/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2021 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2024 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /* * Some calculations (mainly computeCurvedForRoundShape) are derived from * https://github.com/NilujePerchut/kicad_scripts/tree/master/teardrops */ #include #include #include #include #include #include #include "teardrop.h" #include #include #include #include #include void TRACK_BUFFER::AddTrack( PCB_TRACK* aTrack, int aLayer, int aNetcode ) { auto item = m_map_tracks.find( idxFromLayNet( aLayer, aNetcode ) ); std::vector* buffer; if( item == m_map_tracks.end() ) { buffer = new std::vector; m_map_tracks[idxFromLayNet( aLayer, aNetcode )] = buffer; } else { buffer = (*item).second; } buffer->push_back( aTrack ); } int TEARDROP_MANAGER::GetWidth( BOARD_ITEM* aItem ) { if( aItem->Type() == PCB_VIA_T ) { PCB_VIA* via = static_cast( aItem ); return via->GetWidth(); } else if( aItem->Type() == PCB_PAD_T ) { PAD* pad = static_cast( aItem ); return std::min( pad->GetSize().x, pad->GetSize().y ); } else if( aItem->Type() == PCB_TRACE_T || aItem->Type() == PCB_ARC_T ) { PCB_TRACK* track = static_cast( aItem ); return track->GetWidth(); } return 0; } bool TEARDROP_MANAGER::IsRound( BOARD_ITEM* aItem ) { if( aItem->Type() == PCB_PAD_T ) { PAD* pad = static_cast( aItem ); return pad->GetShape() == PAD_SHAPE::CIRCLE || ( pad->GetShape() == PAD_SHAPE::OVAL && pad->GetSize().x == pad->GetSize().y ); } return true; } void TEARDROP_MANAGER::buildTrackCaches() { for( PCB_TRACK* track : m_board->Tracks() ) { if( track->Type() == PCB_TRACE_T || track->Type() == PCB_ARC_T ) { m_tracksRTree.Insert( track, track->GetLayer() ); m_trackLookupList.AddTrack( track, track->GetLayer(), track->GetNetCode() ); } } } bool TEARDROP_MANAGER::areItemsInSameZone( BOARD_ITEM* aPadOrVia, PCB_TRACK* aTrack ) const { for( ZONE* zone: m_board->Zones() ) { // Skip teardrops if( zone->IsTeardropArea() ) continue; // Only consider zones on the same layer if( !zone->IsOnLayer( aTrack->GetLayer() ) ) continue; if( zone->GetNetCode() == aTrack->GetNetCode() ) { if( zone->Outline()->Contains( VECTOR2I( aPadOrVia->GetPosition() ) ) ) { // If the first item is a pad, ensure it can be connected to the zone if( aPadOrVia->Type() == PCB_PAD_T ) { PAD *pad = static_cast( aPadOrVia ); if( zone->GetPadConnection() == ZONE_CONNECTION::NONE || pad->GetZoneConnection() == ZONE_CONNECTION::NONE ) { return false; } } return true; } } } return false; } PCB_TRACK* TEARDROP_MANAGER::findTouchingTrack( EDA_ITEM_FLAGS& aMatchType, PCB_TRACK* aTrackRef, const VECTOR2I& aEndPoint ) const { int matches = 0; // Count of candidates: only 1 is acceptable PCB_TRACK* candidate = nullptr; // a reference to the track connected m_tracksRTree.QueryColliding( aTrackRef, aTrackRef->GetLayer(), aTrackRef->GetLayer(), // Filter: [&]( BOARD_ITEM* trackItem ) -> bool { return trackItem != aTrackRef; }, // Visitor [&]( BOARD_ITEM* trackItem ) -> bool { PCB_TRACK* curr_track = static_cast( trackItem ); // IsPointOnEnds() returns 0, EDA_ITEM_FLAGS::STARTPOINT or EDA_ITEM_FLAGS::ENDPOINT if( EDA_ITEM_FLAGS match = curr_track->IsPointOnEnds( aEndPoint, m_tolerance ) ) { // if faced with a Y junction, choose the track longest segment as candidate matches++; if( matches > 1 ) { double previous_len = candidate->GetLength(); double curr_len = curr_track->GetLength(); if( previous_len >= curr_len ) return true; } aMatchType = match; candidate = curr_track; } return true; }, 0 ); return candidate; } /** * @return a vector unit length from aVector */ static VECTOR2D NormalizeVector( const VECTOR2I& aVector ) { VECTOR2D vect( aVector ); double norm = vect.EuclideanNorm(); return vect / norm; } /* * Compute the curve part points for teardrops connected to a round shape * The Bezier curve control points are optimized for a round pad/via shape, * and do not give a good curve shape for other pad shapes */ void TEARDROP_MANAGER::computeCurvedForRoundShape( const TEARDROP_PARAMETERS& aParams, std::vector& aPoly, int aTrackHalfWidth, const VECTOR2D& aTrackDir, BOARD_ITEM* aOther, const VECTOR2I& aOtherPos, std::vector& pts ) const { // in pts: // A and B are points on the track ( pts[0] and pts[1] ) // C and E are points on the aViaPad ( pts[2] and pts[4] ) // D is the aViaPad centre ( pts[3] ) double Vpercent = aParams.m_BestWidthRatio; int td_height = KiROUND( GetWidth( aOther ) * Vpercent ); // First, calculate a aVpercent equivalent to the td_height clamped by aTdMaxHeight // We cannot use the initial aVpercent because it gives bad shape with points // on aViaPad calculated for a clamped aViaPad size if( aParams.m_TdMaxWidth > 0 && aParams.m_TdMaxWidth < td_height ) Vpercent *= (double) aParams.m_TdMaxWidth / td_height; int radius = GetWidth( aOther ) / 2; // Don't divide by zero. No good can come of that. wxCHECK2( radius != 0, radius = 1 ); double minVpercent = double( aTrackHalfWidth ) / radius; double weaken = (Vpercent - minVpercent) / ( 1 - minVpercent ) / radius; double biasBC = 0.5 * SEG( pts[1], pts[2] ).Length(); double biasAE = 0.5 * SEG( pts[4], pts[0] ).Length(); VECTOR2I vecC = (VECTOR2I)pts[2] - aOtherPos; VECTOR2I tangentC = VECTOR2I( pts[2].x - vecC.y * biasBC * weaken, pts[2].y + vecC.x * biasBC * weaken ); VECTOR2I vecE = (VECTOR2I)pts[4] - aOtherPos; VECTOR2I tangentE = VECTOR2I( pts[4].x + vecE.y * biasAE * weaken, pts[4].y - vecE.x * biasAE * weaken ); VECTOR2I tangentB = VECTOR2I( pts[1].x - aTrackDir.x * biasBC, pts[1].y - aTrackDir.y * biasBC ); VECTOR2I tangentA = VECTOR2I( pts[0].x - aTrackDir.x * biasAE, pts[0].y - aTrackDir.y * biasAE ); std::vector curve_pts; curve_pts.reserve( aParams.m_CurveSegCount ); BEZIER_POLY( pts[1], tangentB, tangentC, pts[2] ).GetPoly( curve_pts, 0, aParams.m_CurveSegCount ); for( VECTOR2I& corner: curve_pts ) aPoly.push_back( corner ); aPoly.push_back( pts[3] ); curve_pts.clear(); BEZIER_POLY( pts[4], tangentE, tangentA, pts[0] ).GetPoly( curve_pts, 0, aParams.m_CurveSegCount ); for( VECTOR2I& corner: curve_pts ) aPoly.push_back( corner ); } /* * Compute the curve part points for teardrops connected to a rectangular/polygonal shape * The Bezier curve control points are not optimized for a special shape */ void TEARDROP_MANAGER::computeCurvedForRectShape( const TEARDROP_PARAMETERS& aParams, std::vector& aPoly, int aTdWidth, int aTrackHalfWidth, std::vector& aPts ) const { // in aPts: // A and B are points on the track ( pts[0] and pts[1] ) // C and E are points on the aViaPad ( pts[2] and pts[4] ) // D is the aViaPad centre ( pts[3] ) // side1 is( aPts[1], aPts[2] ); from track to via VECTOR2I side1( aPts[2] - aPts[1] ); // vector from track to via // side2 is ( aPts[4], aPts[0] ); from via to track VECTOR2I side2( aPts[4] - aPts[0] ); // vector from track to via std::vector curve_pts; curve_pts.reserve( aParams.m_CurveSegCount ); // Note: This side is from track to via VECTOR2I ctrl1 = ( aPts[1] + aPts[1] + aPts[2] ) / 3; VECTOR2I ctrl2 = ( aPts[1] + aPts[2] + aPts[2] ) / 3; // The control points must be moved toward the polygon inside, in order to give a curved shape // The move vector is perpendicular to the vertex (side 1 or side 2), and its // value is delta, depending on the sizes of via and track int delta = ( aTdWidth / 2 - aTrackHalfWidth ); delta /= 4; // A scaling factor giving a fine shape, defined from tests. // However for short sides, the value of delta must be reduced, depending // on the side length // We use here a max delta value = side_length/8, defined from tests int side_length = side1.EuclideanNorm(); int delta_effective = std::min( delta, side_length/8 ); // The move vector depend on the quadrant: it must be always defined to create a // curve with a direction toward the track EDA_ANGLE angle1( side1 ); int sign = std::abs( angle1 ) >= ANGLE_90 ? 1 : -1; VECTOR2I bias( 0, sign * delta_effective ); // Does not works well with the current algo, due to an initial bug. // but I (JPC) keep it here because probably it will gives a better shape // if the algo is refined. // RotatePoint( bias, angle1 ); ctrl1.x += bias.x; ctrl1.y += bias.y; ctrl2.x += bias.x; ctrl2.y += bias.y; BEZIER_POLY( aPts[1], ctrl1, ctrl2, aPts[2] ).GetPoly( curve_pts, 0, aParams.m_CurveSegCount ); for( VECTOR2I& corner: curve_pts ) aPoly.push_back( corner ); aPoly.push_back( aPts[3] ); // Note: This side is from via to track curve_pts.clear(); ctrl1 = ( aPts[4] + aPts[4] + aPts[0] ) / 3; ctrl2 = ( aPts[4] + aPts[0] + aPts[0] ) / 3; side_length = side2.EuclideanNorm(); delta_effective = std::min( delta, side_length/8 ); EDA_ANGLE angle2( side2 ); sign = std::abs( angle2 ) <= ANGLE_90 ? 1 : -1; bias = VECTOR2I( 0, sign * delta_effective ); // Does not works well with the current algo // RotatePoint( bias, angle2 ); ctrl1.x += bias.x; ctrl1.y += bias.y; ctrl2.x += bias.x; ctrl2.y += bias.y; BEZIER_POLY( aPts[4], ctrl1, ctrl2, aPts[0] ).GetPoly( curve_pts, 0, aParams.m_CurveSegCount ); for( VECTOR2I& corner: curve_pts ) aPoly.push_back( corner ); } bool TEARDROP_MANAGER::computeAnchorPoints( const TEARDROP_PARAMETERS& aParams, PCB_LAYER_ID aLayer, BOARD_ITEM* aItem, const VECTOR2I& aPos, std::vector& aPts ) const { // Compute the 2 anchor points on pad/via/track of the teardrop shape SHAPE_POLY_SET c_buffer; // m_BestWidthRatio is the factor to calculate the teardrop preferred width. // teardrop width = pad, via or track size * m_BestWidthRatio (m_BestWidthRatio <= 1.0) // For rectangular (and similar) shapes, the preferred_width is calculated from the min // dim of the rectangle int preferred_width = KiROUND( GetWidth( aItem ) * aParams.m_BestWidthRatio ); // force_clip = true to force the pad/via/track polygon to be clipped to follow // constraints // Clipping is also needed for rectangular shapes, because the teardrop shape is restricted // to a polygonal area smaller than the pad area (the teardrop height use the smaller value // of X and Y sizes). bool force_clip = aParams.m_BestWidthRatio < 1.0; // To find the anchor points on the pad/via/track shape, we build the polygonal shape, and // clip the polygon to the max size (preferred_width or m_TdMaxWidth) by a rectangle // centered on the axis of the expected teardrop shape. // (only reduce the size of polygonal shape does not give good anchor points) if( IsRound( aItem ) ) { TransformCircleToPolygon( c_buffer, aPos, GetWidth( aItem ) / 2, ARC_LOW_DEF, ERROR_INSIDE, 16 ); } else // Only PADS can have a not round shape { PAD* pad = static_cast( aItem ); force_clip = true; preferred_width = KiROUND( GetWidth( pad ) * aParams.m_BestWidthRatio ); pad->TransformShapeToPolygon( c_buffer, aLayer, 0, ARC_LOW_DEF, ERROR_INSIDE ); } // Clip the pad/via/track shape to match the m_TdMaxWidth constraint, and for non-round pads, // clip the shape to the smallest of size.x and size.y values. if( force_clip || ( aParams.m_TdMaxWidth > 0 && aParams.m_TdMaxWidth < preferred_width ) ) { int halfsize = std::min( aParams.m_TdMaxWidth, preferred_width )/2; // teardrop_axis is the line from anchor point on the track and the end point // of the teardrop in the pad/via // this is the teardrop_axis of the teardrop shape to build VECTOR2I ref_on_track = ( aPts[0] + aPts[1] ) / 2; VECTOR2I teardrop_axis( aPts[3] - ref_on_track ); EDA_ANGLE orient( teardrop_axis ); int len = teardrop_axis.EuclideanNorm(); // Build the constraint polygon: a rectangle with // length = dist between the point on track and the pad/via pos // height = m_TdMaxWidth or aViaPad.m_Width SHAPE_POLY_SET clipping_rect; clipping_rect.NewOutline(); // Build a horizontal rect: it will be rotated later clipping_rect.Append( 0, - halfsize ); clipping_rect.Append( 0, halfsize ); clipping_rect.Append( len, halfsize ); clipping_rect.Append( len, - halfsize ); clipping_rect.Rotate( -orient ); clipping_rect.Move( ref_on_track ); // Clip the shape to the max allowed teadrop area c_buffer.BooleanIntersection( clipping_rect, SHAPE_POLY_SET::PM_FAST ); } /* in aPts: * A and B are points on the track ( aPts[0] and aPts[1] ) * C and E are points on the aViaPad ( aPts[2] and aPts[4] ) * D is midpoint behind the aViaPad centre ( aPts[3] ) */ SHAPE_LINE_CHAIN& padpoly = c_buffer.Outline(0); std::vector points = padpoly.CPoints(); std::vector initialPoints; initialPoints.push_back( aPts[0] ); initialPoints.push_back( aPts[1] ); for( const VECTOR2I& pt: points ) initialPoints.emplace_back( pt.x, pt.y ); std::vector hull; BuildConvexHull( hull, initialPoints ); // Search for end points of segments starting at aPts[0] or aPts[1] // In some cases, in convex hull, only one point (aPts[0] or aPts[1]) is still in list VECTOR2I PointC; VECTOR2I PointE; int found_start = -1; // 2 points (one start and one end) should be found int found_end = -1; VECTOR2I start = aPts[0]; VECTOR2I pend = aPts[1]; for( unsigned ii = 0, jj = 0; jj < hull.size(); ii++, jj++ ) { unsigned next = ii+ 1; if( next >= hull.size() ) next = 0; int prev = ii -1; if( prev < 0 ) prev = hull.size()-1; if( hull[ii] == start ) { // the previous or the next point is candidate: if( hull[next] != pend ) PointE = hull[next]; else PointE = hull[prev]; found_start = ii; } if( hull[ii] == pend ) { if( hull[next] != start ) PointC = hull[next]; else PointC = hull[prev]; found_end = ii; } } if( found_start < 0 ) // PointE was not initialized, because start point does not exit { int ii = found_end-1; if( ii < 0 ) ii = hull.size()-1; PointE = hull[ii]; } if( found_end < 0 ) // PointC was not initialized, because end point does not exit { int ii = found_start-1; if( ii < 0 ) ii = hull.size()-1; PointC = hull[ii]; } aPts[2] = PointC; aPts[4] = PointE; // Now we have to know if the choice aPts[2] = PointC is the best, or if // aPts[2] = PointE is better. // A criteria is to calculate the polygon area in these 2 cases, and choose the case // that gives the bigger area, because the segments starting at PointC and PointE // maximize their distance. SHAPE_LINE_CHAIN dummy1( aPts, true ); double area1 = dummy1.Area(); std::swap( aPts[2], aPts[4] ); SHAPE_LINE_CHAIN dummy2( aPts, true ); double area2 = dummy2.Area(); if( area1 > area2 ) // The first choice (without swapping) is the better. std::swap( aPts[2], aPts[4] ); return true; } bool TEARDROP_MANAGER::findAnchorPointsOnTrack( const TEARDROP_PARAMETERS& aParams, VECTOR2I& aStartPoint, VECTOR2I& aEndPoint, PCB_TRACK*& aTrack, BOARD_ITEM* aOther, const VECTOR2I& aOtherPos, int* aEffectiveTeardropLen ) const { bool found = true; VECTOR2I start = aTrack->GetStart(); // one reference point on the track, inside teardrop VECTOR2I end = aTrack->GetEnd(); // the second reference point on the track, outside teardrop int radius = GetWidth( aOther ) / 2; // Requested length of the teardrop: int targetLength = KiROUND( GetWidth( aOther ) * aParams.m_BestLengthRatio ); if( aParams.m_TdMaxLen > 0 ) targetLength = std::min( aParams.m_TdMaxLen, targetLength ); // actualTdLen is the distance between start and the teardrop point on the segment from start to end int actualTdLen; bool need_swap = false; // true if the start and end points of the current track are swapped // aTrack is expected to have one end inside the via/pad and the other end outside // so ensure the start point is inside the via/pad if( !aOther->HitTest( start, 0 ) ) { std::swap( start, end ); need_swap = true; } SHAPE_POLY_SET shapebuffer; if( IsRound( aOther ) ) { TransformCircleToPolygon( shapebuffer, aOtherPos, radius, ARC_LOW_DEF, ERROR_INSIDE, 16 ); } else { static_cast( aOther )->TransformShapeToPolygon( shapebuffer, aTrack->GetLayer(), 0, ARC_LOW_DEF, ERROR_INSIDE ); } SHAPE_LINE_CHAIN& outline = shapebuffer.Outline(0); outline.SetClosed( true ); // Search the intersection point between the pad/via shape and the current track // This this the starting point to define the teardrop length SHAPE_LINE_CHAIN::INTERSECTIONS pts; int pt_count; if( aTrack->Type() == PCB_ARC_T ) { // To find the starting point we convert the arc to a polyline // and compute the intersection point with the pad/via shape SHAPE_ARC arc( aTrack->GetStart(), static_cast( aTrack )->GetMid(), aTrack->GetEnd(), aTrack->GetWidth() ); SHAPE_LINE_CHAIN poly = arc.ConvertToPolyline(); pt_count = outline.Intersect( poly, pts ); } else pt_count = outline.Intersect( SEG( start, end ), pts ); // Ensure a intersection point was found, otherwise we cannot built the teardrop // using this track (it is fully outside or inside the pad/via shape) if( pt_count < 1 ) return false; VECTOR2I intersect = pts[0].p; start = intersect; // This is currently the reference point of the teardrop lenght // actualTdLen for now the distance between start and the teardrop point on the (start end)segment // It cannot be bigger than the lenght of this segment actualTdLen = std::min( targetLength, SEG( start, end ).Length() ); VECTOR2I ref_lenght_point = start; // the reference point of actualTdLen // If the first track is too short to allow a teardrop having the requested length // explore the connected track(s), and try to find a anchor point at targetLength from initial start if( actualTdLen < targetLength && aParams.m_AllowUseTwoTracks ) { int consumed = 0; while( actualTdLen + consumed < targetLength ) { EDA_ITEM_FLAGS matchType; PCB_TRACK* connected_track = findTouchingTrack( matchType, aTrack, end ); if( connected_track == nullptr ) break; // TODO: stop if angle between old and new segment is > 45 deg to avoid bad shape consumed += actualTdLen; // actualTdLen is the new distance from new start point and the teardrop anchor point actualTdLen = std::min( targetLength-consumed, int( connected_track->GetLength() ) ); aTrack = connected_track; end = connected_track->GetEnd(); start = connected_track->GetStart(); need_swap = false; if( matchType != STARTPOINT ) { std::swap( start, end ); need_swap = true; } // If we do not want to explore more than one connected track, stop search here break; } } // if aTrack is an arc, find the best teardrop end point on the arc // It is currently on the segment from arc start point to arc end point, // therefore not really on the arc, because we have used only the track end points. if( aTrack->Type() == PCB_ARC_T ) { // To find the best start and end points to build the teardrop shape, we convert // the arc to segments, and search for the segment having its start point at a dist // < actualTdLen, and its end point at adist > actualTdLen: SHAPE_ARC arc( aTrack->GetStart(), static_cast( aTrack )->GetMid(), aTrack->GetEnd(), aTrack->GetWidth() ); if( need_swap ) arc.Reverse(); SHAPE_LINE_CHAIN poly = arc.ConvertToPolyline(); // Now, find the segment of the arc at a distance < actualTdLen from ref_lenght_point. // We just search for the first segment (starting from the farest segment) with its // start point at a distance < actualTdLen dist // This is basic, but it is probably enough. if( poly.PointCount() > 2 ) { // Note: the first point is inside or near the pad/via shape // The last point is outside and the farest from the ref_lenght_point // So we explore segments from the last to the first for( int ii = poly.PointCount()-1; ii >= 0 ; ii-- ) { int dist_from_start = ( poly.CPoint( ii ) - start ).EuclideanNorm(); // The first segment at a distance of the reference point < actualTdLen is OK // and is suitable to define the reference segment of the teardrop anchor. if( dist_from_start < actualTdLen || ii == 0 ) { start = poly.CPoint( ii ); if( ii < poly.PointCount()-1 ) end = poly.CPoint( ii+1 ); // actualTdLen is the distance between start (the reference segment start point) // and the point on track of the teardrop. // This is the difference between the initial actualTdLen value and the // distance between start and ref_lenght_point. actualTdLen -= (start - ref_lenght_point).EuclideanNorm(); // Ensure validity of actualTdLen: >= 0, and <= segment lenght if( actualTdLen < 0 ) // should not happen, but... actualTdLen = 0; actualTdLen = std::min( actualTdLen, (end - start).EuclideanNorm() ); break; } } } } // aStartPoint and aEndPoint will define later a segment to build the 2 anchors points // of the teardrop on the aTrack shape. // they are two points (both outside the pad/via shape) of aTrack if aTrack is a segment, // or a small segment on aTrack if aTrack is an ARC aStartPoint = start; aEndPoint = end; *aEffectiveTeardropLen = actualTdLen; return found; } bool TEARDROP_MANAGER::computeTeardropPolygon( const TEARDROP_PARAMETERS& aParams, std::vector& aCorners, PCB_TRACK* aTrack, BOARD_ITEM* aOther, const VECTOR2I& aOtherPos ) const { VECTOR2I start, end; // Start and end points of the track anchor of the teardrop // the start point is inside the teardrop shape // the end point is outside. int track_stub_len; // the dist between the start point and the anchor point // on the track // Note: aTrack can be modified if the initial track is too short if( !findAnchorPointsOnTrack( aParams, start, end, aTrack, aOther, aOtherPos, &track_stub_len ) ) return false; // The start and end points must be different to calculate a valid polygon shape if( start == end ) return false; VECTOR2D vecT = NormalizeVector(end - start); // find the 2 points on the track, sharp end of the teardrop int track_halfwidth = aTrack->GetWidth() / 2; VECTOR2I pointB = start + VECTOR2I( vecT.x * track_stub_len + vecT.y * track_halfwidth, vecT.y * track_stub_len - vecT.x * track_halfwidth ); VECTOR2I pointA = start + VECTOR2I( vecT.x * track_stub_len - vecT.y * track_halfwidth, vecT.y * track_stub_len + vecT.x * track_halfwidth ); // To build a polygonal valid shape pointA and point B must be outside the pad // It can be inside with some pad shapes having very different X and X sizes if( !IsRound( aOther ) ) { PAD* pad = static_cast( aOther ); if( pad->HitTest( pointA ) ) return false; if( pad->HitTest( pointB ) ) return false; } // Introduce a last point to cover the via centre to ensure it is seen as connected VECTOR2I pointD = aOtherPos; // add a small offset in order to have the aViaPad.m_Pos reference point inside // the teardrop area, just in case... int offset = pcbIUScale.mmToIU( 0.001 ); pointD += VECTOR2I( int( -vecT.x*offset), int(-vecT.y*offset) ); VECTOR2I pointC, pointE; // Point on PADVIA outlines std::vector pts = {pointA, pointB, pointC, pointD, pointE}; computeAnchorPoints( aParams, aTrack->GetLayer(), aOther, aOtherPos, pts ); if( !aParams.IsCurved() ) { aCorners = pts; return true; } // See if we can use curved teardrop shape if( IsRound( aOther ) ) { computeCurvedForRoundShape( aParams, aCorners, track_halfwidth, vecT, aOther, aOtherPos, pts ); } else { int td_width = KiROUND( GetWidth( aOther ) * aParams.m_BestWidthRatio ); if( aParams.m_TdMaxWidth > 0 && aParams.m_TdMaxWidth < td_width ) td_width = aParams.m_TdMaxWidth; computeCurvedForRectShape( aParams, aCorners, td_width, track_halfwidth, pts ); } return true; }