index] - r; minDist += addend * addend; } return minDist; } //insert a NNNode in a list sorted by its minDist (desc.) RTREE_TEMPLATE void RTREE_QUAL::InsertNNListSorted( std::vector* nodeList, NNNode* newNode ) { typedef typename std::vector::iterator iterator; iterator iter = nodeList->begin(); while( iter != nodeList->end() && (*iter)->minDist > newNode->minDist ) { ++iter; } nodeList->insert(iter, newNode); } #undef RTREE_TEMPLATE #undef RTREE_QUAL #undef RTREE_SEARCH_TEMPLATE #undef RTREE_SEARCH_QUAL #endif // RTREE_H