/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2016 CERN * @author Tomasz Wlostowski * @author Maciej Suminski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 3 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * https://www.gnu.org/licenses/gpl-3.0.html * or you may search the http://www.gnu.org website for the version 3 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include "sim_plot_panel.h" #include #include static wxString formatFloat( double x, int nDigits ) { wxString rv, fmt; if( nDigits ) { fmt = wxT( "%.0Nf" ); fmt[3] = '0' + nDigits; } else { fmt = wxT( "%.0f" ); } rv.Printf( fmt, x ); return rv; } static void getSISuffix( double x, const wxString& unit, int& power, wxString& suffix ) { const int n_powers = 11; const struct { double exponent; char suffix; } powers[] = { { -18, 'a' }, { -15, 'f' }, { -12, 'p' }, { -9, 'n' }, { -6, 'u' }, { -3, 'm' }, { 0, 0 }, { 3, 'k' }, { 6, 'M' }, { 9, 'G' }, { 12, 'T' }, { 14, 'P' } }; power = 0; suffix = unit; if( x == 0.0 ) return; for( int i = 0; i < n_powers - 1; i++ ) { double r_cur = pow( 10, powers[i].exponent ); if( fabs( x ) >= r_cur && fabs( x ) < r_cur * 1000.0 ) { power = powers[i].exponent; if( powers[i].suffix ) suffix = wxString( powers[i].suffix ) + unit; else suffix = unit; return; } } } static int countDecimalDigits( double x, int maxDigits ) { int64_t k = (int)( ( x - floor( x ) ) * pow( 10.0, (double) maxDigits ) ); int n = 0; while( k && ( ( k % 10LL ) == 0LL || ( k % 10LL ) == 9LL ) ) { k /= 10LL; } n = 0; while( k != 0LL ) { n++; k /= 10LL; } return n; } static void formatSILabels( mpScaleBase* scale, const wxString& aUnit, int nDigits ) { double maxVis = scale->AbsVisibleMaxValue(); wxString suffix; int power, digits = 0; getSISuffix( maxVis, aUnit, power, suffix ); double sf = pow( 10.0, power ); for( auto &l : scale->TickLabels() ) { int k = countDecimalDigits( l.pos / sf, nDigits ); digits = std::max( digits, k ); } for( auto &l : scale->TickLabels() ) { l.label = formatFloat ( l.pos / sf, digits ) + suffix; l.visible = true; } } class FREQUENCY_LOG_SCALE : public mpScaleXLog { public: FREQUENCY_LOG_SCALE( wxString name, int flags ) : mpScaleXLog( name, flags ) {}; void formatLabels() { const wxString unit = wxT( "Hz" ); wxString suffix; int power; for( auto &l : TickLabels() ) { getSISuffix( l.pos, unit, power, suffix ); double sf = pow( 10.0, power ); int k = countDecimalDigits( l.pos / sf, 3 ); l.label = formatFloat( l.pos / sf, k ) + suffix; l.visible = true; } } }; class FREQUENCY_LIN_SCALE : public mpScaleX { public: FREQUENCY_LIN_SCALE( wxString name, int flags ) : mpScaleX( name, flags, false , 0 ) {}; void formatLabels() { formatSILabels( this, wxT( "Hz" ), 3 ); } }; class TIME_SCALE : public mpScaleX { public: TIME_SCALE( wxString name, int flags ) : mpScaleX( name, flags, false, 0 ) {}; void formatLabels() { formatSILabels( this, wxT( "s" ), 3 ); } }; class VOLTAGE_SCALE_X : public mpScaleX { public: VOLTAGE_SCALE_X( wxString name, int flags ) : mpScaleX( name, flags, false, 0 ) {}; void formatLabels() { formatSILabels( this, wxT( "V" ), 3 ); } }; class GAIN_SCALE : public mpScaleY { public: GAIN_SCALE( wxString name, int flags ) : mpScaleY( name, flags, false ) {}; void formatLabels() { formatSILabels( this, wxT( "dB" ), 3 ); } }; class PHASE_SCALE : public mpScaleY { public: PHASE_SCALE( wxString name, int flags ) : mpScaleY( name, flags, false ) {}; void formatLabels() { formatSILabels( this, wxT( "\u00B0" ), 3 ); // degree sign } }; class VOLTAGE_SCALE_Y : public mpScaleY { public: VOLTAGE_SCALE_Y( wxString name, int flags ) : mpScaleY( name, flags, false ) {}; void formatLabels() { formatSILabels( this, wxT( "V" ), 3 ); } }; class CURRENT_SCALE : public mpScaleY { public: CURRENT_SCALE( wxString name, int flags ) : mpScaleY( name, flags, false ) {}; void formatLabels() { formatSILabels( this, wxT( "A" ), 3 ); } }; void CURSOR::Plot( wxDC& aDC, mpWindow& aWindow ) { if( !m_window ) m_window = &aWindow; if( !m_visible ) return; const auto& dataX = m_trace->GetDataX(); const auto& dataY = m_trace->GetDataY(); if( dataX.size() <= 1 ) return; if( m_updateRequired ) { m_coords.x = m_trace->s2x( aWindow.p2x( m_dim.x ) ); // Find the closest point coordinates auto maxXIt = std::upper_bound( dataX.begin(), dataX.end(), m_coords.x ); int maxIdx = maxXIt - dataX.begin(); int minIdx = maxIdx - 1; // Out of bounds checks if( minIdx < 0 ) { minIdx = 0; maxIdx = 1; m_coords.x = dataX[0]; } else if( maxIdx >= (int) dataX.size() ) { maxIdx = dataX.size() - 1; minIdx = maxIdx - 1; m_coords.x = dataX[maxIdx]; } const double leftX = dataX[minIdx]; const double rightX = dataX[maxIdx]; const double leftY = dataY[minIdx]; const double rightY = dataY[maxIdx]; // Linear interpolation m_coords.y = leftY + ( rightY - leftY ) / ( rightX - leftX ) * ( m_coords.x - leftX ); m_updateRequired = false; // Notify the parent window about the changes wxQueueEvent( aWindow.GetParent(), new wxCommandEvent( EVT_SIM_CURSOR_UPDATE ) ); } else { m_updateRef = true; } if( m_updateRef ) { UpdateReference(); m_updateRef = false; } // Line length in horizontal and vertical dimensions const wxPoint cursorPos( aWindow.x2p( m_trace->x2s( m_coords.x ) ), aWindow.y2p( m_trace->y2s( m_coords.y ) ) ); wxCoord leftPx = m_drawOutsideMargins ? 0 : aWindow.GetMarginLeft(); wxCoord rightPx = m_drawOutsideMargins ? aWindow.GetScrX() : aWindow.GetScrX() - aWindow.GetMarginRight(); wxCoord topPx = m_drawOutsideMargins ? 0 : aWindow.GetMarginTop(); wxCoord bottomPx = m_drawOutsideMargins ? aWindow.GetScrY() : aWindow.GetScrY() - aWindow.GetMarginBottom(); aDC.SetPen( wxPen( *wxWHITE, 1, m_continuous ? wxSOLID : wxLONG_DASH ) ); if( topPx < cursorPos.y && cursorPos.y < bottomPx ) aDC.DrawLine( leftPx, cursorPos.y, rightPx, cursorPos.y ); if( leftPx < cursorPos.x && cursorPos.x < rightPx ) aDC.DrawLine( cursorPos.x, topPx, cursorPos.x, bottomPx ); } bool CURSOR::Inside( wxPoint& aPoint ) { if( !m_window ) return false; return ( std::abs( (double) aPoint.x - m_window->x2p( m_trace->x2s( m_coords.x ) ) ) <= DRAG_MARGIN ) || ( std::abs( (double) aPoint.y - m_window->y2p( m_trace->y2s( m_coords.y ) ) ) <= DRAG_MARGIN ); } void CURSOR::UpdateReference() { if( !m_window ) return; m_reference.x = m_window->x2p( m_trace->x2s( m_coords.x ) ); m_reference.y = m_window->y2p( m_trace->y2s( m_coords.y ) ); } SIM_PLOT_PANEL::SIM_PLOT_PANEL( SIM_TYPE aType, wxWindow* parent, wxWindowID id, const wxPoint& pos, const wxSize& size, long style, const wxString& name ) : mpWindow( parent, id, pos, size, style ), m_colorIdx( 0 ), m_axis_x( nullptr ), m_axis_y1( nullptr ), m_axis_y2( nullptr ), m_type( aType ) { LimitView( true ); SetMargins( 50, 80, 50, 80 ); wxColour grey( 96, 96, 96 ); SetColourTheme( *wxBLACK, *wxWHITE, grey ); EnableDoubleBuffer( true ); UpdateAll(); switch( m_type ) { case ST_AC: m_axis_x = new FREQUENCY_LOG_SCALE( wxT( "Frequency" ), mpALIGN_BOTTOM ); m_axis_y1 = new GAIN_SCALE( wxT( "Gain" ), mpALIGN_LEFT ); m_axis_y2 = new PHASE_SCALE( wxT( "Phase" ), mpALIGN_RIGHT ); m_axis_y2->SetMasterScale( m_axis_y1 ); break; case ST_DC: m_axis_x = new VOLTAGE_SCALE_X( wxT( "Voltage (sweeped)" ), mpALIGN_BOTTOM ); m_axis_y1 = new VOLTAGE_SCALE_Y( wxT( "Voltage (measured)" ), mpALIGN_LEFT ); break; case ST_NOISE: m_axis_x = new FREQUENCY_LOG_SCALE( wxT( "Frequency" ), mpALIGN_BOTTOM ); m_axis_y1 = new mpScaleY( wxT( "noise [(V or A)^2/Hz]" ), mpALIGN_LEFT ); break; case ST_TRANSIENT: m_axis_x = new TIME_SCALE( wxT( "Time" ), mpALIGN_BOTTOM ); m_axis_y1 = new VOLTAGE_SCALE_Y( wxT( "Voltage" ), mpALIGN_LEFT ); m_axis_y2 = new CURRENT_SCALE( wxT( "Current" ), mpALIGN_RIGHT ); m_axis_y2->SetMasterScale( m_axis_y1 ); break; default: // suppress warnings break; } if( m_axis_x ) { m_axis_x->SetTicks( false ); m_axis_x->SetNameAlign ( mpALIGN_BOTTOM ); AddLayer( m_axis_x ); } if( m_axis_y1 ) { m_axis_y1->SetTicks( false ); m_axis_y1->SetNameAlign ( mpALIGN_LEFT ); AddLayer( m_axis_y1 ); } if( m_axis_y2 ) { m_axis_y2->SetTicks( false ); m_axis_y2->SetNameAlign ( mpALIGN_RIGHT ); AddLayer( m_axis_y2 ); } m_legend = new mpInfoLegend( wxRect( 0, 40, 200, 40 ), wxTRANSPARENT_BRUSH ); AddLayer( m_legend ); m_topLevel.push_back( m_legend ); SetColourTheme( *wxBLACK, *wxWHITE, grey ); EnableDoubleBuffer( true ); UpdateAll(); } SIM_PLOT_PANEL::~SIM_PLOT_PANEL() { // ~mpWindow destroys all the added layers, so there is no need to destroy m_traces contents } bool SIM_PLOT_PANEL::IsPlottable( SIM_TYPE aSimType ) { switch( aSimType ) { case ST_AC: case ST_DC: case ST_TRANSIENT: return true; default: return false; } } bool SIM_PLOT_PANEL::AddTrace( const wxString& aName, int aPoints, const double* aX, const double* aY, SIM_PLOT_TYPE aFlags ) { TRACE* t = NULL; // Find previous entry, if there is one auto prev = m_traces.find( aName ); bool addedNewEntry = ( prev == m_traces.end() ); if( addedNewEntry ) { if( m_type == ST_TRANSIENT ) { bool hasVoltageTraces = false; for( auto t : m_traces ) { if( !( t.second->GetFlags() & SPT_CURRENT ) ) { hasVoltageTraces = true; break; } } if( !hasVoltageTraces ) m_axis_y2->SetMasterScale( nullptr ); else m_axis_y2->SetMasterScale( m_axis_y1 ); } // New entry t = new TRACE( aName ); t->SetPen( wxPen( generateColor(), 2, wxSOLID ) ); m_traces[aName] = t; // It is a trick to keep legend & coords always on the top for( mpLayer* l : m_topLevel ) DelLayer( l ); AddLayer( (mpLayer*) t ); for( mpLayer* l : m_topLevel ) AddLayer( l ); } else { t = prev->second; } std::vector tmp( aY, aY + aPoints ); if( m_type == ST_AC ) { if( aFlags & SPT_AC_PHASE ) { for( int i = 0; i < aPoints; i++ ) tmp[i] = tmp[i] * 180.0 / M_PI; // convert to degrees } else { for( int i = 0; i < aPoints; i++ ) tmp[i] = 20 * log( tmp[i] ) / log( 10.0 ); // convert to dB } } t->SetData( std::vector( aX, aX + aPoints ), tmp ); if( aFlags & SPT_AC_PHASE || aFlags & SPT_CURRENT ) t->SetScale( m_axis_x, m_axis_y2 ); else t->SetScale( m_axis_x, m_axis_y1 ); t->SetFlags( aFlags ); UpdateAll(); return addedNewEntry; } bool SIM_PLOT_PANEL::DeleteTrace( const wxString& aName ) { auto it = m_traces.find( aName ); if( it != m_traces.end() ) { m_traces.erase( it ); TRACE* trace = it->second; if( CURSOR* cursor = trace->GetCursor() ) DelLayer( cursor, true ); DelLayer( trace, true, true ); ResetScales(); return true; } return false; } void SIM_PLOT_PANEL::DeleteAllTraces() { for( auto& t : m_traces ) { DeleteTrace( t.first ); } m_colorIdx = 0; m_traces.clear(); } bool SIM_PLOT_PANEL::HasCursorEnabled( const wxString& aName ) const { TRACE* t = GetTrace( aName ); return t ? t->HasCursor() : false; } void SIM_PLOT_PANEL::EnableCursor( const wxString& aName, bool aEnable ) { TRACE* t = GetTrace( aName ); if( t == nullptr || t->HasCursor() == aEnable ) return; if( aEnable ) { CURSOR* c = new CURSOR( t ); int plotCenter = GetMarginLeft() + ( GetXScreen() - GetMarginLeft() - GetMarginRight() ) / 2; c->SetX( plotCenter ); t->SetCursor( c ); AddLayer( c ); } else { CURSOR* c = t->GetCursor(); t->SetCursor( NULL ); DelLayer( c, true ); } // Notify the parent window about the changes wxQueueEvent( GetParent(), new wxCommandEvent( EVT_SIM_CURSOR_UPDATE ) ); } void SIM_PLOT_PANEL::ResetScales() { if( m_axis_x ) m_axis_x->ResetDataRange(); if( m_axis_y1 ) m_axis_y1->ResetDataRange(); if( m_axis_y2 ) m_axis_y2->ResetDataRange(); for( auto t : m_traces ) t.second->UpdateScales(); } wxColour SIM_PLOT_PANEL::generateColor() { /// @todo have a look at: /// http://stanford.edu/~mwaskom/software/seaborn/tutorial/color_palettes.html /// https://github.com/Gnuplotting/gnuplot-palettes const unsigned long colors[] = { 0x0000ff, 0x00ff00, 0xff0000, 0x00ffff, 0xff00ff, 0xffff000, 0xffffff }; //const unsigned long colors[] = { 0xe3cea6, 0xb4781f, 0x8adfb2, 0x2ca033, 0x999afb, 0x1c1ae3, 0x6fbffd, 0x007fff, 0xd6b2ca, 0x9a3d6a }; // hls //const unsigned long colors[] = { 0x0f1689, 0x0f7289, 0x35890f, 0x0f8945, 0x89260f, 0x890f53, 0x89820f, 0x630f89 }; // pastels, good for dark background //const unsigned long colors[] = { 0x2fd8fe, 0x628dfa, 0x53d8a6, 0xa5c266, 0xb3b3b3, 0x94c3e4, 0xca9f8d, 0xac680e }; const unsigned int colorCount = sizeof(colors) / sizeof(unsigned long); /// @todo generate shades to avoid repeating colors return wxColour( colors[m_colorIdx++ % colorCount] ); } wxDEFINE_EVENT( EVT_SIM_CURSOR_UPDATE, wxCommandEvent );