/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file sch_line.cpp * @brief Class SCH_LINE implementation */ #include #include #include #include #include #include #include #include #include #include #include #include #include static wxPenStyle getwxPenStyle( PLOT_DASH_TYPE aType ) { switch( aType ) { case PLOT_DASH_TYPE::DEFAULT: case PLOT_DASH_TYPE::SOLID: return wxPENSTYLE_SOLID; case PLOT_DASH_TYPE::DASH: return wxPENSTYLE_SHORT_DASH; case PLOT_DASH_TYPE::DOT: return wxPENSTYLE_DOT; case PLOT_DASH_TYPE::DASHDOT: return wxPENSTYLE_DOT_DASH; default: wxFAIL_MSG( "Unhandled PlotDashType" ); return wxPENSTYLE_SOLID; } } SCH_LINE::SCH_LINE( const wxPoint& pos, int layer ) : SCH_ITEM( NULL, SCH_LINE_T ) { m_start = pos; m_end = pos; m_startIsDangling = m_endIsDangling = false; m_size = 0; m_style = PLOT_DASH_TYPE::DEFAULT; m_color = COLOR4D::UNSPECIFIED; switch( layer ) { default: m_Layer = LAYER_NOTES; break; case LAYER_WIRE: m_Layer = LAYER_WIRE; break; case LAYER_BUS: m_Layer = LAYER_BUS; break; } } SCH_LINE::SCH_LINE( const SCH_LINE& aLine ) : SCH_ITEM( aLine ) { m_start = aLine.m_start; m_end = aLine.m_end; m_size = aLine.m_size; m_style = aLine.m_style; m_color = aLine.m_color; m_startIsDangling = aLine.m_startIsDangling; m_endIsDangling = aLine.m_endIsDangling; } EDA_ITEM* SCH_LINE::Clone() const { return new SCH_LINE( *this ); } /* * Conversion between PLOT_DASH_TYPE values and style names displayed */ const std::map lineStyleNames{ { PLOT_DASH_TYPE::SOLID, "solid" }, { PLOT_DASH_TYPE::DASH, "dashed" }, { PLOT_DASH_TYPE::DASHDOT, "dash_dot" }, { PLOT_DASH_TYPE::DOT, "dotted" }, }; const char* SCH_LINE::GetLineStyleName( PLOT_DASH_TYPE aStyle ) { auto resultIt = lineStyleNames.find( aStyle ); //legacy behavior is to default to dash if there is no name return resultIt == lineStyleNames.end() ? lineStyleNames.find( PLOT_DASH_TYPE::DASH )->second : resultIt->second; } PLOT_DASH_TYPE SCH_LINE::GetLineStyleByName( const wxString& aStyleName ) { PLOT_DASH_TYPE id = PLOT_DASH_TYPE::DEFAULT; // Default style id //find the name by value auto resultIt = std::find_if( lineStyleNames.begin(), lineStyleNames.end(), [aStyleName]( const auto& it ) { return it.second == aStyleName; } ); if( resultIt != lineStyleNames.end() ) id = resultIt->first; return id; } void SCH_LINE::Move( const wxPoint& aOffset ) { if( aOffset != wxPoint( 0, 0 ) ) { m_start += aOffset; m_end += aOffset; SetModified(); } } void SCH_LINE::MoveStart( const wxPoint& aOffset ) { if( aOffset != wxPoint( 0, 0 ) ) { m_start += aOffset; SetModified(); } } void SCH_LINE::MoveEnd( const wxPoint& aOffset ) { if( aOffset != wxPoint( 0, 0 ) ) { m_end += aOffset; SetModified(); } } #if defined(DEBUG) void SCH_LINE::Show( int nestLevel, std::ostream& os ) const { NestedSpace( nestLevel, os ) << '<' << GetClass().Lower().mb_str() << " layer=\"" << m_Layer << '"' << " startIsDangling=\"" << m_startIsDangling << '"' << " endIsDangling=\"" << m_endIsDangling << '"' << ">" << " " << " " << "\n"; } #endif void SCH_LINE::ViewGetLayers( int aLayers[], int& aCount ) const { aCount = 2; aLayers[0] = m_Layer; aLayers[1] = LAYER_SELECTION_SHADOWS; } const EDA_RECT SCH_LINE::GetBoundingBox() const { int width = m_size / 2; int extra = m_size & 0x1; int xmin = std::min( m_start.x, m_end.x ) - width; int ymin = std::min( m_start.y, m_end.y ) - width; int xmax = std::max( m_start.x, m_end.x ) + width + extra; int ymax = std::max( m_start.y, m_end.y ) + width + extra; EDA_RECT ret( wxPoint( xmin, ymin ), wxSize( xmax - xmin, ymax - ymin ) ); return ret; } double SCH_LINE::GetLength() const { return GetLineLength( m_start, m_end ); } void SCH_LINE::SetLineColor( const COLOR4D aColor ) { m_color = aColor; } void SCH_LINE::SetLineColor( const double r, const double g, const double b, const double a ) { COLOR4D newColor(r, g, b, a); if( newColor == COLOR4D::UNSPECIFIED ) m_color = COLOR4D::UNSPECIFIED; else { // Eeschema does not allow alpha channel in colors newColor.a = 1.0; m_color = newColor; } } COLOR4D SCH_LINE::GetLineColor() const { return m_color; } PLOT_DASH_TYPE SCH_LINE::GetDefaultStyle() const { if( IsGraphicLine() ) return PLOT_DASH_TYPE::DASH; return PLOT_DASH_TYPE::SOLID; } void SCH_LINE::SetLineStyle( const int aStyleId ) { SetLineStyle( static_cast( aStyleId ) ); } void SCH_LINE::SetLineStyle( const PLOT_DASH_TYPE aStyle ) { if( aStyle == GetDefaultStyle() ) m_style = PLOT_DASH_TYPE::DEFAULT; else m_style = aStyle; } PLOT_DASH_TYPE SCH_LINE::GetLineStyle() const { if( m_style != PLOT_DASH_TYPE::DEFAULT ) return m_style; return GetDefaultStyle(); } void SCH_LINE::SetLineWidth( const int aSize ) { m_size = aSize; } int SCH_LINE::GetPenSize() const { if( m_size ) return m_size; #if 1 // Temporary code not using RENDER_SETTINGS int thickness = DEFAULT_LINE_THICKNESS * IU_PER_MILS; if( GetLayer() == LAYER_BUS ) thickness = DEFAULT_BUS_THICKNESS * IU_PER_MILS; else if( GetLayer() == LAYER_WIRE ) thickness = DEFAULT_WIRE_THICKNESS * IU_PER_MILS; return thickness; #else // JEY TODO: requires RENDER_SETTINGS #endif } void SCH_LINE::Print( wxDC* DC, const wxPoint& offset ) { COLOR4D color = ( m_color != COLOR4D::UNSPECIFIED ) ? m_color : GetLayerColor( m_Layer ); int width = GetPenSize(); wxPoint start = m_start; wxPoint end = m_end; GRLine( nullptr, DC, start.x, start.y, end.x, end.y, width, color, getwxPenStyle( (PLOT_DASH_TYPE) GetLineStyle() ) ); } void SCH_LINE::MirrorX( int aXaxis_position ) { MIRROR( m_start.y, aXaxis_position ); MIRROR( m_end.y, aXaxis_position ); } void SCH_LINE::MirrorY( int aYaxis_position ) { MIRROR( m_start.x, aYaxis_position ); MIRROR( m_end.x, aYaxis_position ); } void SCH_LINE::Rotate( wxPoint aPosition ) { RotatePoint( &m_start, aPosition, 900 ); RotatePoint( &m_end, aPosition, 900 ); } void SCH_LINE::RotateStart( wxPoint aPosition ) { RotatePoint( &m_start, aPosition, 900 ); } void SCH_LINE::RotateEnd( wxPoint aPosition ) { RotatePoint( &m_end, aPosition, 900 ); } bool SCH_LINE::IsSameQuadrant( SCH_LINE* aLine, const wxPoint& aPosition ) { wxPoint first; wxPoint second; if( m_start == aPosition ) first = m_end - aPosition; else if( m_end == aPosition ) first = m_start - aPosition; else return false; if( aLine->m_start == aPosition ) second = aLine->m_end - aPosition; else if( aLine->m_end == aPosition ) second = aLine->m_start - aPosition; else return false; return ( sign( first.x ) == sign( second.x ) && sign( first.y ) == sign( second.y ) ); } bool SCH_LINE::IsParallel( SCH_LINE* aLine ) { wxCHECK_MSG( aLine != NULL && aLine->Type() == SCH_LINE_T, false, wxT( "Cannot test line segment for overlap." ) ); wxPoint firstSeg = m_end - m_start; wxPoint secondSeg = aLine->m_end - aLine->m_start; // Use long long here to avoid overflow in calculations return !( (long long) firstSeg.x * secondSeg.y - (long long) firstSeg.y * secondSeg.x ); } SCH_LINE* SCH_LINE::MergeOverlap( SCH_LINE* aLine ) { auto less = []( const wxPoint& lhs, const wxPoint& rhs ) -> bool { if( lhs.x == rhs.x ) return lhs.y < rhs.y; return lhs.x < rhs.x; }; wxCHECK_MSG( aLine != NULL && aLine->Type() == SCH_LINE_T, NULL, wxT( "Cannot test line segment for overlap." ) ); if( this == aLine || GetLayer() != aLine->GetLayer() ) return nullptr; auto leftmost_start = aLine->m_start; auto leftmost_end = aLine->m_end; auto rightmost_start = m_start; auto rightmost_end = m_end; // We place the start to the left and below the end of both lines if( leftmost_start != std::min( { leftmost_start, leftmost_end }, less ) ) std::swap( leftmost_start, leftmost_end ); if( rightmost_start != std::min( { rightmost_start, rightmost_end }, less ) ) std::swap( rightmost_start, rightmost_end ); // -leftmost is the line that starts farthest to the left // -other is the line that is _not_ leftmost // -rightmost is the line that ends farthest to the right. This may or // may not be 'other' as the second line may be completely covered by // the first. if( less( rightmost_start, leftmost_start ) ) { std::swap( leftmost_start, rightmost_start ); std::swap( leftmost_end, rightmost_end ); } auto other_start = rightmost_start; auto other_end = rightmost_end; if( less( rightmost_end, leftmost_end ) ) { rightmost_start = leftmost_start; rightmost_end = leftmost_end; } // If we end one before the beginning of the other, no overlap is possible if( less( leftmost_end, other_start ) ) { return nullptr; } // Search for a common end: if( ( leftmost_start == other_start ) && ( leftmost_end == other_end ) ) // Trivial case { auto ret = new SCH_LINE( *aLine ); ret->SetStartPoint( leftmost_start ); ret->SetEndPoint( leftmost_end ); if( IsSelected() || aLine->IsSelected() ) ret->SetSelected(); return ret; } bool colinear = false; /* Test alignment: */ if( ( leftmost_start.y == leftmost_end.y ) && ( other_start.y == other_end.y ) ) // Horizontal segment { colinear = ( leftmost_start.y == other_start.y ); } else if( ( leftmost_start.x == leftmost_end.x ) && ( other_start.x == other_end.x ) ) // Vertical segment { colinear = ( leftmost_start.x == other_start.x ); } else { // We use long long here to avoid overflow -- it enforces promotion // Don't use double as we need to make a direct comparison // The slope of the left-most line is dy/dx. Then we check that the slope // from the left most start to the right most start is the same as well as // the slope from the left most start to right most end. long long dx = leftmost_end.x - leftmost_start.x; long long dy = leftmost_end.y - leftmost_start.y; colinear = ( ( ( other_start.y - leftmost_start.y ) * dx == ( other_start.x - leftmost_start.x ) * dy ) && ( ( other_end.y - leftmost_start.y ) * dx == ( other_end.x - leftmost_start.x ) * dy ) ); } // Make a new segment that merges the 2 segments if( colinear ) { leftmost_end = rightmost_end; auto ret = new SCH_LINE( *aLine ); ret->SetStartPoint( leftmost_start ); ret->SetEndPoint( leftmost_end ); if( IsSelected() || aLine->IsSelected() ) ret->SetSelected(); return ret; } return nullptr; } void SCH_LINE::GetEndPoints( std::vector & aItemList ) { if( IsGraphicLine() ) return; if( ( GetLayer() == LAYER_BUS ) || ( GetLayer() == LAYER_WIRE ) ) { DANGLING_END_ITEM item( (GetLayer() == LAYER_BUS) ? BUS_START_END : WIRE_START_END, this, m_start ); aItemList.push_back( item ); DANGLING_END_ITEM item1( (GetLayer() == LAYER_BUS) ? BUS_END_END : WIRE_END_END, this, m_end ); aItemList.push_back( item1 ); } } bool SCH_LINE::UpdateDanglingState( std::vector& aItemList, const SCH_SHEET_PATH* aPath ) { bool previousStartState = m_startIsDangling; bool previousEndState = m_endIsDangling; m_startIsDangling = m_endIsDangling = true; if( GetLayer() == LAYER_WIRE ) { for( DANGLING_END_ITEM item : aItemList ) { if( item.GetItem() == this ) continue; if( item.GetType() == BUS_START_END || item.GetType() == BUS_END_END || item.GetType() == BUS_ENTRY_END ) continue; if( m_start == item.GetPosition() ) m_startIsDangling = false; if( m_end == item.GetPosition() ) m_endIsDangling = false; if( !m_startIsDangling && !m_endIsDangling ) break; } } else if( GetLayer() == LAYER_BUS || IsGraphicLine() ) { // Lines on the notes layer and the bus layer cannot be tested for dangling ends. previousStartState = previousEndState = m_startIsDangling = m_endIsDangling = false; } return ( previousStartState != m_startIsDangling ) || ( previousEndState != m_endIsDangling ); } bool SCH_LINE::IsConnectable() const { if( m_Layer == LAYER_WIRE || m_Layer == LAYER_BUS ) return true; return false; } bool SCH_LINE::CanConnect( const SCH_ITEM* aItem ) const { switch( aItem->Type() ) { case SCH_JUNCTION_T: case SCH_NO_CONNECT_T: case SCH_LABEL_T: case SCH_GLOBAL_LABEL_T: case SCH_HIER_LABEL_T: case SCH_BUS_WIRE_ENTRY_T: case SCH_COMPONENT_T: case SCH_SHEET_T: case SCH_SHEET_PIN_T: return true; default: return aItem->GetLayer() == m_Layer; } } void SCH_LINE::GetConnectionPoints( std::vector< wxPoint >& aPoints ) const { aPoints.push_back( m_start ); aPoints.push_back( m_end ); } void SCH_LINE::GetSelectedPoints( std::vector< wxPoint >& aPoints ) const { if( m_Flags & STARTPOINT ) aPoints.push_back( m_start ); if( m_Flags & ENDPOINT ) aPoints.push_back( m_end ); } wxString SCH_LINE::GetSelectMenuText( EDA_UNITS aUnits ) const { wxString txtfmt, orient; if( m_start.x == m_end.x ) orient = _( "Vertical" ); else if( m_start.y == m_end.y ) orient = _( "Horizontal" ); switch( m_Layer ) { case LAYER_NOTES: txtfmt = _( "%s Graphic Line from (%s, %s) to (%s, %s)" ); break; case LAYER_WIRE: txtfmt = _( "%s Wire from (%s, %s) to (%s, %s)" ); break; case LAYER_BUS: txtfmt = _( "%s Bus from (%s, %s) to (%s, %s)" ); break; default: txtfmt = _( "%s Line on Unknown Layer from (%s, %s) to (%s, %s)" ); break; } return wxString::Format( txtfmt, orient, MessageTextFromValue( aUnits, m_start.x ), MessageTextFromValue( aUnits, m_start.y ), MessageTextFromValue( aUnits, m_end.x ), MessageTextFromValue( aUnits, m_end.y ) ); } BITMAP_DEF SCH_LINE::GetMenuImage() const { if( m_Layer == LAYER_NOTES ) return add_dashed_line_xpm; else if( m_Layer == LAYER_WIRE ) return add_line_xpm; return add_bus_xpm; } void SCH_LINE::GetNetListItem( NETLIST_OBJECT_LIST& aNetListItems, SCH_SHEET_PATH* aSheetPath ) { // Net list item not required for graphic lines. if( IsGraphicLine() ) return; NETLIST_OBJECT* item = new NETLIST_OBJECT(); item->m_SheetPath = *aSheetPath; item->m_SheetPathInclude = *aSheetPath; item->m_Comp = (SCH_ITEM*) this; item->m_Start = m_start; item->m_End = m_end; if( GetLayer() == LAYER_BUS ) { item->m_Type = NETLIST_ITEM::BUS; } else /* WIRE */ { item->m_Type = NETLIST_ITEM::SEGMENT; } aNetListItems.push_back( item ); } bool SCH_LINE::operator <( const SCH_ITEM& aItem ) const { if( Type() != aItem.Type() ) return Type() < aItem.Type(); auto line = static_cast( &aItem ); if( GetLayer() != line->GetLayer() ) return GetLayer() < line->GetLayer(); if( GetStartPoint().x != line->GetStartPoint().x ) return GetStartPoint().x < line->GetStartPoint().x; if( GetStartPoint().y != line->GetStartPoint().y ) return GetStartPoint().y < line->GetStartPoint().y; if( GetEndPoint().x != line->GetEndPoint().x ) return GetEndPoint().x < line->GetEndPoint().x; return GetEndPoint().y < line->GetEndPoint().y; } bool SCH_LINE::HitTest( const wxPoint& aPosition, int aAccuracy ) const { // Performance enhancement for connection-building if( aPosition == m_start || aPosition == m_end ) return true; // Insure minimum accuracy if( aAccuracy == 0 ) aAccuracy = ( GetPenSize() / 2 ) + 4; return TestSegmentHit( aPosition, m_start, m_end, aAccuracy ); } bool SCH_LINE::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const { if( m_Flags & ( STRUCT_DELETED | SKIP_STRUCT ) ) return false; EDA_RECT rect = aRect; if ( aAccuracy ) rect.Inflate( aAccuracy ); if( aContained ) return rect.Contains( m_start ) && rect.Contains( m_end ); return rect.Intersects( m_start, m_end ); } void SCH_LINE::SwapData( SCH_ITEM* aItem ) { SCH_LINE* item = (SCH_LINE*) aItem; std::swap( m_Layer, item->m_Layer ); std::swap( m_start, item->m_start ); std::swap( m_end, item->m_end ); std::swap( m_startIsDangling, item->m_startIsDangling ); std::swap( m_endIsDangling, item->m_endIsDangling ); std::swap( m_style, item->m_style ); std::swap( m_size, item->m_size ); std::swap( m_color, item->m_color ); } bool SCH_LINE::doIsConnected( const wxPoint& aPosition ) const { if( m_Layer != LAYER_WIRE && m_Layer != LAYER_BUS ) return false; return IsEndPoint( aPosition ); } void SCH_LINE::Plot( PLOTTER* aPlotter ) { if( m_color != COLOR4D::UNSPECIFIED ) aPlotter->SetColor( m_color ); else aPlotter->SetColor( aPlotter->ColorSettings()->GetColor( GetLayer() ) ); aPlotter->SetCurrentLineWidth( GetPenSize() ); aPlotter->SetDash( GetLineStyle() ); aPlotter->MoveTo( m_start ); aPlotter->FinishTo( m_end ); aPlotter->SetDash( PLOT_DASH_TYPE::SOLID ); } void SCH_LINE::SetPosition( const wxPoint& aPosition ) { m_end = m_end - ( m_start - aPosition ); m_start = aPosition; } void SCH_LINE::GetMsgPanelInfo( EDA_UNITS aUnits, MSG_PANEL_ITEMS& aList ) { wxString msg; switch( GetLayer() ) { case LAYER_WIRE: msg = _( "Net Wire" ); break; case LAYER_BUS: msg = _( "Bus Wire" ); break; default: msg = _( "Graphical" ); return; } aList.push_back( MSG_PANEL_ITEM( _( "Line Type" ), msg, DARKCYAN ) ); if( auto conn = Connection( *g_CurrentSheet ) ) { #if defined(DEBUG) conn->AppendDebugInfoToMsgPanel( aList ); msg.Printf( "%zu", m_connected_items.size() ); aList.push_back( MSG_PANEL_ITEM( _( "Connections" ), msg, BROWN ) ); #else conn->AppendInfoToMsgPanel( aList ); #endif } } bool SCH_LINE::IsGraphicLine() const { return ( GetLayer() == LAYER_NOTES ); } bool SCH_LINE::UsesDefaultStroke() const { return m_size == 0 && m_color == COLOR4D::UNSPECIFIED && ( m_style == GetDefaultStyle() || m_style == PLOT_DASH_TYPE::DEFAULT ); }