/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2014 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2014-2017 KiCad Developers, see CHANGELOG.TXT for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /************************************/ /* routines to handle bezier curves */ /************************************/ #include #include static inline double calc_sq_distance( int x1, int y1, int x2, int y2 ) { int dx = x2 - x1; int dy = y2 - y1; return (double)dx * dx + (double)dy * dy; } static inline double sqrt_len( int dx, int dy ) { return ((double)dx * dx) + ((double)dy * dy); } void BEZIER_POLY::GetPoly( std::vector& aOutput ) { wxCHECK( !m_ctrlPts.empty(), /* void */ ); m_output = &aOutput; m_output->clear(); m_output->push_back( wxPoint( m_ctrlPts.front() ) ); // Only quadratic and cubic Bezier curves are handled if( m_ctrlPts.size() == 3 ) recursiveBezier( m_ctrlPts[0].x, m_ctrlPts[0].y, m_ctrlPts[1].x, m_ctrlPts[1].y, m_ctrlPts[2].x, m_ctrlPts[2].y, 0 ); else if( m_ctrlPts.size() == 4 ) recursiveBezier( m_ctrlPts[0].x, m_ctrlPts[0].y, m_ctrlPts[1].x, m_ctrlPts[1].y, m_ctrlPts[2].x, m_ctrlPts[2].y, m_ctrlPts[3].x, m_ctrlPts[3].y, 0 ); m_output->push_back( wxPoint( m_ctrlPts.back() ) ); } void BEZIER_POLY::recursiveBezier( int x1, int y1, int x2, int y2, int x3, int y3, unsigned int level ) { if( level > recursion_limit ) return; // Calculate all the mid-points of the line segments //---------------------- int x12 = (x1 + x2) / 2; int y12 = (y1 + y2) / 2; int x23 = (x2 + x3) / 2; int y23 = (y2 + y3) / 2; int x123 = (x12 + x23) / 2; int y123 = (y12 + y23) / 2; int dx = x3 - x1; int dy = y3 - y1; double d = fabs( ((double) (x2 - x3) * dy) - ((double) (y2 - y3) * dx ) ); double da; if( d > curve_collinearity_epsilon ) { // Regular case //----------------- if( d * d <= distance_tolerance_square * (dx * dx + dy * dy) ) { // If the curvature doesn't exceed the distance_tolerance value // we tend to finish subdivisions. //---------------------- if( angle_tolerance < curve_angle_tolerance_epsilon ) { addSegment( wxPoint( x123, y123 ) ); return; } // Angle & Cusp Condition //---------------------- da = fabs( atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ) - atan2( (double) ( y2 - y1 ), (double) ( x2 - x1 ) ) ); if( da >=M_PI ) da = 2 * M_PI - da; if( da < angle_tolerance ) { // Finally we can stop the recursion //---------------------- addSegment( wxPoint( x123, y123 ) ); return; } } } else { // Collinear case //------------------ da = sqrt_len(dx, dy); if( da == 0 ) { d = calc_sq_distance( x1, y1, x2, y2 ); } else { d = ( (double)(x2 - x1) * dx + (double)(y2 - y1) * dy ) / da; if( d > 0 && d < 1 ) { // Simple collinear case, 1---2---3 // We can leave just two endpoints return; } if( d <= 0 ) d = calc_sq_distance( x2, y2, x1, y1 ); else if( d >= 1 ) d = calc_sq_distance( x2, y2, x3, y3 ); else d = calc_sq_distance( x2, y2, x1 + (int) d * dx, y1 + (int) d * dy ); } if( d < distance_tolerance_square ) { addSegment( wxPoint( x2, y2 ) ); return; } } // Continue subdivision //---------------------- recursiveBezier( x1, y1, x12, y12, x123, y123, level + 1 ); recursiveBezier( x123, y123, x23, y23, x3, y3, -(level + 1) ); } void BEZIER_POLY::recursiveBezier( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4, unsigned int level ) { if( level > recursion_limit ) return; // Calculate all the mid-points of the line segments //---------------------- int x12 = (x1 + x2) / 2; int y12 = (y1 + y2) / 2; int x23 = (x2 + x3) / 2; int y23 = (y2 + y3) / 2; int x34 = (x3 + x4) / 2; int y34 = (y3 + y4) / 2; int x123 = (x12 + x23) / 2; int y123 = (y12 + y23) / 2; int x234 = (x23 + x34) / 2; int y234 = (y23 + y34) / 2; int x1234 = (x123 + x234) / 2; int y1234 = (y123 + y234) / 2; // Try to approximate the full cubic curve by a single straight line //------------------ int dx = x4 - x1; int dy = y4 - y1; double d2 = fabs( (double) ( (x2 - x4) * dy - (y2 - y4) * dx ) ); double d3 = fabs( (double) ( (x3 - x4) * dy - (y3 - y4) * dx ) ); double da1, da2, k; switch( (int(d2 > curve_collinearity_epsilon) << 1) + int(d3 > curve_collinearity_epsilon) ) { case 0: // All collinear OR p1==p4 //---------------------- k = dx * dx + dy * dy; if( k == 0 ) { d2 = calc_sq_distance( x1, y1, x2, y2 ); d3 = calc_sq_distance( x4, y4, x3, y3 ); } else { k = 1 / k; da1 = x2 - x1; da2 = y2 - y1; d2 = k * (da1 * dx + da2 * dy); da1 = x3 - x1; da2 = y3 - y1; d3 = k * (da1 * dx + da2 * dy); if( d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1 ) { // Simple collinear case, 1---2---3---4 // We can leave just two endpoints return; } if( d2 <= 0 ) d2 = calc_sq_distance( x2, y2, x1, y1 ); else if( d2 >= 1 ) d2 = calc_sq_distance( x2, y2, x4, y4 ); else d2 = calc_sq_distance( x2, y2, x1 + (int) d2 * dx, y1 + (int) d2 * dy ); if( d3 <= 0 ) d3 = calc_sq_distance( x3, y3, x1, y1 ); else if( d3 >= 1 ) d3 = calc_sq_distance( x3, y3, x4, y4 ); else d3 = calc_sq_distance( x3, y3, x1 + (int) d3 * dx, y1 + (int) d3 * dy ); } if( d2 > d3 ) { if( d2 < distance_tolerance_square ) { addSegment( wxPoint( x2, y2 ) ); return; } } else { if( d3 < distance_tolerance_square ) { addSegment( wxPoint( x3, y3 ) ); return; } } break; case 1: // p1,p2,p4 are collinear, p3 is significant //---------------------- if( d3 * d3 <= distance_tolerance_square * sqrt_len(dx, dy) ) { if( angle_tolerance < curve_angle_tolerance_epsilon ) { addSegment( wxPoint( x23, y23 ) ); return; } // Angle Condition //---------------------- da1 = fabs( atan2( (double) ( y4 - y3 ), (double) ( x4 - x3 ) ) - atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ) ); if( da1 >= M_PI ) da1 = 2 * M_PI - da1; if( da1 < angle_tolerance ) { addSegment( wxPoint( x2, y2 ) ); addSegment( wxPoint( x3, y3 ) ); return; } if( cusp_limit != 0.0 ) { if( da1 > cusp_limit ) { addSegment( wxPoint( x3, y3 ) ); return; } } } break; case 2: // p1,p3,p4 are collinear, p2 is significant //---------------------- if( d2 * d2 <= distance_tolerance_square * sqrt_len(dx, dy) ) { if( angle_tolerance < curve_angle_tolerance_epsilon ) { addSegment( wxPoint( x23, y23 ) ); return; } // Angle Condition //---------------------- da1 = fabs( atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ) - atan2( (double) ( y2 - y1 ), (double) ( x2 - x1 ) ) ); if( da1 >= M_PI ) da1 = 2 * M_PI - da1; if( da1 < angle_tolerance ) { addSegment( wxPoint( x2, y2 ) ); addSegment( wxPoint( x3, y3 ) ); return; } if( cusp_limit != 0.0 ) { if( da1 > cusp_limit ) { addSegment( wxPoint( x2, y2 ) ); return; } } } break; case 3: // Regular case //----------------- if( (d2 + d3) * (d2 + d3) <= distance_tolerance_square * sqrt_len(dx, dy) ) { // If the curvature doesn't exceed the distance_tolerance value // we tend to finish subdivisions. //---------------------- if( angle_tolerance < curve_angle_tolerance_epsilon ) { addSegment( wxPoint( x23, y23 ) ); return; } // Angle & Cusp Condition //---------------------- k = atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ); da1 = fabs( k - atan2( (double) ( y2 - y1 ), (double) ( x2 - x1 ) ) ); da2 = fabs( atan2( (double) ( y4 - y3 ), (double) ( x4 - x3 ) ) - k ); if( da1 >= M_PI ) da1 = 2 * M_PI - da1; if( da2 >= M_PI ) da2 = 2 * M_PI - da2; if( da1 + da2 < angle_tolerance ) { // Finally we can stop the recursion //---------------------- addSegment( wxPoint( x23, y23 ) ); return; } if( cusp_limit != 0.0 ) { if( da1 > cusp_limit ) { addSegment( wxPoint( x2, y2 ) ); return; } if( da2 > cusp_limit ) { addSegment( wxPoint( x3, y3 ) ); return; } } } break; } // Continue subdivision //---------------------- recursiveBezier( x1, y1, x12, y12, x123, y123, x1234, y1234, level + 1 ); recursiveBezier( x1234, y1234, x234, y234, x34, y34, x4, y4, level + 1 ); }