/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2022 Mikolaj Wielgus * Copyright (C) 2022 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 3 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * https://www.gnu.org/licenses/gpl-3.0.html * or you may search the http://www.gnu.org website for the version 3 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using DEVICE_TYPE = SIM_MODEL::DEVICE_TYPE_; using TYPE = SIM_MODEL::TYPE; namespace SIM_MODEL_PARSER { using namespace SIM_MODEL_GRAMMAR; template struct fieldParamValuePairsSelector : std::false_type {}; template <> struct fieldParamValuePairsSelector : std::true_type {}; template <> struct fieldParamValuePairsSelector : std::true_type {}; template <> struct fieldParamValuePairsSelector : std::true_type {}; template struct pinSequenceSelector : std::false_type {}; template <> struct pinSequenceSelector : std::true_type {}; template struct fieldInferValueSelector : std::false_type {}; template <> struct fieldInferValueSelector : std::true_type {}; template <> struct fieldInferValueSelector : std::true_type {}; template <> struct fieldInferValueSelector> : std::true_type {}; template <> struct fieldInferValueSelector : std::true_type {}; } SIM_MODEL::DEVICE_INFO SIM_MODEL::DeviceTypeInfo( DEVICE_TYPE_ aDeviceType ) { switch( aDeviceType ) { case DEVICE_TYPE_::NONE: return { "", "" }; case DEVICE_TYPE_::R: return { "R", "Resistor" }; case DEVICE_TYPE_::C: return { "C", "Capacitor" }; case DEVICE_TYPE_::L: return { "L", "Inductor" }; case DEVICE_TYPE_::TLINE: return { "TLINE", "Transmission Line" }; case DEVICE_TYPE_::SW: return { "SW", "Switch" }; case DEVICE_TYPE_::D: return { "D", "Diode" }; case DEVICE_TYPE_::NPN: return { "NPN", "NPN BJT" }; case DEVICE_TYPE_::PNP: return { "PNP", "PNP BJT" }; case DEVICE_TYPE_::NJFET: return { "NJFET", "N-channel JFET" }; case DEVICE_TYPE_::PJFET: return { "PJFET", "P-channel JFET" }; case DEVICE_TYPE_::NMOS: return { "NMOS", "N-channel MOSFET" }; case DEVICE_TYPE_::PMOS: return { "PMOS", "P-channel MOSFET" }; case DEVICE_TYPE_::NMES: return { "NMES", "N-channel MESFET" }; case DEVICE_TYPE_::PMES: return { "PMES", "P-channel MESFET" }; case DEVICE_TYPE_::V: return { "V", "Voltage Source" }; case DEVICE_TYPE_::I: return { "I", "Current Source" }; case DEVICE_TYPE_::KIBIS: return { "IBIS", "Ibis Model" }; case DEVICE_TYPE_::SUBCKT: return { "SUBCKT", "Subcircuit" }; case DEVICE_TYPE_::XSPICE: return { "XSPICE", "XSPICE Code Model" }; case DEVICE_TYPE_::SPICE: return { "SPICE", "Raw Spice Element" }; case DEVICE_TYPE_::_ENUM_END: break; } wxFAIL; return {}; } SIM_MODEL::INFO SIM_MODEL::TypeInfo( TYPE aType ) { switch( aType ) { case TYPE::NONE: return { DEVICE_TYPE_::NONE, "", "" }; case TYPE::R: return { DEVICE_TYPE_::R, "", "Ideal" }; case TYPE::R_POT: return { DEVICE_TYPE_::R, "POT", "Potentiometer" }; case TYPE::R_BEHAVIORAL: return { DEVICE_TYPE_::R, "=", "Behavioral" }; case TYPE::C: return { DEVICE_TYPE_::C, "", "Ideal" }; case TYPE::C_BEHAVIORAL: return { DEVICE_TYPE_::C, "=", "Behavioral" }; case TYPE::L: return { DEVICE_TYPE_::L, "", "Ideal" }; case TYPE::L_MUTUAL: return { DEVICE_TYPE_::L, "MUTUAL", "Mutual" }; case TYPE::L_BEHAVIORAL: return { DEVICE_TYPE_::L, "=", "Behavioral" }; case TYPE::TLINE_Z0: return { DEVICE_TYPE_::TLINE, "", "Characteristic impedance" }; case TYPE::TLINE_RLGC: return { DEVICE_TYPE_::TLINE, "RLGC", "RLGC" }; case TYPE::SW_V: return { DEVICE_TYPE_::SW, "V", "Voltage-controlled" }; case TYPE::SW_I: return { DEVICE_TYPE_::SW, "I", "Current-controlled" }; case TYPE::D: return { DEVICE_TYPE_::D, "", "" }; case TYPE::NPN_GUMMELPOON: return { DEVICE_TYPE_::NPN, "GUMMELPOON", "Gummel-Poon" }; case TYPE::PNP_GUMMELPOON: return { DEVICE_TYPE_::PNP, "GUMMELPOON", "Gummel-Poon" }; case TYPE::NPN_VBIC: return { DEVICE_TYPE_::NPN, "VBIC", "VBIC" }; case TYPE::PNP_VBIC: return { DEVICE_TYPE_::PNP, "VBIC", "VBIC" }; //case TYPE::BJT_MEXTRAM: return {}; case TYPE::NPN_HICUM2: return { DEVICE_TYPE_::NPN, "HICUML2", "HICUM level 2" }; case TYPE::PNP_HICUM2: return { DEVICE_TYPE_::PNP, "HICUML2", "HICUM level 2" }; //case TYPE::BJT_HICUM_L0: return {}; case TYPE::NJFET_SHICHMANHODGES: return { DEVICE_TYPE_::NJFET, "SHICHMANHODGES", "Shichman-Hodges" }; case TYPE::PJFET_SHICHMANHODGES: return { DEVICE_TYPE_::PJFET, "SHICHMANHODGES", "Shichman-Hodges" }; case TYPE::NJFET_PARKERSKELLERN: return { DEVICE_TYPE_::NJFET, "PARKERSKELLERN", "Parker-Skellern" }; case TYPE::PJFET_PARKERSKELLERN: return { DEVICE_TYPE_::PJFET, "PARKERSKELLERN", "Parker-Skellern" }; case TYPE::NMES_STATZ: return { DEVICE_TYPE_::NMES, "STATZ", "Statz" }; case TYPE::PMES_STATZ: return { DEVICE_TYPE_::PMES, "STATZ", "Statz" }; case TYPE::NMES_YTTERDAL: return { DEVICE_TYPE_::NMES, "YTTERDAL", "Ytterdal" }; case TYPE::PMES_YTTERDAL: return { DEVICE_TYPE_::PMES, "YTTERDAL", "Ytterdal" }; case TYPE::NMES_HFET1: return { DEVICE_TYPE_::NMES, "HFET1", "HFET1" }; case TYPE::PMES_HFET1: return { DEVICE_TYPE_::PMES, "HFET1", "HFET1" }; case TYPE::NMES_HFET2: return { DEVICE_TYPE_::NMES, "HFET2", "HFET2" }; case TYPE::PMES_HFET2: return { DEVICE_TYPE_::PMES, "HFET2", "HFET2" }; case TYPE::NMOS_MOS1: return { DEVICE_TYPE_::NMOS, "MOS1", "Classical quadratic (MOS1)" }; case TYPE::PMOS_MOS1: return { DEVICE_TYPE_::PMOS, "MOS1", "Classical quadratic (MOS1)" }; case TYPE::NMOS_MOS2: return { DEVICE_TYPE_::NMOS, "MOS2", "Grove-Frohman (MOS2)" }; case TYPE::PMOS_MOS2: return { DEVICE_TYPE_::PMOS, "MOS2", "Grove-Frohman (MOS2)" }; case TYPE::NMOS_MOS3: return { DEVICE_TYPE_::NMOS, "MOS3", "MOS3" }; case TYPE::PMOS_MOS3: return { DEVICE_TYPE_::PMOS, "MOS3", "MOS3" }; case TYPE::NMOS_BSIM1: return { DEVICE_TYPE_::NMOS, "BSIM1", "BSIM1" }; case TYPE::PMOS_BSIM1: return { DEVICE_TYPE_::PMOS, "BSIM1", "BSIM1" }; case TYPE::NMOS_BSIM2: return { DEVICE_TYPE_::NMOS, "BSIM2", "BSIM2" }; case TYPE::PMOS_BSIM2: return { DEVICE_TYPE_::PMOS, "BSIM2", "BSIM2" }; case TYPE::NMOS_MOS6: return { DEVICE_TYPE_::NMOS, "MOS6", "MOS6" }; case TYPE::PMOS_MOS6: return { DEVICE_TYPE_::PMOS, "MOS6", "MOS6" }; case TYPE::NMOS_BSIM3: return { DEVICE_TYPE_::NMOS, "BSIM3", "BSIM3" }; case TYPE::PMOS_BSIM3: return { DEVICE_TYPE_::PMOS, "BSIM3", "BSIM3" }; case TYPE::NMOS_MOS9: return { DEVICE_TYPE_::NMOS, "MOS9", "MOS9" }; case TYPE::PMOS_MOS9: return { DEVICE_TYPE_::PMOS, "MOS9", "MOS9" }; case TYPE::NMOS_B4SOI: return { DEVICE_TYPE_::NMOS, "B4SOI", "BSIM4 SOI (B4SOI)" }; case TYPE::PMOS_B4SOI: return { DEVICE_TYPE_::PMOS, "B4SOI", "BSIM4 SOI (B4SOI)" }; case TYPE::NMOS_BSIM4: return { DEVICE_TYPE_::NMOS, "BSIM4", "BSIM4" }; case TYPE::PMOS_BSIM4: return { DEVICE_TYPE_::PMOS, "BSIM4", "BSIM4" }; //case TYPE::NMOS_EKV2_6: return {}; //case TYPE::PMOS_EKV2_6: return {}; //case TYPE::NMOS_PSP: return {}; //case TYPE::PMOS_PSP: return {}; case TYPE::NMOS_B3SOIFD: return { DEVICE_TYPE_::NMOS, "B3SOIFD", "B3SOIFD (BSIM3 FD-SOI)" }; case TYPE::PMOS_B3SOIFD: return { DEVICE_TYPE_::PMOS, "B3SOIFD", "B3SOIFD (BSIM3 FD-SOI)" }; case TYPE::NMOS_B3SOIDD: return { DEVICE_TYPE_::NMOS, "B3SOIDD", "B3SOIDD (BSIM3 SOI)" }; case TYPE::PMOS_B3SOIDD: return { DEVICE_TYPE_::PMOS, "B3SOIDD", "B3SOIDD (BSIM3 SOI)" }; case TYPE::NMOS_B3SOIPD: return { DEVICE_TYPE_::NMOS, "B3SOIPD", "B3SOIPD (BSIM3 PD-SOI)" }; case TYPE::PMOS_B3SOIPD: return { DEVICE_TYPE_::PMOS, "B3SOIPD", "B3SOIPD (BSIM3 PD-SOI)" }; //case TYPE::NMOS_STAG: return {}; //case TYPE::PMOS_STAG: return {}; case TYPE::NMOS_HISIM2: return { DEVICE_TYPE_::NMOS, "HISIM2", "HiSIM2" }; case TYPE::PMOS_HISIM2: return { DEVICE_TYPE_::PMOS, "HISIM2", "HiSIM2" }; case TYPE::NMOS_HISIMHV1: return { DEVICE_TYPE_::NMOS, "HISIMHV1", "HiSIM_HV1" }; case TYPE::PMOS_HISIMHV1: return { DEVICE_TYPE_::PMOS, "HISIMHV1", "HiSIM_HV1" }; case TYPE::NMOS_HISIMHV2: return { DEVICE_TYPE_::NMOS, "HISIMHV2", "HiSIM_HV2" }; case TYPE::PMOS_HISIMHV2: return { DEVICE_TYPE_::PMOS, "HISIMHV2", "HiSIM_HV2" }; case TYPE::V: return { DEVICE_TYPE_::V, "", "DC", }; case TYPE::V_SIN: return { DEVICE_TYPE_::V, "SIN", "Sine" }; case TYPE::V_PULSE: return { DEVICE_TYPE_::V, "PULSE", "Pulse" }; case TYPE::V_EXP: return { DEVICE_TYPE_::V, "EXP", "Exponential" }; /*case TYPE::V_SFAM: return { DEVICE_TYPE::V, "SFAM", "Single-frequency AM" }; case TYPE::V_SFFM: return { DEVICE_TYPE::V, "SFFM", "Single-frequency FM" };*/ case TYPE::V_PWL: return { DEVICE_TYPE_::V, "PWL", "Piecewise linear" }; case TYPE::V_WHITENOISE: return { DEVICE_TYPE_::V, "WHITENOISE", "White noise" }; case TYPE::V_PINKNOISE: return { DEVICE_TYPE_::V, "PINKNOISE", "Pink noise (1/f)" }; case TYPE::V_BURSTNOISE: return { DEVICE_TYPE_::V, "BURSTNOISE", "Burst noise" }; case TYPE::V_RANDUNIFORM: return { DEVICE_TYPE_::V, "RANDUNIFORM", "Random uniform" }; case TYPE::V_RANDNORMAL: return { DEVICE_TYPE_::V, "RANDNORMAL", "Random normal" }; case TYPE::V_RANDEXP: return { DEVICE_TYPE_::V, "RANDEXP", "Random exponential" }; //case TYPE::V_RANDPOISSON: return { DEVICE_TYPE::V, "RANDPOISSON", "Random Poisson" }; case TYPE::V_BEHAVIORAL: return { DEVICE_TYPE_::V, "=", "Behavioral" }; case TYPE::I: return { DEVICE_TYPE_::I, "", "DC", }; case TYPE::I_SIN: return { DEVICE_TYPE_::I, "SIN", "Sine" }; case TYPE::I_PULSE: return { DEVICE_TYPE_::I, "PULSE", "Pulse" }; case TYPE::I_EXP: return { DEVICE_TYPE_::I, "EXP", "Exponential" }; /*case TYPE::I_SFAM: return { DEVICE_TYPE::I, "SFAM", "Single-frequency AM" }; case TYPE::I_SFFM: return { DEVICE_TYPE::I, "SFFM", "Single-frequency FM" };*/ case TYPE::I_PWL: return { DEVICE_TYPE_::I, "PWL", "Piecewise linear" }; case TYPE::I_WHITENOISE: return { DEVICE_TYPE_::I, "WHITENOISE", "White noise" }; case TYPE::I_PINKNOISE: return { DEVICE_TYPE_::I, "PINKNOISE", "Pink noise (1/f)" }; case TYPE::I_BURSTNOISE: return { DEVICE_TYPE_::I, "BURSTNOISE", "Burst noise" }; case TYPE::I_RANDUNIFORM: return { DEVICE_TYPE_::I, "RANDUNIFORM", "Random uniform" }; case TYPE::I_RANDNORMAL: return { DEVICE_TYPE_::I, "RANDNORMAL", "Random normal" }; case TYPE::I_RANDEXP: return { DEVICE_TYPE_::I, "RANDEXP", "Random exponential" }; //case TYPE::I_RANDPOISSON: return { DEVICE_TYPE::I, "RANDPOISSON", "Random Poisson" }; case TYPE::I_BEHAVIORAL: return { DEVICE_TYPE_::I, "=", "Behavioral" }; case TYPE::SUBCKT: return { DEVICE_TYPE_::SUBCKT, "", "" }; case TYPE::XSPICE: return { DEVICE_TYPE_::XSPICE, "", "" }; case TYPE::KIBIS_DEVICE: return { DEVICE_TYPE_::KIBIS, "IBISDEVICE", "Device" }; case TYPE::KIBIS_DRIVER_DC: return { DEVICE_TYPE_::KIBIS, "IBISDRIVERDC", "DC driver" }; case TYPE::KIBIS_DRIVER_RECT: return { DEVICE_TYPE_::KIBIS, "IBISDRIVERRECT", "Rectangular wave driver" }; case TYPE::KIBIS_DRIVER_PRBS: return { DEVICE_TYPE_::KIBIS, "IBISDRIVERPRBS", "PRBS driver" }; case TYPE::KIBIS_DIFFDEVICE: return { DEVICE_TYPE_::KIBIS, "IBISDIFFDEVICE", "Differential device" }; case TYPE::KIBIS_DIFFDRIVER: return { DEVICE_TYPE_::KIBIS, "IBISDIFFDRIVER", "Differential driver" }; case TYPE::RAWSPICE: return { DEVICE_TYPE_::SPICE, "", "" }; case TYPE::_ENUM_END: break; } wxFAIL; return {}; } SIM_MODEL::SPICE_INFO SIM_MODEL::SpiceInfo( TYPE aType ) { switch( aType ) { case TYPE::R: return { "R", "" }; case TYPE::R_POT: return { "A", "" }; case TYPE::R_BEHAVIORAL: return { "R", "", "", "0", false, true }; case TYPE::C: return { "C", "" }; case TYPE::C_BEHAVIORAL: return { "C", "", "", "0", false, true }; case TYPE::L: return { "L", "" }; case TYPE::L_MUTUAL: return { "K", "" }; case TYPE::L_BEHAVIORAL: return { "L", "", "", "0", false, true }; //case TYPE::TLINE_Z0: return { "T" }; case TYPE::TLINE_Z0: return { "O", "LTRA" }; case TYPE::TLINE_RLGC: return { "O", "LTRA" }; case TYPE::SW_V: return { "S", "SW" }; case TYPE::SW_I: return { "W", "CSW" }; case TYPE::D: return { "D", "D" }; case TYPE::NPN_GUMMELPOON: return { "Q", "NPN", "", "1", true }; case TYPE::PNP_GUMMELPOON: return { "Q", "PNP", "", "1", true }; case TYPE::NPN_VBIC: return { "Q", "NPN", "", "4" }; case TYPE::PNP_VBIC: return { "Q", "PNP", "", "4" }; case TYPE::NPN_HICUM2: return { "Q", "NPN", "", "8" }; case TYPE::PNP_HICUM2: return { "Q", "PNP", "", "8" }; case TYPE::NJFET_SHICHMANHODGES: return { "M", "NJF", "", "1" }; case TYPE::PJFET_SHICHMANHODGES: return { "M", "PJF", "", "1" }; case TYPE::NJFET_PARKERSKELLERN: return { "M", "NJF", "", "2" }; case TYPE::PJFET_PARKERSKELLERN: return { "M", "PJF", "", "2" }; case TYPE::NMES_STATZ: return { "Z", "NMF", "", "1" }; case TYPE::PMES_STATZ: return { "Z", "PMF", "", "1" }; case TYPE::NMES_YTTERDAL: return { "Z", "NMF", "", "2" }; case TYPE::PMES_YTTERDAL: return { "Z", "PMF", "", "2" }; case TYPE::NMES_HFET1: return { "Z", "NMF", "", "5" }; case TYPE::PMES_HFET1: return { "Z", "PMF", "", "5" }; case TYPE::NMES_HFET2: return { "Z", "NMF", "", "6" }; case TYPE::PMES_HFET2: return { "Z", "PMF", "", "6" }; case TYPE::NMOS_MOS1: return { "M", "NMOS", "", "1" }; case TYPE::PMOS_MOS1: return { "M", "PMOS", "", "1" }; case TYPE::NMOS_MOS2: return { "M", "NMOS", "", "2" }; case TYPE::PMOS_MOS2: return { "M", "PMOS", "", "2" }; case TYPE::NMOS_MOS3: return { "M", "NMOS", "", "3" }; case TYPE::PMOS_MOS3: return { "M", "PMOS", "", "3" }; case TYPE::NMOS_BSIM1: return { "M", "NMOS", "", "4" }; case TYPE::PMOS_BSIM1: return { "M", "PMOS", "", "4" }; case TYPE::NMOS_BSIM2: return { "M", "NMOS", "", "5" }; case TYPE::PMOS_BSIM2: return { "M", "PMOS", "", "5" }; case TYPE::NMOS_MOS6: return { "M", "NMOS", "", "6" }; case TYPE::PMOS_MOS6: return { "M", "PMOS", "", "6" }; case TYPE::NMOS_BSIM3: return { "M", "NMOS", "", "8" }; case TYPE::PMOS_BSIM3: return { "M", "PMOS", "", "8" }; case TYPE::NMOS_MOS9: return { "M", "NMOS", "", "9" }; case TYPE::PMOS_MOS9: return { "M", "PMOS", "", "9" }; case TYPE::NMOS_B4SOI: return { "M", "NMOS", "", "10" }; case TYPE::PMOS_B4SOI: return { "M", "PMOS", "", "10" }; case TYPE::NMOS_BSIM4: return { "M", "NMOS", "", "14" }; case TYPE::PMOS_BSIM4: return { "M", "PMOS", "", "14" }; //case TYPE::NMOS_EKV2_6: return {}; //case TYPE::PMOS_EKV2_6: return {}; //case TYPE::NMOS_PSP: return {}; //case TYPE::PMOS_PSP: return {}; case TYPE::NMOS_B3SOIFD: return { "M", "NMOS", "", "55" }; case TYPE::PMOS_B3SOIFD: return { "M", "PMOS", "", "55" }; case TYPE::NMOS_B3SOIDD: return { "M", "NMOS", "", "56" }; case TYPE::PMOS_B3SOIDD: return { "M", "PMOS", "", "56" }; case TYPE::NMOS_B3SOIPD: return { "M", "NMOS", "", "57" }; case TYPE::PMOS_B3SOIPD: return { "M", "PMOS", "", "57" }; //case TYPE::NMOS_STAG: return {}; //case TYPE::PMOS_STAG: return {}; case TYPE::NMOS_HISIM2: return { "M", "NMOS", "", "68" }; case TYPE::PMOS_HISIM2: return { "M", "PMOS", "", "68" }; case TYPE::NMOS_HISIMHV1: return { "M", "NMOS", "", "73", true, false, "1.2.4" }; case TYPE::PMOS_HISIMHV1: return { "M", "PMOS", "", "73", true, false, "1.2.4" }; case TYPE::NMOS_HISIMHV2: return { "M", "NMOS", "", "73", true, false, "2.2.0" }; case TYPE::PMOS_HISIMHV2: return { "M", "PMOS", "", "73", true, false, "2.2.0" }; case TYPE::V: return { "V", "" }; case TYPE::V_SIN: return { "V", "", "SIN" }; case TYPE::V_PULSE: return { "V", "", "PULSE" }; case TYPE::V_EXP: return { "V", "", "EXP" }; /*case TYPE::V_SFAM: return { "V", "", "AM" }; case TYPE::V_SFFM: return { "V", "", "SFFM" };*/ case TYPE::V_PWL: return { "V", "", "PWL" }; case TYPE::V_WHITENOISE: return { "V", "", "TRNOISE" }; case TYPE::V_PINKNOISE: return { "V", "", "TRNOISE" }; case TYPE::V_BURSTNOISE: return { "V", "", "TRNOISE" }; case TYPE::V_RANDUNIFORM: return { "V", "", "TRRANDOM" }; case TYPE::V_RANDNORMAL: return { "V", "", "TRRANDOM" }; case TYPE::V_RANDEXP: return { "V", "", "TRRANDOM" }; //case TYPE::V_RANDPOISSON: return { "V", "", "TRRANDOM" }; case TYPE::V_BEHAVIORAL: return { "B" }; case TYPE::I: return { "I", "" }; case TYPE::I_PULSE: return { "I", "", "PULSE" }; case TYPE::I_SIN: return { "I", "", "SIN" }; case TYPE::I_EXP: return { "I", "", "EXP" }; /*case TYPE::I_SFAM: return { "V", "", "AM" }; case TYPE::I_SFFM: return { "V", "", "SFFM" };*/ case TYPE::I_PWL: return { "I", "", "PWL" }; case TYPE::I_WHITENOISE: return { "I", "", "TRNOISE" }; case TYPE::I_PINKNOISE: return { "I", "", "TRNOISE" }; case TYPE::I_BURSTNOISE: return { "I", "", "TRNOISE" }; case TYPE::I_RANDUNIFORM: return { "I", "", "TRRANDOM" }; case TYPE::I_RANDNORMAL: return { "I", "", "TRRANDOM" }; case TYPE::I_RANDEXP: return { "I", "", "TRRANDOM" }; //case TYPE::I_RANDPOISSON: return { "I", "", "TRRANDOM" }; case TYPE::I_BEHAVIORAL: return { "B" }; case TYPE::SUBCKT: return { "X" }; case TYPE::XSPICE: return { "A" }; case TYPE::KIBIS_DEVICE: return { "X" }; case TYPE::KIBIS_DRIVER_DC: return { "X" }; case TYPE::KIBIS_DRIVER_RECT: return { "X" }; case TYPE::KIBIS_DRIVER_PRBS: return { "X" }; case TYPE::KIBIS_DIFFDEVICE: return { "X" }; case TYPE::KIBIS_DIFFDRIVER: return { "X" }; case TYPE::NONE: case TYPE::RAWSPICE: return {}; case TYPE::_ENUM_END: break; } wxFAIL; return {}; } template TYPE SIM_MODEL::ReadTypeFromFields( const std::vector& aFields, int aSymbolPinCount ); template TYPE SIM_MODEL::ReadTypeFromFields( const std::vector& aFields, int aSymbolPinCount ); template TYPE SIM_MODEL::ReadTypeFromFields( const std::vector& aFields, int aSymbolPinCount ) { std::string deviceTypeFieldValue = GetFieldValue( &aFields, DEVICE_TYPE_FIELD ); std::string typeFieldValue = GetFieldValue( &aFields, TYPE_FIELD ); if( deviceTypeFieldValue != "" ) { for( TYPE type : TYPE_ITERATOR() ) { if( typeFieldValue == TypeInfo( type ).fieldValue ) { if( deviceTypeFieldValue == DeviceTypeInfo( TypeInfo( type ).deviceType ).fieldValue ) return type; } } } if( typeFieldValue != "" ) return TYPE::NONE; // No type information. Look for legacy (pre-V7) fields. TYPE typeFromLegacyFields = InferTypeFromLegacyFields( aFields ); if( typeFromLegacyFields != TYPE::NONE ) return typeFromLegacyFields; // Still no type information. // We try to infer the model from the mandatory fields in this case. return InferTypeFromRefAndValue( GetFieldValue( &aFields, REFERENCE_FIELD ), GetFieldValue( &aFields, VALUE_FIELD ), aSymbolPinCount ); } DEVICE_TYPE SIM_MODEL::InferDeviceTypeFromRef( const std::string& aRef ) { if( boost::starts_with( aRef, "R" ) ) return DEVICE_TYPE::R; else if( boost::starts_with( aRef, "C" ) ) return DEVICE_TYPE::C; else if( boost::starts_with( aRef, "L" ) ) return DEVICE_TYPE::L; else if( boost::starts_with( aRef, "V" ) ) return DEVICE_TYPE::V; else if( boost::starts_with( aRef, "I" ) ) return DEVICE_TYPE::I; else if( boost::starts_with( aRef, "TL" ) ) return DEVICE_TYPE::TLINE; return DEVICE_TYPE::NONE; } TYPE SIM_MODEL::InferTypeFromRefAndValue( const std::string& aRef, const std::string& aValue, int aSymbolPinCount ) { std::string typeString; try { tao::pegtl::string_input<> in( aValue, VALUE_FIELD ); auto root = tao::pegtl::parse_tree::parse( in ); for( const auto& node : root->children ) { if( node->is_type() ) typeString = node->string(); } } catch( const tao::pegtl::parse_error& ) { } DEVICE_TYPE deviceType = InferDeviceTypeFromRef( aRef ); // Exception. Potentiometer model is determined from pin count. if( deviceType == DEVICE_TYPE_::R && aSymbolPinCount == 3 ) return TYPE::R_POT; for( TYPE type : TYPE_ITERATOR() ) { if( TypeInfo( type ).deviceType == deviceType && TypeInfo( type ).fieldValue == typeString ) return type; } return TYPE::NONE; } template TYPE SIM_MODEL::InferTypeFromLegacyFields( const std::vector& aFields ) { if( GetFieldValue( &aFields, SIM_MODEL_RAW_SPICE::LEGACY_TYPE_FIELD ) != "" || GetFieldValue( &aFields, SIM_MODEL_RAW_SPICE::LEGACY_MODEL_FIELD ) != "" || GetFieldValue( &aFields, SIM_MODEL_RAW_SPICE::LEGACY_ENABLED_FIELD ) != "" || GetFieldValue( &aFields, SIM_MODEL_RAW_SPICE::LEGACY_LIB_FIELD ) != "" ) { return TYPE::RAWSPICE; } else return TYPE::NONE; } template void SIM_MODEL::ReadDataFields( unsigned aSymbolPinCount, const std::vector* aFields ) { doReadDataFields( aSymbolPinCount, aFields ); } template <> void SIM_MODEL::ReadDataFields( unsigned aSymbolPinCount, const std::vector* aFields ) { ReadDataSchFields( aSymbolPinCount, aFields ); } template <> void SIM_MODEL::ReadDataFields( unsigned aSymbolPinCount, const std::vector* aFields ) { ReadDataLibFields( aSymbolPinCount, aFields ); } void SIM_MODEL::ReadDataSchFields( unsigned aSymbolPinCount, const std::vector* aFields ) { doReadDataFields( aSymbolPinCount, aFields ); } void SIM_MODEL::ReadDataLibFields( unsigned aSymbolPinCount, const std::vector* aFields ) { doReadDataFields( aSymbolPinCount, aFields ); } template <> void SIM_MODEL::WriteFields( std::vector& aFields ) const { WriteDataSchFields( aFields ); } template <> void SIM_MODEL::WriteFields( std::vector& aFields ) const { WriteDataLibFields( aFields ); } void SIM_MODEL::WriteDataSchFields( std::vector& aFields ) const { doWriteFields( aFields ); } void SIM_MODEL::WriteDataLibFields( std::vector& aFields ) const { doWriteFields( aFields ); } std::unique_ptr SIM_MODEL::Create( TYPE aType, unsigned aSymbolPinCount ) { std::unique_ptr model = Create( aType ); // Passing nullptr to ReadDataFields will make it act as if all fields were empty. model->ReadDataFields( aSymbolPinCount, static_cast*>( nullptr ) ); return model; } std::unique_ptr SIM_MODEL::Create( const SIM_MODEL& aBaseModel, unsigned aSymbolPinCount ) { std::unique_ptr model = Create( aBaseModel.GetType() ); model->SetBaseModel( aBaseModel ); model->ReadDataFields( aSymbolPinCount, static_cast*>( nullptr ) ); return model; } template std::unique_ptr SIM_MODEL::Create( const SIM_MODEL& aBaseModel, unsigned aSymbolPinCount, const std::vector& aFields ) { TYPE type = ReadTypeFromFields( aFields, aSymbolPinCount ); // If the model has a specified type, it takes priority over the type of its base class. if( type == TYPE::NONE ) type = aBaseModel.GetType(); std::unique_ptr model = Create( type ); model->SetBaseModel( aBaseModel ); model->ReadDataFields( aSymbolPinCount, &aFields ); return model; } template std::unique_ptr SIM_MODEL::Create( const SIM_MODEL& aBaseModel, unsigned aSymbolPinCount, const std::vector& aFields ); template std::unique_ptr SIM_MODEL::Create( const SIM_MODEL& aBaseModel, unsigned aSymbolPinCount, const std::vector& aFields ); template std::unique_ptr SIM_MODEL::Create( unsigned aSymbolPinCount, const std::vector& aFields ) { TYPE type = ReadTypeFromFields( aFields, aSymbolPinCount ); if( type == TYPE::NONE ) THROW_IO_ERROR( wxString::Format( _( "Failed to read simulation model from fields" ) ) ); std::unique_ptr model = SIM_MODEL::Create( type ); model->ReadDataFields( aSymbolPinCount, &aFields ); return model; } template std::unique_ptr SIM_MODEL::Create( unsigned aSymbolPinCount, const std::vector& aFields ); template std::unique_ptr SIM_MODEL::Create( unsigned aSymbolPinCount, const std::vector& aFields ); template std::string SIM_MODEL::GetFieldValue( const std::vector* aFields, const std::string& aFieldName ) { static_assert( std::is_same::value || std::is_same::value ); if( !aFields ) return ""; // Should not happen, T=void specialization will be called instead. auto it = std::find_if( aFields->begin(), aFields->end(), [aFieldName]( const T& field ) { return field.GetName() == aFieldName; } ); if( it != aFields->end() ) return std::string( it->GetText().ToUTF8() ); return ""; } // This specialization is used when no fields are passed. template <> std::string SIM_MODEL::GetFieldValue( const std::vector* aFields, const std::string& aFieldName ) { return ""; } template void SIM_MODEL::SetFieldValue( std::vector& aFields, const std::string& aFieldName, const std::string& aValue ) { static_assert( std::is_same::value || std::is_same::value ); auto fieldIt = std::find_if( aFields.begin(), aFields.end(), [&]( const T& f ) { return f.GetName() == aFieldName; } ); if( fieldIt != aFields.end() ) { if( aValue == "" ) aFields.erase( fieldIt ); else fieldIt->SetText( aValue ); return; } if( aValue == "" ) return; if constexpr( std::is_same::value ) { wxASSERT( aFields.size() >= 1 ); SCH_ITEM* parent = static_cast( aFields.at( 0 ).GetParent() ); aFields.emplace_back( wxPoint(), aFields.size(), parent, aFieldName ); } else if constexpr( std::is_same::value ) aFields.emplace_back( aFields.size(), aFieldName ); aFields.back().SetText( aValue ); } SIM_MODEL::~SIM_MODEL() = default; void SIM_MODEL::AddPin( const PIN& aPin ) { m_pins.push_back( aPin ); } int SIM_MODEL::FindModelPinIndex( const std::string& aSymbolPinNumber ) { for( int modelPinIndex = 0; modelPinIndex < GetPinCount(); ++modelPinIndex ) { if( GetPin( modelPinIndex ).symbolPinNumber == aSymbolPinNumber ) return modelPinIndex; } return PIN::NOT_CONNECTED; } void SIM_MODEL::AddParam( const PARAM::INFO& aInfo, bool aIsOtherVariant ) { m_params.emplace_back( aInfo, aIsOtherVariant ); } std::vector> SIM_MODEL::GetPins() const { std::vector> pins; for( int modelPinIndex = 0; modelPinIndex < GetPinCount(); ++modelPinIndex ) pins.emplace_back( GetPin( modelPinIndex ) ); return pins; } const SIM_MODEL::PARAM& SIM_MODEL::GetParam( unsigned aParamIndex ) const { if( m_baseModel && m_params.at( aParamIndex ).value->ToString() == "" ) return m_baseModel->GetParam( aParamIndex ); else return m_params.at( aParamIndex ); } const SIM_MODEL::PARAM* SIM_MODEL::FindParam( const std::string& aParamName ) const { std::vector> params = GetParams(); auto it = std::find_if( params.begin(), params.end(), [aParamName]( const PARAM& param ) { return param.info.name == boost::to_lower_copy( aParamName ); } ); if( it == params.end() ) return nullptr; return &it->get(); } std::vector> SIM_MODEL::GetParams() const { std::vector> params; for( int i = 0; i < GetParamCount(); ++i ) params.emplace_back( GetParam( i ) ); return params; } const SIM_MODEL::PARAM& SIM_MODEL::GetUnderlyingParam( unsigned aParamIndex ) const { return m_params.at( aParamIndex ); } const SIM_MODEL::PARAM& SIM_MODEL::GetBaseParam( unsigned aParamIndex ) const { if( m_baseModel ) return m_baseModel->GetParam( aParamIndex ); else return m_params.at( aParamIndex ); } void SIM_MODEL::SetParamValue( int aParamIndex, const SIM_VALUE& aValue ) { *m_params.at( aParamIndex ).value = aValue; } void SIM_MODEL::SetParamValue( int aParamIndex, const std::string& aValue, SIM_VALUE::NOTATION aNotation ) { const SIM_VALUE& value = *GetParam( aParamIndex ).value; SetParamValue( aParamIndex, *SIM_VALUE::Create( value.GetType(), aValue, aNotation ) ); } void SIM_MODEL::SetParamValue( const std::string& aParamName, const SIM_VALUE& aValue ) { std::vector> params = GetParams(); auto it = std::find_if( params.begin(), params.end(), [aParamName]( const PARAM& param ) { return param.info.name == boost::to_lower_copy( aParamName ); } ); if( it == params.end() ) { THROW_IO_ERROR( wxString::Format( _( "Could not find a parameter named '%s' in simulation model of type '%s'" ), aParamName, GetTypeInfo().fieldValue ) ); } SetParamValue( static_cast( it - params.begin() ), aValue ); } void SIM_MODEL::SetParamValue( const std::string& aParamName, const std::string& aValue, SIM_VALUE::NOTATION aNotation ) { const PARAM* param = FindParam( aParamName ); if( !param ) { THROW_IO_ERROR( wxString::Format( _( "Could not find a parameter named '%s' in simulation model of type '%s'" ), aParamName, GetTypeInfo().fieldValue ) ); } const SIM_VALUE& value = *FindParam( aParamName )->value; SetParamValue( aParamName, *SIM_VALUE::Create( value.GetType(), aValue, aNotation ) ); } bool SIM_MODEL::HasOverrides() const { for( const PARAM& param : m_params ) { if( param.value->ToString() != "" ) return true; } return false; } bool SIM_MODEL::HasNonInstanceOverrides() const { for( const PARAM& param : m_params ) { if( !param.info.isInstanceParam && param.value->ToString() != "" ) return true; } return false; } bool SIM_MODEL::HasSpiceNonInstanceOverrides() const { for( const PARAM& param : m_params ) { if( !param.info.isSpiceInstanceParam && param.value->ToString() != "" ) return true; } return false; } std::unique_ptr SIM_MODEL::Create( TYPE aType ) { switch( aType ) { case TYPE::R: case TYPE::C: case TYPE::L: return std::make_unique( aType ); case TYPE::R_POT: return std::make_unique(); case TYPE::L_MUTUAL: return std::make_unique(); case TYPE::R_BEHAVIORAL: case TYPE::C_BEHAVIORAL: case TYPE::L_BEHAVIORAL: case TYPE::V_BEHAVIORAL: case TYPE::I_BEHAVIORAL: return std::make_unique( aType ); case TYPE::TLINE_Z0: case TYPE::TLINE_RLGC: return std::make_unique( aType ); case TYPE::SW_V: case TYPE::SW_I: return std::make_unique( aType ); case TYPE::V: case TYPE::I: case TYPE::V_SIN: case TYPE::I_SIN: case TYPE::V_PULSE: case TYPE::I_PULSE: case TYPE::V_EXP: case TYPE::I_EXP: /*case TYPE::V_SFAM: case TYPE::I_SFAM: case TYPE::V_SFFM: case TYPE::I_SFFM:*/ case TYPE::V_PWL: case TYPE::I_PWL: case TYPE::V_WHITENOISE: case TYPE::I_WHITENOISE: case TYPE::V_PINKNOISE: case TYPE::I_PINKNOISE: case TYPE::V_BURSTNOISE: case TYPE::I_BURSTNOISE: case TYPE::V_RANDUNIFORM: case TYPE::I_RANDUNIFORM: case TYPE::V_RANDNORMAL: case TYPE::I_RANDNORMAL: case TYPE::V_RANDEXP: case TYPE::I_RANDEXP: //case TYPE::V_RANDPOISSON: //case TYPE::I_RANDPOISSON: return std::make_unique( aType ); case TYPE::SUBCKT: return std::make_unique(); case TYPE::XSPICE: return std::make_unique( aType ); case TYPE::KIBIS_DEVICE: case TYPE::KIBIS_DRIVER_DC: case TYPE::KIBIS_DRIVER_RECT: case TYPE::KIBIS_DRIVER_PRBS: case TYPE::KIBIS_DIFFDEVICE: case TYPE::KIBIS_DIFFDRIVER: return std::make_unique( aType ); case TYPE::RAWSPICE: return std::make_unique(); default: return std::make_unique( aType ); } } SIM_MODEL::SIM_MODEL( TYPE aType ) : SIM_MODEL( aType, std::make_unique( *this ) ) { } SIM_MODEL::SIM_MODEL( TYPE aType, std::unique_ptr aSpiceGenerator ) : m_baseModel( nullptr ), m_spiceGenerator( std::move( aSpiceGenerator ) ), m_type( aType ), m_isEnabled( true ), m_isInferred( false ) { } void SIM_MODEL::CreatePins( unsigned aSymbolPinCount ) { // Default pin sequence: model pins are the same as symbol pins. // Excess model pins are set as Not Connected. // Note that intentionally nothing is added if `getPinNames()` returns an empty vector. // SIM_MODEL pins must be ordered by symbol pin numbers -- this is assumed by the code that // accesses them. for( unsigned modelPinIndex = 0; modelPinIndex < getPinNames().size(); ++modelPinIndex ) { if( modelPinIndex < aSymbolPinCount ) AddPin( { getPinNames().at( modelPinIndex ), fmt::format( "{}", modelPinIndex + 1 ) } ); else AddPin( { getPinNames().at( modelPinIndex ), "" } ); } } template void SIM_MODEL::WriteInferredDataFields( std::vector& aFields, const std::string& aValue ) const; template void SIM_MODEL::WriteInferredDataFields( std::vector& aFields, const std::string& aValue ) const; template void SIM_MODEL::WriteInferredDataFields( std::vector& aFields, const std::string& aValue ) const { if( GetPinCount() == 2 && GetPin( 0 ).symbolPinNumber == "1" && GetPin( 1 ).symbolPinNumber == "2" ) { SetFieldValue( aFields, PINS_FIELD, "" ); } SetFieldValue( aFields, VALUE_FIELD, aValue ); SetFieldValue( aFields, DEVICE_TYPE_FIELD, "" ); SetFieldValue( aFields, TYPE_FIELD, "" ); SetFieldValue( aFields, PARAMS_FIELD, "" ); SetFieldValue( aFields, ENABLE_FIELD, "" ); } std::string SIM_MODEL::GenerateParamValuePair( const PARAM& aParam, bool& aIsFirst ) const { std::string result; if( aIsFirst ) aIsFirst = false; else result.append( " " ); std::string name = aParam.info.name; // Because of collisions with instance parameters, we append some model parameters with "_". if( boost::ends_with( aParam.info.name, "_" ) ) name = aParam.info.name.substr( 0, aParam.info.name.length() - 1); std::string value = aParam.value->ToString(); if( value.find( " " ) != std::string::npos ) value = "\"" + value + "\""; result.append( fmt::format( "{}={}", aParam.info.name, value ) ); return result; } std::string SIM_MODEL::GenerateParamsField( const std::string& aPairSeparator ) const { std::string result; bool isFirst = true; for( const PARAM& param : m_params ) { if( param.value->ToString() == "" ) continue; result.append( GenerateParamValuePair( param, isFirst ) ); } return result; } void SIM_MODEL::ParseParamsField( const std::string& aParamsField ) { tao::pegtl::string_input<> in( aParamsField, "Sim_Params" ); std::unique_ptr root; try { // Using parse tree instead of actions because we don't care about performance that much, // and having a tree greatly simplifies things. root = tao::pegtl::parse_tree::parse< SIM_MODEL_PARSER::fieldParamValuePairsGrammar, SIM_MODEL_PARSER::fieldParamValuePairsSelector, tao::pegtl::nothing, SIM_MODEL_PARSER::control> ( in ); } catch( const tao::pegtl::parse_error& e ) { THROW_IO_ERROR( e.what() ); } std::string paramName; for( const auto& node : root->children ) { if( node->is_type() ) paramName = node->string(); // TODO: Do something with number. // It doesn't seem too useful? else if( node->is_type() || node->is_type() ) { wxASSERT( paramName != "" ); // TODO: Shouldn't be named "...fromSpiceCode" here... SetParamValue( paramName, node->string(), SIM_VALUE_GRAMMAR::NOTATION::SI ); } else if( node->is_type() ) { std::string str = node->string(); // Unescape quotes. boost::replace_all( str, "\\\"", "\"" ); SetParamValue( paramName, str, SIM_VALUE_GRAMMAR::NOTATION::SI ); } else { wxFAIL; } } } void SIM_MODEL::ParsePinsField( unsigned aSymbolPinCount, const std::string& aPinsField ) { CreatePins( aSymbolPinCount ); if( aPinsField == "" ) return; tao::pegtl::string_input<> in( aPinsField, PINS_FIELD ); std::unique_ptr root; try { root = tao::pegtl::parse_tree::parse( in ); } catch( const tao::pegtl::parse_error& e ) { THROW_IO_ERROR( e.what() ); } if( static_cast( root->children.size() ) != GetPinCount() ) { THROW_IO_ERROR( wxString::Format( _( "%s describes %lu pins, expected %u" ), PINS_FIELD, root->children.size(), GetPinCount() ) ); } for( int pinIndex = 0; pinIndex < static_cast( root->children.size() ); ++pinIndex ) { if( root->children.at( pinIndex )->string() == "~" ) SetPinSymbolPinNumber( pinIndex, "" ); else SetPinSymbolPinNumber( pinIndex, root->children.at( pinIndex )->string() ); } } void SIM_MODEL::ParseEnableField( const std::string& aEnableField ) { if( aEnableField == "" ) return; char c = boost::to_lower_copy( aEnableField )[0]; if( c == 'n' || c == 'f' || c == '0' ) m_isEnabled = false; } template void SIM_MODEL::doReadDataFields( unsigned aSymbolPinCount, const std::vector* aFields ) { ParseEnableField( GetFieldValue( aFields, ENABLE_FIELD ) ); ParsePinsField( aSymbolPinCount, GetFieldValue( aFields, PINS_FIELD ) ); if( GetFieldValue( aFields, PARAMS_FIELD ) != "" ) ParseParamsField( GetFieldValue( aFields, PARAMS_FIELD ) ); else InferredReadDataFields( aSymbolPinCount, aFields, true ); } template void SIM_MODEL::InferredReadDataFields( unsigned aSymbolPinCount, const std::vector* aFields, bool aAllowPrimaryValueWithoutName ) { // TODO: Make a subclass SIM_MODEL_NONE. if( GetType() == SIM_MODEL::TYPE::NONE ) return; // TODO: Don't call this multiple times. if( InferTypeFromRefAndValue( GetFieldValue( aFields, REFERENCE_FIELD ), GetFieldValue( aFields, VALUE_FIELD ), aSymbolPinCount ) != GetType() ) { // Not an inferred model. Nothing to do here. return; } try { // TODO: Don't call this multiple times. tao::pegtl::string_input<> in( GetFieldValue( aFields, VALUE_FIELD ), VALUE_FIELD ); auto root = tao::pegtl::parse_tree::parse( in ); for( const auto& node : root->children ) { if( node->is_type() ) { if( aAllowPrimaryValueWithoutName ) { for( const auto& subnode : node->children ) { if( subnode->is_type>() ) { SetParamValue( 0, subnode->string() ); } } } else { THROW_IO_ERROR( wxString::Format( _( "Simulation model of type '%s' cannot have a primary value (which is '%s') in Value field" ), GetTypeInfo().fieldValue, node->string() ) ); } } else if( node->is_type() ) ParseParamsField( node->string() ); } } catch( const tao::pegtl::parse_error& e ) { THROW_IO_ERROR( e.what() ); } SetIsInferred( true ); } template void SIM_MODEL::InferredReadDataFields( unsigned aSymbolPinCount, const std::vector* aFields, bool aAllowOnlyFirstValue ); template void SIM_MODEL::InferredReadDataFields( unsigned aSymbolPinCount, const std::vector* aFields, bool aAllowOnlyFirstValue ); template void SIM_MODEL::doWriteFields( std::vector& aFields ) const { SetFieldValue( aFields, DEVICE_TYPE_FIELD, generateDeviceTypeField() ); SetFieldValue( aFields, TYPE_FIELD, generateTypeField() ); SetFieldValue( aFields, PINS_FIELD, generatePinsField() ); SetFieldValue( aFields, PARAMS_FIELD, GenerateParamsField( " " ) ); SetFieldValue( aFields, ENABLE_FIELD, generateEnableField() ); } std::string SIM_MODEL::generateDeviceTypeField() const { return DeviceTypeInfo( TypeInfo( m_type ).deviceType ).fieldValue; } std::string SIM_MODEL::generateTypeField() const { return TypeInfo( m_type ).fieldValue; } std::string SIM_MODEL::generatePinsField() const { std::string result = ""; bool isFirst = true; for( const PIN& pin : GetPins() ) { if( isFirst ) isFirst = false; else result.append( " " ); if( pin.symbolPinNumber == "" ) result.append( "~" ); else result.append( pin.symbolPinNumber ); // Note that it's numbered from 1. } return result; } std::string SIM_MODEL::generateEnableField() const { return m_isEnabled ? "" : "0"; } bool SIM_MODEL::requiresSpiceModelLine() const { for( const PARAM& param : GetParams() ) { if( !param.info.isSpiceInstanceParam ) return true; } return false; }