/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2014 CERN * Copyright (C) 2016 KiCad Developers, see AUTHORS.txt for contributors. * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include #include #include "pns_arc.h" #include "pns_line.h" #include "pns_diff_pair.h" #include "pns_node.h" #include "pns_solid.h" #include "pns_optimizer.h" #include "pns_utils.h" #include "pns_router.h" namespace PNS { /** * Cost Estimator Methods */ int COST_ESTIMATOR::CornerCost( const SEG& aA, const SEG& aB ) { DIRECTION_45 dir_a( aA ), dir_b( aB ); switch( dir_a.Angle( dir_b ) ) { case DIRECTION_45::ANG_OBTUSE: return 10; case DIRECTION_45::ANG_STRAIGHT: return 5; case DIRECTION_45::ANG_ACUTE: return 50; case DIRECTION_45::ANG_RIGHT: return 30; case DIRECTION_45::ANG_HALF_FULL: return 60; default: return 100; } } int COST_ESTIMATOR::CornerCost( const SHAPE_LINE_CHAIN& aLine ) { int total = 0; for( int i = 0; i < aLine.SegmentCount() - 1; ++i ) total += CornerCost( aLine.CSegment( i ), aLine.CSegment( i + 1 ) ); return total; } int COST_ESTIMATOR::CornerCost( const LINE& aLine ) { return CornerCost( aLine.CLine() ); } void COST_ESTIMATOR::Add( LINE& aLine ) { m_lengthCost += aLine.CLine().Length(); m_cornerCost += CornerCost( aLine ); } void COST_ESTIMATOR::Remove( LINE& aLine ) { m_lengthCost -= aLine.CLine().Length(); m_cornerCost -= CornerCost( aLine ); } void COST_ESTIMATOR::Replace( LINE& aOldLine, LINE& aNewLine ) { m_lengthCost -= aOldLine.CLine().Length(); m_cornerCost -= CornerCost( aOldLine ); m_lengthCost += aNewLine.CLine().Length(); m_cornerCost += CornerCost( aNewLine ); } bool COST_ESTIMATOR::IsBetter( COST_ESTIMATOR& aOther, double aLengthTolerance, double aCornerTolerance ) const { if( aOther.m_cornerCost < m_cornerCost && aOther.m_lengthCost < m_lengthCost ) return true; else if( aOther.m_cornerCost < m_cornerCost * aCornerTolerance && aOther.m_lengthCost < m_lengthCost * aLengthTolerance ) return true; return false; } /** * Optimizer **/ OPTIMIZER::OPTIMIZER( NODE* aWorld ) : m_world( aWorld ), m_collisionKindMask( ITEM::ANY_T ), m_effortLevel( MERGE_SEGMENTS ), m_keepPostures( false ), m_restrictAreaActive( false ) { } OPTIMIZER::~OPTIMIZER() { } struct OPTIMIZER::CACHE_VISITOR { CACHE_VISITOR( const ITEM* aOurItem, NODE* aNode, int aMask ) : m_ourItem( aOurItem ), m_collidingItem( NULL ), m_node( aNode ), m_mask( aMask ) {} bool operator()( ITEM* aOtherItem ) { if( !( m_mask & aOtherItem->Kind() ) ) return true; int clearance = m_node->GetClearance( aOtherItem, m_ourItem ); if( !aOtherItem->Collide( m_ourItem, clearance, false, nullptr, m_node ) ) return true; m_collidingItem = aOtherItem; return false; } const ITEM* m_ourItem; ITEM* m_collidingItem; NODE* m_node; int m_mask; }; void OPTIMIZER::cacheAdd( ITEM* aItem, bool aIsStatic = false ) { if( m_cacheTags.find( aItem ) != m_cacheTags.end() ) return; m_cache.Add( aItem ); m_cacheTags[aItem].m_hits = 1; m_cacheTags[aItem].m_isStatic = aIsStatic; } void OPTIMIZER::removeCachedSegments( LINE* aLine, int aStartVertex, int aEndVertex ) { if( !aLine->IsLinked() ) return; LINE::SEGMENT_REFS& segs = aLine->LinkedSegments(); if( aEndVertex < 0 ) aEndVertex += aLine->PointCount(); for( int i = aStartVertex; i < aEndVertex - 1; i++ ) { LINKED_ITEM* s = segs[i]; m_cacheTags.erase( s ); m_cache.Remove( s ); } } void OPTIMIZER::CacheRemove( ITEM* aItem ) { if( aItem->Kind() == ITEM::LINE_T ) removeCachedSegments( static_cast( aItem ) ); } void OPTIMIZER::CacheStaticItem( ITEM* aItem ) { cacheAdd( aItem, true ); } void OPTIMIZER::ClearCache( bool aStaticOnly ) { if( !aStaticOnly ) { m_cacheTags.clear(); m_cache.Clear(); return; } for( CachedItemTags::iterator i = m_cacheTags.begin(); i!= m_cacheTags.end(); ++i ) { if( i->second.m_isStatic ) { m_cache.Remove( i->first ); m_cacheTags.erase( i->first ); } } } class LINE_RESTRICTIONS { public: LINE_RESTRICTIONS() {}; ~LINE_RESTRICTIONS() {}; void Build( NODE* aWorld, LINE* aOriginLine, const SHAPE_LINE_CHAIN& aLine, const BOX2I& aRestrictedArea, bool aRestrictedAreaEnable ); bool Check ( int aVertex1, int aVertex2, const SHAPE_LINE_CHAIN& aReplacement ); void Dump(); private: int allowedAngles( NODE* aWorld, const LINE* aLine, const VECTOR2I& aP, bool aFirst ); struct RVERTEX { RVERTEX ( bool aRestricted, int aAllowedAngles ) : restricted( aRestricted ), allowedAngles( aAllowedAngles ) { } bool restricted; int allowedAngles; }; std::vector m_rs; }; // fixme: use later int LINE_RESTRICTIONS::allowedAngles( NODE* aWorld, const LINE* aLine, const VECTOR2I& aP, bool aFirst ) { JOINT* jt = aWorld->FindJoint( aP , aLine ); if( !jt ) return 0xff; DIRECTION_45 dirs [8]; int n_dirs = 0; for( const ITEM* item : jt->Links().CItems() ) { if( item->OfKind( ITEM::VIA_T | ITEM::SOLID_T ) ) return 0xff; else if( auto segment = dynamic_cast( item ) ) { SEG s( segment->Seg() ); if( s.A != aP ) s.Reverse(); dirs[n_dirs] = aFirst ? DIRECTION_45( s ) : DIRECTION_45( s ).Opposite(); } if( ++n_dirs >= 8 ) break; } const int angleMask = DIRECTION_45::ANG_OBTUSE | DIRECTION_45::ANG_HALF_FULL | DIRECTION_45::ANG_STRAIGHT; int outputMask = 0xff; for( int d = 0; d < 8; d++ ) { DIRECTION_45 refDir( ( DIRECTION_45::Directions ) d ); for( int i = 0; i < n_dirs; i++ ) { if( !( refDir.Angle( dirs[i] ) & angleMask ) ) outputMask &= ~refDir.Mask(); } } //DrawDebugDirs( aP, outputMask, 3 ); return 0xff; } void LINE_RESTRICTIONS::Build( NODE* aWorld, LINE* aOriginLine, const SHAPE_LINE_CHAIN& aLine, const BOX2I& aRestrictedArea, bool aRestrictedAreaEnable ) { const SHAPE_LINE_CHAIN& l = aLine; VECTOR2I v_prev; int n = l.PointCount( ); m_rs.reserve( n ); for( int i = 0; i < n; i++ ) { const VECTOR2I &v = l.CPoint( i ); RVERTEX r( false, 0xff ); if( aRestrictedAreaEnable ) { bool exiting = ( i > 0 && aRestrictedArea.Contains( v_prev ) && !aRestrictedArea.Contains( v ) ); bool entering = false; if( i != l.PointCount() - 1 ) { const VECTOR2I& v_next = l.CPoint( i + 1 ); entering = ( !aRestrictedArea.Contains( v ) && aRestrictedArea.Contains( v_next ) ); } if( entering ) { const SEG& sp = l.CSegment( i ); r.allowedAngles = DIRECTION_45( sp ).Mask(); } else if( exiting ) { const SEG& sp = l.CSegment( i - 1 ); r.allowedAngles = DIRECTION_45( sp ).Mask(); } else { r.allowedAngles = ( !aRestrictedArea.Contains( v ) ) ? 0 : 0xff; r.restricted = r.allowedAngles ? false : true; } } v_prev = v; m_rs.push_back( r ); } } void LINE_RESTRICTIONS::Dump() { } bool LINE_RESTRICTIONS::Check( int aVertex1, int aVertex2, const SHAPE_LINE_CHAIN& aReplacement ) { if( m_rs.empty( ) ) return true; for( int i = aVertex1; i <= aVertex2; i++ ) if ( m_rs[i].restricted ) return false; const RVERTEX& v1 = m_rs[ aVertex1 ]; const RVERTEX& v2 = m_rs[ aVertex2 ]; int m1 = DIRECTION_45( aReplacement.CSegment( 0 ) ).Mask(); int m2; if( aReplacement.SegmentCount() == 1 ) m2 = m1; else m2 = DIRECTION_45( aReplacement.CSegment( 1 ) ).Mask(); return ( ( v1.allowedAngles & m1 ) != 0 ) && ( ( v2.allowedAngles & m2 ) != 0 ); } bool OPTIMIZER::checkColliding( ITEM* aItem, bool aUpdateCache ) { CACHE_VISITOR v( aItem, m_world, m_collisionKindMask ); return static_cast( m_world->CheckColliding( aItem ) ); #if 0 // something is wrong with the cache, need to investigate. m_cache.Query( aItem->Shape(), m_world->GetMaxClearance(), v, false ); if( !v.m_collidingItem ) { NODE::OPT_OBSTACLE obs = m_world->CheckColliding( aItem ); if( obs ) { if( aUpdateCache ) cacheAdd( obs->m_item ); return true; } } else { m_cacheTags[v.m_collidingItem].m_hits++; return true; } return false; #endif } bool OPTIMIZER::checkColliding( LINE* aLine, const SHAPE_LINE_CHAIN& aOptPath ) { LINE tmp( *aLine, aOptPath ); return checkColliding( &tmp ); } bool OPTIMIZER::mergeObtuse( LINE* aLine ) { SHAPE_LINE_CHAIN& line = aLine->Line(); int step = line.PointCount() - 3; int iter = 0; int segs_pre = line.SegmentCount(); if( step < 0 ) return false; SHAPE_LINE_CHAIN current_path( line ); while( 1 ) { iter++; int n_segs = current_path.SegmentCount(); int max_step = n_segs - 2; if( step > max_step ) step = max_step; if( step < 2 ) { line = current_path; return current_path.SegmentCount() < segs_pre; } bool found_anything = false; for( int n = 0; n < n_segs - step; n++ ) { // Don't try to optimize the arc segments if( current_path.isArc( n ) || current_path.isArc( n + step ) ) continue; const SEG s1 = current_path.CSegment( n ); const SEG s2 = current_path.CSegment( n + step ); SEG s1opt, s2opt; if( DIRECTION_45( s1 ).IsObtuse( DIRECTION_45( s2 ) ) ) { VECTOR2I ip = *s1.IntersectLines( s2 ); if( s1.Distance( ip ) <= 1 || s2.Distance( ip ) <= 1 ) { s1opt = SEG( s1.A, ip ); s2opt = SEG( ip, s2.B ); } else { s1opt = SEG( s1.A, ip ); s2opt = SEG( ip, s2.B ); } if( DIRECTION_45( s1opt ).IsObtuse( DIRECTION_45( s2opt ) ) ) { SHAPE_LINE_CHAIN opt_path; opt_path.Append( s1opt.A ); opt_path.Append( s1opt.B ); opt_path.Append( s2opt.B ); LINE opt_track( *aLine, opt_path ); if( !checkColliding( &opt_track ) ) { current_path.Replace( s1.Index() + 1, s2.Index(), ip ); // removeCachedSegments(aLine, s1.Index(), s2.Index()); n_segs = current_path.SegmentCount(); found_anything = true; break; } } } } if( !found_anything ) { if( step <= 2 ) { line = current_path; return line.SegmentCount() < segs_pre; } step--; } } return line.SegmentCount() < segs_pre; } bool OPTIMIZER::mergeFull( LINE* aLine ) { SHAPE_LINE_CHAIN& line = aLine->Line(); int step = line.SegmentCount() - 1; int segs_pre = line.SegmentCount(); line.Simplify(); if( step < 0 ) return false; SHAPE_LINE_CHAIN current_path( line ); while( 1 ) { int n_segs = current_path.SegmentCount(); int max_step = n_segs - 2; if( step > max_step ) step = max_step; if( step < 1 ) break; bool found_anything = mergeStep( aLine, current_path, step ); if( !found_anything ) step--; } aLine->SetShape( current_path ); return current_path.SegmentCount() < segs_pre; } bool OPTIMIZER::Optimize( LINE* aLine, LINE* aResult ) { if( !aResult ) aResult = aLine; else *aResult = *aLine; m_keepPostures = false; bool rv = false; if( m_effortLevel & MERGE_SEGMENTS ) rv |= mergeFull( aResult ); if( m_effortLevel & MERGE_OBTUSE ) rv |= mergeObtuse( aResult ); if( m_effortLevel & SMART_PADS ) rv |= runSmartPads( aResult ); if( m_effortLevel & FANOUT_CLEANUP ) rv |= fanoutCleanup( aResult ); return rv; } bool OPTIMIZER::mergeStep( LINE* aLine, SHAPE_LINE_CHAIN& aCurrentPath, int step ) { int n_segs = aCurrentPath.SegmentCount(); int cost_orig = COST_ESTIMATOR::CornerCost( aCurrentPath ); LINE_RESTRICTIONS restr; if( aLine->SegmentCount() < 4 ) return false; DIRECTION_45 orig_start( aLine->CSegment( 0 ) ); DIRECTION_45 orig_end( aLine->CSegment( -1 ) ); restr.Build( m_world, aLine, aCurrentPath, m_restrictArea, m_restrictAreaActive ); for( int n = 0; n < n_segs - step; n++ ) { // Do not attempt to merge false segments that are part of an arc if( aCurrentPath.isArc( n ) || aCurrentPath.isArc( n + step ) ) continue; const SEG s1 = aCurrentPath.CSegment( n ); const SEG s2 = aCurrentPath.CSegment( n + step ); SHAPE_LINE_CHAIN path[2]; SHAPE_LINE_CHAIN* picked = NULL; int cost[2]; for( int i = 0; i < 2; i++ ) { bool postureMatch = true; SHAPE_LINE_CHAIN bypass = DIRECTION_45().BuildInitialTrace( s1.A, s2.B, i ); cost[i] = INT_MAX; bool restrictionsOK = restr.Check ( n, n + step + 1, bypass ); if( n == 0 && orig_start != DIRECTION_45( bypass.CSegment( 0 ) ) ) postureMatch = false; else if( n == n_segs - step && orig_end != DIRECTION_45( bypass.CSegment( -1 ) ) ) postureMatch = false; if( restrictionsOK && (postureMatch || !m_keepPostures) && !checkColliding( aLine, bypass ) ) { path[i] = aCurrentPath; path[i].Replace( s1.Index(), s2.Index(), bypass ); path[i].Simplify(); cost[i] = COST_ESTIMATOR::CornerCost( path[i] ); } } if( cost[0] < cost_orig && cost[0] < cost[1] ) picked = &path[0]; else if( cost[1] < cost_orig ) picked = &path[1]; if( picked ) { n_segs = aCurrentPath.SegmentCount(); aCurrentPath = *picked; return true; } } return false; } OPTIMIZER::BREAKOUT_LIST OPTIMIZER::circleBreakouts( int aWidth, const SHAPE* aShape, bool aPermitDiagonal ) const { BREAKOUT_LIST breakouts; for( int angle = 0; angle < 360; angle += 45 ) { const SHAPE_CIRCLE* cir = static_cast( aShape ); SHAPE_LINE_CHAIN l; VECTOR2I p0 = cir->GetCenter(); VECTOR2I v0( cir->GetRadius() * M_SQRT2, 0 ); l.Append( p0 ); l.Append( p0 + v0.Rotate( angle * M_PI / 180.0 ) ); breakouts.push_back( l ); } return breakouts; } OPTIMIZER::BREAKOUT_LIST OPTIMIZER::customBreakouts( int aWidth, const ITEM* aItem, bool aPermitDiagonal ) const { BREAKOUT_LIST breakouts; const SHAPE_SIMPLE* convex = static_cast( aItem->Shape() ); BOX2I bbox = convex->BBox( 0 ); VECTOR2I p0 = static_cast( aItem )->Pos(); // must be large enough to guarantee intersecting the convex polygon int length = std::max( bbox.GetWidth(), bbox.GetHeight() ) / 2 + 5; for( int angle = 0; angle < 360; angle += ( aPermitDiagonal ? 45 : 90 ) ) { SHAPE_LINE_CHAIN l; VECTOR2I v0( p0 + VECTOR2I( length, 0 ).Rotate( angle * M_PI / 180.0 ) ); SHAPE_LINE_CHAIN::INTERSECTIONS intersections; int n = convex->Vertices().Intersect( SEG( p0, v0 ), intersections ); // if n == 1 intersected a segment // if n == 2 intersected the common point of 2 segments // n == 0 can not happen I think, but... if( n > 0 ) { l.Append( p0 ); // for a breakout distance relative to the distance between // center and polygon edge //l.Append( intersections[0].p + (v0 - p0).Resize( (intersections[0].p - p0).EuclideanNorm() * 0.4 ) ); // for an absolute breakout distance, e.g. 0.1 mm //l.Append( intersections[0].p + (v0 - p0).Resize( 100000 ) ); // for the breakout right on the polygon edge l.Append( intersections[0].p ); breakouts.push_back( l ); } } return breakouts; } OPTIMIZER::BREAKOUT_LIST OPTIMIZER::rectBreakouts( int aWidth, const SHAPE* aShape, bool aPermitDiagonal ) const { const SHAPE_RECT* rect = static_cast(aShape); VECTOR2I s = rect->GetSize(); VECTOR2I c = rect->GetPosition() + VECTOR2I( s.x / 2, s.y / 2 ); BREAKOUT_LIST breakouts; VECTOR2I d_offset; d_offset.x = ( s.x > s.y ) ? ( s.x - s.y ) / 2 : 0; d_offset.y = ( s.x < s.y ) ? ( s.y - s.x ) / 2 : 0; VECTOR2I d_vert = VECTOR2I( 0, s.y / 2 + aWidth ); VECTOR2I d_horiz = VECTOR2I( s.x / 2 + aWidth, 0 ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c + d_horiz } ) ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c - d_horiz } ) ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c + d_vert } ) ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c - d_vert } ) ); if( aPermitDiagonal ) { int l = aWidth + std::min( s.x, s.y ) / 2; VECTOR2I d_diag; if( s.x >= s.y ) { breakouts.push_back( SHAPE_LINE_CHAIN( { c, c + d_offset, c + d_offset + VECTOR2I( l, l ) } ) ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c + d_offset, c + d_offset - VECTOR2I( -l, l ) } ) ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c - d_offset, c - d_offset + VECTOR2I( -l, l ) } ) ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c - d_offset, c - d_offset - VECTOR2I( l, l ) } ) ); } else { // fixme: this could be done more efficiently breakouts.push_back( SHAPE_LINE_CHAIN( { c, c + d_offset, c + d_offset + VECTOR2I( l, l ) } ) ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c - d_offset, c - d_offset - VECTOR2I( -l, l ) } ) ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c + d_offset, c + d_offset + VECTOR2I( -l, l ) } ) ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c - d_offset, c - d_offset - VECTOR2I( l, l ) } ) ); } } return breakouts; } OPTIMIZER::BREAKOUT_LIST OPTIMIZER::computeBreakouts( int aWidth, const ITEM* aItem, bool aPermitDiagonal ) const { switch( aItem->Kind() ) { case ITEM::VIA_T: { const VIA* via = static_cast( aItem ); return circleBreakouts( aWidth, via->Shape(), aPermitDiagonal ); } case ITEM::SOLID_T: { const SHAPE* shape = aItem->Shape(); switch( shape->Type() ) { case SH_RECT: return rectBreakouts( aWidth, shape, aPermitDiagonal ); case SH_SEGMENT: { const SHAPE_SEGMENT* seg = static_cast (shape); const SHAPE_RECT rect = ApproximateSegmentAsRect ( *seg ); return rectBreakouts( aWidth, &rect, aPermitDiagonal ); } case SH_CIRCLE: return circleBreakouts( aWidth, shape, aPermitDiagonal ); case SH_SIMPLE: return customBreakouts( aWidth, aItem, aPermitDiagonal ); default: break; } break; } default: break; } return BREAKOUT_LIST(); } ITEM* OPTIMIZER::findPadOrVia( int aLayer, int aNet, const VECTOR2I& aP ) const { JOINT* jt = m_world->FindJoint( aP, aLayer, aNet ); if( !jt ) return NULL; for( ITEM* item : jt->LinkList() ) { if( item->OfKind( ITEM::VIA_T | ITEM::SOLID_T ) ) return item; } return NULL; } int OPTIMIZER::smartPadsSingle( LINE* aLine, ITEM* aPad, bool aEnd, int aEndVertex ) { DIRECTION_45 dir; const int ForbiddenAngles = DIRECTION_45::ANG_ACUTE | DIRECTION_45::ANG_RIGHT | DIRECTION_45::ANG_HALF_FULL | DIRECTION_45::ANG_UNDEFINED; typedef std::tuple RtVariant; std::vector variants; SOLID* solid = dyn_cast( aPad ); // don't do optimized connections for offset pads if( solid && solid->Offset() != VECTOR2I( 0, 0 ) ) return -1; BREAKOUT_LIST breakouts = computeBreakouts( aLine->Width(), aPad, true ); SHAPE_LINE_CHAIN line = ( aEnd ? aLine->CLine().Reverse() : aLine->CLine() ); int p_end = std::min( aEndVertex, std::min( 3, line.PointCount() - 1 ) ); // Start at 1 to find a potentially better breakout (0 is the pad connection) for( int p = 1; p <= p_end; p++ ) { // If the line is contained inside the pad, don't optimize if( solid && solid->Shape() && !solid->Shape()->Collide( SEG( line.CPoint( 0 ), line.CPoint( p ) ), aLine->Width() / 2 ) ) continue; for( SHAPE_LINE_CHAIN & breakout : breakouts ) { for( int diag = 0; diag < 2; diag++ ) { SHAPE_LINE_CHAIN v; SHAPE_LINE_CHAIN connect = dir.BuildInitialTrace( breakout.CPoint( -1 ), line.CPoint( p ), diag == 0 ); DIRECTION_45 dir_bkout( breakout.CSegment( -1 ) ); if(!connect.SegmentCount()) continue; int ang1 = dir_bkout.Angle( DIRECTION_45( connect.CSegment( 0 ) ) ); if( ang1 & ForbiddenAngles ) continue; if( breakout.Length() > line.Length() ) continue; v = breakout; v.Append( connect ); for( int i = p + 1; i < line.PointCount(); i++ ) v.Append( line.CPoint( i ) ); LINE tmp( *aLine, v ); int cc = tmp.CountCorners( ForbiddenAngles ); if( cc == 0 ) { RtVariant vp; std::get<0>( vp ) = p; std::get<1>( vp ) = breakout.Length(); std::get<2>( vp ) = aEnd ? v.Reverse() : v; std::get<2>( vp ).Simplify(); variants.push_back( vp ); } } } } // We attempt to minimize the corner cost (minimizes the segments and types of corners) // but given two, equally valid costs, we want to pick the longer pad exit. The logic // here is that if the pad is oblong, the track should not exit the shorter side and parallel // the pad but should follow the pad's preferential direction before exiting. // The baseline guess is to start with the existing line the user has drawn. int min_cost = COST_ESTIMATOR::CornerCost( *aLine ); long long int max_length = 0; bool found = false; int p_best = -1; SHAPE_LINE_CHAIN l_best; for( RtVariant& vp : variants ) { LINE tmp( *aLine, std::get<2>( vp ) ); int cost = COST_ESTIMATOR::CornerCost( std::get<2>( vp ) ); long long int len = std::get<1>( vp ); if( !checkColliding( &tmp ) ) { if( cost < min_cost || ( cost == min_cost && len > max_length ) ) { l_best = std::get<2>( vp ); p_best = std::get<0>( vp ); found = true; if( cost <= min_cost ) max_length = std::max( len, max_length ); min_cost = std::min( cost, min_cost ); } } } if( found ) { aLine->SetShape( l_best ); return p_best; } return -1; } bool OPTIMIZER::runSmartPads( LINE* aLine ) { SHAPE_LINE_CHAIN& line = aLine->Line(); if( line.PointCount() < 3 ) return false; VECTOR2I p_start = line.CPoint( 0 ), p_end = line.CPoint( -1 ); ITEM* startPad = findPadOrVia( aLine->Layer(), aLine->Net(), p_start ); ITEM* endPad = findPadOrVia( aLine->Layer(), aLine->Net(), p_end ); int vtx = -1; if( startPad ) vtx = smartPadsSingle( aLine, startPad, false, 3 ); if( endPad ) smartPadsSingle( aLine, endPad, true, vtx < 0 ? line.PointCount() - 1 : line.PointCount() - 1 - vtx ); aLine->Line().Simplify(); return true; } bool OPTIMIZER::Optimize( LINE* aLine, int aEffortLevel, NODE* aWorld ) { OPTIMIZER opt( aWorld ); opt.SetEffortLevel( aEffortLevel ); opt.SetCollisionMask( -1 ); return opt.Optimize( aLine ); } bool OPTIMIZER::fanoutCleanup( LINE* aLine ) { if( aLine->PointCount() < 3 ) return false; VECTOR2I p_start = aLine->CPoint( 0 ), p_end = aLine->CPoint( -1 ); ITEM* startPad = findPadOrVia( aLine->Layer(), aLine->Net(), p_start ); ITEM* endPad = findPadOrVia( aLine->Layer(), aLine->Net(), p_end ); int thr = aLine->Width() * 10; int len = aLine->CLine().Length(); if( !startPad ) return false; bool startMatch = startPad->OfKind( ITEM::VIA_T | ITEM::SOLID_T ); bool endMatch = false; if(endPad) { endMatch = endPad->OfKind( ITEM::VIA_T | ITEM::SOLID_T ); } else { endMatch = aLine->EndsWithVia(); } if( startMatch && endMatch && len < thr ) { for( int i = 0; i < 2; i++ ) { SHAPE_LINE_CHAIN l2 = DIRECTION_45().BuildInitialTrace( p_start, p_end, i ); LINE repl; repl = LINE( *aLine, l2 ); if( !m_world->CheckColliding( &repl ) ) { aLine->SetShape( repl.CLine() ); return true; } } } return false; } int findCoupledVertices( const VECTOR2I& aVertex, const SEG& aOrigSeg, const SHAPE_LINE_CHAIN& aCoupled, DIFF_PAIR* aPair, int* aIndices ) { int count = 0; for ( int i = 0; i < aCoupled.SegmentCount(); i++ ) { SEG s = aCoupled.CSegment( i ); VECTOR2I projOverCoupled = s.LineProject ( aVertex ); if( s.ApproxParallel ( aOrigSeg ) ) { int64_t dist = ( projOverCoupled - aVertex ).EuclideanNorm() - aPair->Width(); if( aPair->GapConstraint().Matches( dist ) ) { *aIndices++ = i; count++; } } } return count; } bool verifyDpBypass( NODE* aNode, DIFF_PAIR* aPair, bool aRefIsP, const SHAPE_LINE_CHAIN& aNewRef, const SHAPE_LINE_CHAIN& aNewCoupled ) { LINE refLine ( aRefIsP ? aPair->PLine() : aPair->NLine(), aNewRef ); LINE coupledLine ( aRefIsP ? aPair->NLine() : aPair->PLine(), aNewCoupled ); if( aNode->CheckColliding( &refLine, &coupledLine, ITEM::ANY_T, aPair->Gap() - 10 ) ) return false; if( aNode->CheckColliding ( &refLine ) ) return false; if( aNode->CheckColliding ( &coupledLine ) ) return false; return true; } bool coupledBypass( NODE* aNode, DIFF_PAIR* aPair, bool aRefIsP, const SHAPE_LINE_CHAIN& aRef, const SHAPE_LINE_CHAIN& aRefBypass, const SHAPE_LINE_CHAIN& aCoupled, SHAPE_LINE_CHAIN& aNewCoupled ) { int vStartIdx[1024]; // fixme: possible overflow int nStarts = findCoupledVertices( aRefBypass.CPoint( 0 ), aRefBypass.CSegment( 0 ), aCoupled, aPair, vStartIdx ); DIRECTION_45 dir( aRefBypass.CSegment( 0 ) ); int64_t bestLength = -1; bool found = false; SHAPE_LINE_CHAIN bestBypass; int si, ei; for( int i=0; i< nStarts; i++ ) { for( int j = 1; j < aCoupled.PointCount() - 1; j++ ) { int delta = std::abs ( vStartIdx[i] - j ); if( delta > 1 ) { const VECTOR2I& vs = aCoupled.CPoint( vStartIdx[i] ); SHAPE_LINE_CHAIN bypass = dir.BuildInitialTrace( vs, aCoupled.CPoint(j), dir.IsDiagonal() ); int64_t coupledLength = aPair->CoupledLength( aRef, bypass ); SHAPE_LINE_CHAIN newCoupled = aCoupled; si = vStartIdx[i]; ei = j; if(si < ei) newCoupled.Replace( si, ei, bypass ); else newCoupled.Replace( ei, si, bypass.Reverse() ); if(coupledLength > bestLength && verifyDpBypass( aNode, aPair, aRefIsP, aRef, newCoupled) ) { bestBypass = newCoupled; bestLength = coupledLength; found = true; } } } } if( found ) aNewCoupled = bestBypass; return found; } bool checkDpColliding( NODE* aNode, DIFF_PAIR* aPair, bool aIsP, const SHAPE_LINE_CHAIN& aPath ) { LINE tmp ( aIsP ? aPair->PLine() : aPair->NLine(), aPath ); return static_cast( aNode->CheckColliding( &tmp ) ); } bool OPTIMIZER::mergeDpStep( DIFF_PAIR* aPair, bool aTryP, int step ) { int n = 1; SHAPE_LINE_CHAIN currentPath = aTryP ? aPair->CP() : aPair->CN(); SHAPE_LINE_CHAIN coupledPath = aTryP ? aPair->CN() : aPair->CP(); int n_segs = currentPath.SegmentCount() - 1; int64_t clenPre = aPair->CoupledLength( currentPath, coupledPath ); int64_t budget = clenPre / 10; // fixme: come up with somethig more intelligent here... while( n < n_segs - step ) { const SEG s1 = currentPath.CSegment( n ); const SEG s2 = currentPath.CSegment( n + step ); DIRECTION_45 dir1( s1 ); DIRECTION_45 dir2( s2 ); if( dir1.IsObtuse( dir2 ) ) { SHAPE_LINE_CHAIN bypass = DIRECTION_45().BuildInitialTrace( s1.A, s2.B, dir1.IsDiagonal() ); SHAPE_LINE_CHAIN newRef; SHAPE_LINE_CHAIN newCoup; int64_t deltaCoupled = -1, deltaUni = -1; newRef = currentPath; newRef.Replace( s1.Index(), s2.Index(), bypass ); deltaUni = aPair->CoupledLength ( newRef, coupledPath ) - clenPre + budget; if ( coupledBypass( m_world, aPair, aTryP, newRef, bypass, coupledPath, newCoup ) ) { deltaCoupled = aPair->CoupledLength( newRef, newCoup ) - clenPre + budget; if( deltaCoupled >= 0 ) { newRef.Simplify(); newCoup.Simplify(); aPair->SetShape( newRef, newCoup, !aTryP ); return true; } } else if( deltaUni >= 0 && verifyDpBypass ( m_world, aPair, aTryP, newRef, coupledPath ) ) { newRef.Simplify(); coupledPath.Simplify(); aPair->SetShape( newRef, coupledPath, !aTryP ); return true; } } n++; } return false; } bool OPTIMIZER::mergeDpSegments( DIFF_PAIR* aPair ) { int step_p = aPair->CP().SegmentCount() - 2; int step_n = aPair->CN().SegmentCount() - 2; while( 1 ) { int n_segs_p = aPair->CP().SegmentCount(); int n_segs_n = aPair->CN().SegmentCount(); int max_step_p = n_segs_p - 2; int max_step_n = n_segs_n - 2; if( step_p > max_step_p ) step_p = max_step_p; if( step_n > max_step_n ) step_n = max_step_n; if( step_p < 1 && step_n < 1) break; bool found_anything_p = false; bool found_anything_n = false; if( step_p > 1 ) found_anything_p = mergeDpStep( aPair, true, step_p ); if( step_n > 1 ) found_anything_n = mergeDpStep( aPair, false, step_n ); if( !found_anything_n && !found_anything_p ) { step_n--; step_p--; } } return true; } bool OPTIMIZER::Optimize( DIFF_PAIR* aPair ) { return mergeDpSegments( aPair ); } }