/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2015 CERN * Copyright (C) 2016 KiCad Developers, see AUTHORS.txt for contributors. * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include // God forgive me doing this... #include "pns_node.h" #include "pns_itemset.h" #include "pns_topology.h" #include "pns_meander_placer.h" #include "pns_router.h" #include "pns_debug_decorator.h" namespace PNS { MEANDER_PLACER::MEANDER_PLACER( ROUTER* aRouter ) : MEANDER_PLACER_BASE( aRouter ) { m_world = NULL; m_currentNode = NULL; // Init temporary variables (do not leave uninitialized members) m_initialSegment = NULL; m_lastLength = 0; m_lastStatus = TOO_SHORT; } MEANDER_PLACER::~MEANDER_PLACER() { } NODE* MEANDER_PLACER::CurrentNode( bool aLoopsRemoved ) const { if( !m_currentNode ) return m_world; return m_currentNode; } bool MEANDER_PLACER::Start( const VECTOR2I& aP, ITEM* aStartItem ) { VECTOR2I p; if( !aStartItem || !aStartItem->OfKind( ITEM::SEGMENT_T ) ) { Router()->SetFailureReason( _( "Please select a track whose length you want to tune." ) ); return false; } m_initialSegment = static_cast( aStartItem ); p = m_initialSegment->Seg().NearestPoint( aP ); m_currentNode = NULL; m_currentStart = p; m_world = Router()->GetWorld()->Branch(); m_originLine = m_world->AssembleLine( m_initialSegment ); TOPOLOGY topo( m_world ); m_tunedPath = topo.AssembleTrivialPath( m_initialSegment ); m_world->Remove( m_originLine ); m_currentWidth = m_originLine.Width(); m_currentEnd = VECTOR2I( 0, 0 ); return true; } int MEANDER_PLACER::origPathLength() const { int total = 0; for( const ITEM* item : m_tunedPath.CItems() ) { if( const LINE* l = dyn_cast( item ) ) { total += l->CLine().Length(); } } return total; } bool MEANDER_PLACER::Move( const VECTOR2I& aP, ITEM* aEndItem ) { return doMove( aP, aEndItem, m_settings.m_targetLength ); } bool MEANDER_PLACER::doMove( const VECTOR2I& aP, ITEM* aEndItem, int aTargetLength ) { SHAPE_LINE_CHAIN pre, tuned, post; if( m_currentNode ) delete m_currentNode; m_currentNode = m_world->Branch(); cutTunedLine( m_originLine.CLine(), m_currentStart, aP, pre, tuned, post ); m_result = MEANDERED_LINE( this, false ); m_result.SetWidth( m_originLine.Width() ); m_result.SetBaselineOffset( 0 ); for( int i = 0; i < tuned.SegmentCount(); i++ ) { const SEG s = tuned.CSegment( i ); m_result.AddCorner( s.A ); m_result.MeanderSegment( s ); m_result.AddCorner( s.B ); } int lineLen = origPathLength(); m_lastLength = lineLen; m_lastStatus = TUNED; if( compareWithTolerance( lineLen, aTargetLength, m_settings.m_lengthTolerance ) > 0 ) { m_lastStatus = TOO_LONG; } else { m_lastLength = lineLen - tuned.Length(); tuneLineLength( m_result, aTargetLength - lineLen ); } for( const ITEM* item : m_tunedPath.CItems() ) { if( const LINE* l = dyn_cast( item ) ) { Dbg()->AddLine( l->CLine(), 5, 30000 ); } } if( m_lastStatus != TOO_LONG ) { tuned.Clear(); for( MEANDER_SHAPE* m : m_result.Meanders() ) { if( m->Type() != MT_EMPTY ) { tuned.Append ( m->CLine( 0 ) ); } } m_lastLength += tuned.Length(); int comp = compareWithTolerance( m_lastLength - aTargetLength, 0, m_settings.m_lengthTolerance ); if( comp > 0 ) m_lastStatus = TOO_LONG; else if( comp < 0 ) m_lastStatus = TOO_SHORT; else m_lastStatus = TUNED; } m_finalShape.Clear(); m_finalShape.Append( pre ); m_finalShape.Append( tuned ); m_finalShape.Append( post ); m_finalShape.Simplify(); return true; } bool MEANDER_PLACER::FixRoute( const VECTOR2I& aP, ITEM* aEndItem, bool aForceFinish ) { if( !m_currentNode ) return false; m_currentTrace = LINE( m_originLine, m_finalShape ); m_currentNode->Add( m_currentTrace ); Router()->CommitRouting( m_currentNode ); return true; } bool MEANDER_PLACER::CheckFit( MEANDER_SHAPE* aShape ) { LINE l( m_originLine, aShape->CLine( 0 ) ); if( m_currentNode->CheckColliding( &l ) ) return false; int w = aShape->Width(); int clearance = w + m_settings.m_spacing; return m_result.CheckSelfIntersections( aShape, clearance ); } const ITEM_SET MEANDER_PLACER::Traces() { m_currentTrace = LINE( m_originLine, m_finalShape ); return ITEM_SET( &m_currentTrace ); } const VECTOR2I& MEANDER_PLACER::CurrentEnd() const { return m_currentEnd; } int MEANDER_PLACER::CurrentLayer() const { return m_initialSegment->Layers().Start(); } const wxString MEANDER_PLACER::TuningInfo() const { wxString status; switch ( m_lastStatus ) { case TOO_LONG: status = _( "Too long: " ); break; case TOO_SHORT: status = _( "Too short: " ); break; case TUNED: status = _( "Tuned: " ); break; default: return _( "?" ); } status += LengthDoubleToString( (double) m_lastLength, false ); status += "/"; status += LengthDoubleToString( (double) m_settings.m_targetLength, false ); return status; } MEANDER_PLACER::TUNING_STATUS MEANDER_PLACER::TuningStatus() const { return m_lastStatus; } }