/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2013-2017 CERN * @author Tomasz Wlostowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include "clipper.hpp" ClipperLib::Path SHAPE_LINE_CHAIN::convertToClipper( bool aRequiredOrientation ) const { ClipperLib::Path c_path; for( int i = 0; i < PointCount(); i++ ) { const VECTOR2I& vertex = CPoint( i ); c_path.push_back( ClipperLib::IntPoint( vertex.x, vertex.y ) ); } if( Orientation( c_path ) != aRequiredOrientation ) ReversePath( c_path ); return c_path; } bool SHAPE_LINE_CHAIN::Collide( const VECTOR2I& aP, int aClearance ) const { // fixme: ugly! SEG s( aP, aP ); return this->Collide( s, aClearance ); } void SHAPE_LINE_CHAIN::Rotate( double aAngle, const VECTOR2I& aCenter ) { for( std::vector::iterator i = m_points.begin(); i != m_points.end(); ++i ) { (*i) -= aCenter; (*i) = (*i).Rotate( aAngle ); (*i) += aCenter; } } bool SHAPE_LINE_CHAIN::Collide( const SEG& aSeg, int aClearance ) const { BOX2I box_a( aSeg.A, aSeg.B - aSeg.A ); BOX2I::ecoord_type dist_sq = (BOX2I::ecoord_type) aClearance * aClearance; for( int i = 0; i < SegmentCount(); i++ ) { const SEG& s = CSegment( i ); BOX2I box_b( s.A, s.B - s.A ); BOX2I::ecoord_type d = box_a.SquaredDistance( box_b ); if( d < dist_sq ) { if( s.Collide( aSeg, aClearance ) ) return true; } } return false; } const SHAPE_LINE_CHAIN SHAPE_LINE_CHAIN::Reverse() const { SHAPE_LINE_CHAIN a( *this ); reverse( a.m_points.begin(), a.m_points.end() ); a.m_closed = m_closed; return a; } int SHAPE_LINE_CHAIN::Length() const { int l = 0; for( int i = 0; i < SegmentCount(); i++ ) l += CSegment( i ).Length(); return l; } void SHAPE_LINE_CHAIN::Replace( int aStartIndex, int aEndIndex, const VECTOR2I& aP ) { if( aEndIndex < 0 ) aEndIndex += PointCount(); if( aStartIndex < 0 ) aStartIndex += PointCount(); if( aStartIndex == aEndIndex ) m_points[aStartIndex] = aP; else { m_points.erase( m_points.begin() + aStartIndex + 1, m_points.begin() + aEndIndex + 1 ); m_points[aStartIndex] = aP; } } void SHAPE_LINE_CHAIN::Replace( int aStartIndex, int aEndIndex, const SHAPE_LINE_CHAIN& aLine ) { if( aEndIndex < 0 ) aEndIndex += PointCount(); if( aStartIndex < 0 ) aStartIndex += PointCount(); m_points.erase( m_points.begin() + aStartIndex, m_points.begin() + aEndIndex + 1 ); m_points.insert( m_points.begin() + aStartIndex, aLine.m_points.begin(), aLine.m_points.end() ); } void SHAPE_LINE_CHAIN::Remove( int aStartIndex, int aEndIndex ) { if( aEndIndex < 0 ) aEndIndex += PointCount(); if( aStartIndex < 0 ) aStartIndex += PointCount(); m_points.erase( m_points.begin() + aStartIndex, m_points.begin() + aEndIndex + 1 ); } int SHAPE_LINE_CHAIN::Distance( const VECTOR2I& aP, bool aOutlineOnly ) const { int d = INT_MAX; if( IsClosed() && PointInside( aP ) && !aOutlineOnly ) return 0; for( int s = 0; s < SegmentCount(); s++ ) d = std::min( d, CSegment( s ).Distance( aP ) ); return d; } int SHAPE_LINE_CHAIN::Split( const VECTOR2I& aP ) { int ii = -1; int min_dist = 2; int found_index = Find( aP ); for( int s = 0; s < SegmentCount(); s++ ) { const SEG seg = CSegment( s ); int dist = seg.Distance( aP ); // make sure we are not producing a 'slightly concave' primitive. This might happen // if aP lies very close to one of already existing points. if( dist < min_dist && seg.A != aP && seg.B != aP ) { min_dist = dist; if( found_index < 0 ) ii = s; else if( s < found_index ) ii = s; } } if( ii < 0 ) ii = found_index; if( ii >= 0 ) { m_points.insert( m_points.begin() + ii + 1, aP ); return ii + 1; } return -1; } int SHAPE_LINE_CHAIN::Find( const VECTOR2I& aP ) const { for( int s = 0; s < PointCount(); s++ ) if( CPoint( s ) == aP ) return s; return -1; } int SHAPE_LINE_CHAIN::FindSegment( const VECTOR2I& aP ) const { for( int s = 0; s < SegmentCount(); s++ ) if( CSegment( s ).Distance( aP ) <= 1 ) return s; return -1; } const SHAPE_LINE_CHAIN SHAPE_LINE_CHAIN::Slice( int aStartIndex, int aEndIndex ) const { SHAPE_LINE_CHAIN rv; if( aEndIndex < 0 ) aEndIndex += PointCount(); if( aStartIndex < 0 ) aStartIndex += PointCount(); for( int i = aStartIndex; i <= aEndIndex; i++ ) rv.Append( m_points[i] ); return rv; } struct compareOriginDistance { compareOriginDistance( VECTOR2I& aOrigin ) : m_origin( aOrigin ) {}; bool operator()( const SHAPE_LINE_CHAIN::INTERSECTION& aA, const SHAPE_LINE_CHAIN::INTERSECTION& aB ) { return ( m_origin - aA.p ).EuclideanNorm() < ( m_origin - aB.p ).EuclideanNorm(); } VECTOR2I m_origin; }; int SHAPE_LINE_CHAIN::Intersect( const SEG& aSeg, INTERSECTIONS& aIp ) const { for( int s = 0; s < SegmentCount(); s++ ) { OPT_VECTOR2I p = CSegment( s ).Intersect( aSeg ); if( p ) { INTERSECTION is; is.our = CSegment( s ); is.their = aSeg; is.p = *p; aIp.push_back( is ); } } compareOriginDistance comp( aSeg.A ); sort( aIp.begin(), aIp.end(), comp ); return aIp.size(); } int SHAPE_LINE_CHAIN::Intersect( const SHAPE_LINE_CHAIN& aChain, INTERSECTIONS& aIp ) const { BOX2I bb_other = aChain.BBox(); for( int s1 = 0; s1 < SegmentCount(); s1++ ) { const SEG& a = CSegment( s1 ); const BOX2I bb_cur( a.A, a.B - a.A ); if( !bb_other.Intersects( bb_cur ) ) continue; for( int s2 = 0; s2 < aChain.SegmentCount(); s2++ ) { const SEG& b = aChain.CSegment( s2 ); INTERSECTION is; if( a.Collinear( b ) ) { is.our = a; is.their = b; if( a.Contains( b.A ) ) { is.p = b.A; aIp.push_back( is ); } if( a.Contains( b.B ) ) { is.p = b.B; aIp.push_back( is ); } if( b.Contains( a.A ) ) { is.p = a.A; aIp.push_back( is ); } if( b.Contains( a.B ) ) { is.p = a.B; aIp.push_back( is ); } } else { OPT_VECTOR2I p = a.Intersect( b ); if( p ) { is.p = *p; is.our = a; is.their = b; aIp.push_back( is ); } } } } return aIp.size(); } int SHAPE_LINE_CHAIN::PathLength( const VECTOR2I& aP ) const { int sum = 0; for( int i = 0; i < SegmentCount(); i++ ) { const SEG seg = CSegment( i ); int d = seg.Distance( aP ); if( d <= 1 ) { sum += ( aP - seg.A ).EuclideanNorm(); return sum; } else sum += seg.Length(); } return -1; } bool SHAPE_LINE_CHAIN::PointInside( const VECTOR2I& aPt, int aAccuracy ) const { /* * Don't check the bounding box. Building it is about the same speed as the rigorous * test below and so just slows things down by doing potentially two tests. */ if( !m_closed || PointCount() < 3 ) return false; bool inside = false; /** * To check for interior points, we draw a line in the positive x direction from * the point. If it intersects an even number of segments, the point is outside the * line chain (it had to first enter and then exit). Otherwise, it is inside the chain. * * Note: slope might be denormal here in the case of a horizontal line but we require our * y to move from above to below the point (or vice versa) * * Note: we open-code CPoint() here so that we don't end up calculating the size of the * vector number-of-points times. This has a non-trivial impact on zone fill times. */ const std::vector& points = CPoints(); int pointCount = points.size(); for( int i = 0; i < pointCount; ) { const auto p1 = points[ i++ ]; const auto p2 = points[ i == pointCount ? 0 : i ]; const auto diff = p2 - p1; if( diff.y != 0 ) { const int d = rescale( diff.x, ( aPt.y - p1.y ), diff.y ); if( ( ( p1.y > aPt.y ) != ( p2.y > aPt.y ) ) && ( aPt.x - p1.x < d ) ) inside = !inside; } } // If aAccuracy is > 0 then by definition we don't care whether or not the point is // *exactly* on the edge -- which saves us considerable processing time return inside && ( aAccuracy > 0 || !PointOnEdge( aPt ) ); } bool SHAPE_LINE_CHAIN::PointOnEdge( const VECTOR2I& aPt, int aAccuracy ) const { return EdgeContainingPoint( aPt, aAccuracy ) >= 0; } int SHAPE_LINE_CHAIN::EdgeContainingPoint( const VECTOR2I& aPt, int aAccuracy ) const { if( !PointCount() ) return -1; else if( PointCount() == 1 ) { VECTOR2I dist = m_points[0] - aPt; return ( hypot( dist.x, dist.y ) <= aAccuracy + 1 ) ? 0 : -1; } for( int i = 0; i < SegmentCount(); i++ ) { const SEG s = CSegment( i ); if( s.A == aPt || s.B == aPt ) return i; if( s.Distance( aPt ) <= aAccuracy + 1 ) return i; } return -1; } bool SHAPE_LINE_CHAIN::CheckClearance( const VECTOR2I& aP, const int aDist) const { if( !PointCount() ) return false; else if( PointCount() == 1 ) return m_points[0] == aP; for( int i = 0; i < SegmentCount(); i++ ) { const SEG s = CSegment( i ); if( s.A == aP || s.B == aP ) return true; if( s.Distance( aP ) <= aDist ) return true; } return false; } const OPT SHAPE_LINE_CHAIN::SelfIntersecting() const { for( int s1 = 0; s1 < SegmentCount(); s1++ ) { for( int s2 = s1 + 1; s2 < SegmentCount(); s2++ ) { const VECTOR2I s2a = CSegment( s2 ).A, s2b = CSegment( s2 ).B; if( s1 + 1 != s2 && CSegment( s1 ).Contains( s2a ) ) { INTERSECTION is; is.our = CSegment( s1 ); is.their = CSegment( s2 ); is.p = s2a; return is; } else if( CSegment( s1 ).Contains( s2b ) && // for closed polylines, the ending point of the // last segment == starting point of the first segment // this is a normal case, not self intersecting case !( IsClosed() && s1 == 0 && s2 == SegmentCount()-1 ) ) { INTERSECTION is; is.our = CSegment( s1 ); is.their = CSegment( s2 ); is.p = s2b; return is; } else { OPT_VECTOR2I p = CSegment( s1 ).Intersect( CSegment( s2 ), true ); if( p ) { INTERSECTION is; is.our = CSegment( s1 ); is.their = CSegment( s2 ); is.p = *p; return is; } } } } return OPT(); } SHAPE_LINE_CHAIN& SHAPE_LINE_CHAIN::Simplify() { std::vector pts_unique; if( PointCount() < 2 ) { return *this; } else if( PointCount() == 2 ) { if( m_points[0] == m_points[1] ) m_points.pop_back(); return *this; } int i = 0; int np = PointCount(); // stage 1: eliminate duplicate vertices while( i < np ) { int j = i + 1; while( j < np && CPoint( i ) == CPoint( j ) ) j++; pts_unique.push_back( CPoint( i ) ); i = j; } m_points.clear(); np = pts_unique.size(); i = 0; // stage 1: eliminate collinear segments while( i < np - 2 ) { const VECTOR2I p0 = pts_unique[i]; const VECTOR2I p1 = pts_unique[i + 1]; int n = i; while( n < np - 2 && SEG( p0, p1 ).LineDistance( pts_unique[n + 2] ) <= 1 ) n++; m_points.push_back( p0 ); if( n > i ) i = n; if( n == np ) { m_points.push_back( pts_unique[n - 1] ); return *this; } i++; } if( np > 1 ) m_points.push_back( pts_unique[np - 2] ); m_points.push_back( pts_unique[np - 1] ); return *this; } const VECTOR2I SHAPE_LINE_CHAIN::NearestPoint( const VECTOR2I& aP ) const { int min_d = INT_MAX; int nearest = 0; for( int i = 0; i < SegmentCount(); i++ ) { int d = CSegment( i ).Distance( aP ); if( d < min_d ) { min_d = d; nearest = i; } } return CSegment( nearest ).NearestPoint( aP ); } const VECTOR2I SHAPE_LINE_CHAIN::NearestPoint( const SEG& aSeg, int& dist ) const { int nearest = 0; dist = INT_MAX; for( int i = 0; i < PointCount(); i++ ) { int d = aSeg.LineDistance( CPoint( i ) ); if( d < dist ) { dist = d; nearest = i; } } return CPoint( nearest ); } const std::string SHAPE_LINE_CHAIN::Format() const { std::stringstream ss; ss << m_points.size() << " " << ( m_closed ? 1 : 0 ) << " "; for( int i = 0; i < PointCount(); i++ ) ss << m_points[i].x << " " << m_points[i].y << " "; // Format() << " "; return ss.str(); } bool SHAPE_LINE_CHAIN::CompareGeometry ( const SHAPE_LINE_CHAIN & aOther ) const { SHAPE_LINE_CHAIN a(*this), b( aOther ); a.Simplify(); b.Simplify(); if( a.m_points.size() != b.m_points.size() ) return false; for( int i = 0; i < a.PointCount(); i++) if( a.CPoint( i ) != b.CPoint( i ) ) return false; return true; } bool SHAPE_LINE_CHAIN::Intersects( const SHAPE_LINE_CHAIN& aChain ) const { INTERSECTIONS dummy; return Intersect( aChain, dummy ) != 0; } SHAPE* SHAPE_LINE_CHAIN::Clone() const { return new SHAPE_LINE_CHAIN( *this ); } bool SHAPE_LINE_CHAIN::Parse( std::stringstream& aStream ) { int n_pts; m_points.clear(); aStream >> n_pts; // Rough sanity check, just make sure the loop bounds aren't absolutely outlandish if( n_pts < 0 || n_pts > int( aStream.str().size() ) ) return false; aStream >> m_closed; for( int i = 0; i < n_pts; i++ ) { int x, y; aStream >> x; aStream >> y; m_points.push_back( VECTOR2I( x, y ) ); } return true; } const VECTOR2I SHAPE_LINE_CHAIN::PointAlong( int aPathLength ) const { int total = 0; if( aPathLength == 0 ) return CPoint( 0 ); for( int i = 0; i < SegmentCount(); i++ ) { const SEG& s = CSegment( i ); int l = s.Length(); if( total + l >= aPathLength ) { VECTOR2I d( s.B - s.A ); return s.A + d.Resize( aPathLength - total ); } total += l; } return CPoint( -1 ); } double SHAPE_LINE_CHAIN::Area() const { // see https://www.mathopenref.com/coordpolygonarea2.html if( !m_closed ) return 0.0; double area = 0.0; int size = m_points.size(); for( int i = 0, j = size - 1; i < size; ++i ) { area += ( (double) m_points[j].x + m_points[i].x ) * ( (double) m_points[j].y - m_points[i].y ); j = i; } return -area * 0.5; }