/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 1992-2019 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // for KiROUND #include #include #include ZONE_CONTAINER::ZONE_CONTAINER( BOARD_ITEM_CONTAINER* aParent, bool aInModule ) : BOARD_CONNECTED_ITEM( aParent, aInModule ? PCB_MODULE_ZONE_AREA_T : PCB_ZONE_AREA_T ), m_area( 0.0 ) { m_CornerSelection = nullptr; // no corner is selected m_IsFilled = false; // fill status : true when the zone is filled m_FillMode = ZONE_FILL_MODE::POLYGONS; m_hatchStyle = ZONE_HATCH_STYLE::DIAGONAL_EDGE; m_hatchPitch = GetDefaultHatchPitch(); m_hv45 = false; m_HatchFillTypeThickness = 0; m_HatchFillTypeGap = 0; m_HatchFillTypeOrientation = 0.0; m_HatchFillTypeSmoothingLevel = 0; // Grid pattern smoothing type. 0 = no smoothing m_HatchFillTypeSmoothingValue = 0.1; // Grid pattern chamfer value relative to the gap value // used only if m_HatchFillTypeSmoothingLevel > 0 m_priority = 0; m_cornerSmoothingType = ZONE_SETTINGS::SMOOTHING_NONE; SetIsKeepout( aInModule ? true : false ); // Zones living in modules have the keepout option. SetDoNotAllowCopperPour( false ); // has meaning only if m_isKeepout == true SetDoNotAllowVias( true ); // has meaning only if m_isKeepout == true SetDoNotAllowTracks( true ); // has meaning only if m_isKeepout == true SetDoNotAllowPads( true ); // has meaning only if m_isKeepout == true SetDoNotAllowFootprints( false ); // has meaning only if m_isKeepout == true m_cornerRadius = 0; SetLocalFlags( 0 ); // flags tempoarry used in zone calculations m_Poly = new SHAPE_POLY_SET(); // Outlines m_FilledPolysUseThickness = true; // set the "old" way to build filled polygon areas (before 6.0.x) aParent->GetZoneSettings().ExportSetting( *this ); m_needRefill = false; // True only after some edition. } ZONE_CONTAINER::ZONE_CONTAINER( const ZONE_CONTAINER& aZone ) : BOARD_CONNECTED_ITEM( aZone.GetParent(), PCB_ZONE_AREA_T ) { initDataFromSrcInCopyCtor( aZone ); } ZONE_CONTAINER& ZONE_CONTAINER::operator=( const ZONE_CONTAINER& aOther ) { BOARD_CONNECTED_ITEM::operator=( aOther ); // Replace the outlines for aOther outlines. delete m_Poly; m_Poly = new SHAPE_POLY_SET( *aOther.m_Poly ); m_isKeepout = aOther.m_isKeepout; m_CornerSelection = nullptr; // for corner moving, corner index to (null if no selection) m_ZoneClearance = aOther.m_ZoneClearance; // clearance value m_ZoneMinThickness = aOther.m_ZoneMinThickness; m_FilledPolysUseThickness = aOther.m_FilledPolysUseThickness; m_FillMode = aOther.m_FillMode; // filling mode (segments/polygons) m_PadConnection = aOther.m_PadConnection; m_ThermalReliefGap = aOther.m_ThermalReliefGap; m_ThermalReliefCopperBridge = aOther.m_ThermalReliefCopperBridge; SetHatchStyle( aOther.GetHatchStyle() ); SetHatchPitch( aOther.GetHatchPitch() ); m_HatchLines = aOther.m_HatchLines; // copy vector m_FilledPolysList.RemoveAllContours(); m_FilledPolysList.Append( aOther.m_FilledPolysList ); m_FillSegmList.clear(); m_FillSegmList = aOther.m_FillSegmList; m_HatchFillTypeThickness = aOther.m_HatchFillTypeThickness; m_HatchFillTypeGap = aOther.m_HatchFillTypeGap; m_HatchFillTypeOrientation = aOther.m_HatchFillTypeOrientation; m_HatchFillTypeSmoothingLevel = aOther.m_HatchFillTypeSmoothingLevel; m_HatchFillTypeSmoothingValue = aOther.m_HatchFillTypeSmoothingValue; SetLayerSet( aOther.GetLayerSet() ); return *this; } ZONE_CONTAINER::~ZONE_CONTAINER() { delete m_Poly; delete m_CornerSelection; } void ZONE_CONTAINER::initDataFromSrcInCopyCtor( const ZONE_CONTAINER& aZone ) { // members are expected non initialize in this. // initDataFromSrcInCopyCtor() is expected to be called // only from a copy constructor. // Copy only useful EDA_ITEM flags: m_Flags = aZone.m_Flags; m_forceVisible = aZone.m_forceVisible; m_isKeepout = aZone.m_isKeepout; SetLayerSet( aZone.GetLayerSet() ); m_Poly = new SHAPE_POLY_SET( *aZone.m_Poly ); // For corner moving, corner index to drag, or nullptr if no selection m_CornerSelection = nullptr; m_IsFilled = aZone.m_IsFilled; m_ZoneClearance = aZone.m_ZoneClearance; // clearance value m_ZoneMinThickness = aZone.m_ZoneMinThickness; m_FilledPolysUseThickness = aZone.m_FilledPolysUseThickness; m_FillMode = aZone.m_FillMode; // Filling mode (segments/polygons) m_hv45 = aZone.m_hv45; m_priority = aZone.m_priority; m_PadConnection = aZone.m_PadConnection; m_ThermalReliefGap = aZone.m_ThermalReliefGap; m_ThermalReliefCopperBridge = aZone.m_ThermalReliefCopperBridge; m_FilledPolysList.Append( aZone.m_FilledPolysList ); m_FillSegmList = aZone.m_FillSegmList; // vector <> copy m_doNotAllowCopperPour = aZone.m_doNotAllowCopperPour; m_doNotAllowVias = aZone.m_doNotAllowVias; m_doNotAllowTracks = aZone.m_doNotAllowTracks; m_doNotAllowPads = aZone.m_doNotAllowPads; m_doNotAllowFootprints = aZone.m_doNotAllowFootprints; m_cornerSmoothingType = aZone.m_cornerSmoothingType; m_cornerRadius = aZone.m_cornerRadius; m_hatchStyle = aZone.m_hatchStyle; m_hatchPitch = aZone.m_hatchPitch; m_HatchLines = aZone.m_HatchLines; m_HatchFillTypeThickness = aZone.m_HatchFillTypeThickness; m_HatchFillTypeGap = aZone.m_HatchFillTypeGap; m_HatchFillTypeOrientation = aZone.m_HatchFillTypeOrientation; m_HatchFillTypeSmoothingLevel = aZone.m_HatchFillTypeSmoothingLevel; m_HatchFillTypeSmoothingValue = aZone.m_HatchFillTypeSmoothingValue; SetLocalFlags( aZone.GetLocalFlags() ); // Now zone type and layer are set, transfer net info // (has meaning only for copper zones) m_netinfo = aZone.m_netinfo; m_area = aZone.m_area; SetNeedRefill( aZone.NeedRefill() ); } EDA_ITEM* ZONE_CONTAINER::Clone() const { return new ZONE_CONTAINER( *this ); } bool ZONE_CONTAINER::UnFill() { bool change = ( !m_FilledPolysList.IsEmpty() || m_FillSegmList.size() > 0 ); m_FilledPolysList.RemoveAllContours(); m_FillSegmList.clear(); m_IsFilled = false; return change; } const wxPoint ZONE_CONTAINER::GetPosition() const { return (wxPoint) GetCornerPosition( 0 ); } PCB_LAYER_ID ZONE_CONTAINER::GetLayer() const { return BOARD_ITEM::GetLayer(); } bool ZONE_CONTAINER::IsOnCopperLayer() const { if( GetIsKeepout() ) { return ( m_layerSet & LSET::AllCuMask() ).count() > 0; } else { return IsCopperLayer( GetLayer() ); } } bool ZONE_CONTAINER::CommonLayerExists( const LSET aLayerSet ) const { LSET common = GetLayerSet() & aLayerSet; return common.count() > 0; } void ZONE_CONTAINER::SetLayer( PCB_LAYER_ID aLayer ) { SetLayerSet( LSET( aLayer ) ); m_Layer = aLayer; } void ZONE_CONTAINER::SetLayerSet( LSET aLayerSet ) { if( GetIsKeepout() ) { // Keepouts can only exist on copper layers aLayerSet &= LSET::AllCuMask(); } if( aLayerSet.count() == 0 ) return; if( m_layerSet != aLayerSet ) SetNeedRefill( true ); m_layerSet = aLayerSet; // Set the single layer parameter. // For keepout zones that can be on many layers, this parameter does not have // really meaning and is a bit arbitrary if more than one layer is set. // But many functions are using it. // So we need to initialize it to a reasonable value. // Priority is F_Cu then B_Cu then to the first selected layer m_Layer = aLayerSet.Seq()[0]; if( m_Layer != F_Cu && aLayerSet[B_Cu] ) m_Layer = B_Cu; } LSET ZONE_CONTAINER::GetLayerSet() const { // TODO - Enable multi-layer zones for all zone types // not just keepout zones if( GetIsKeepout() ) { return m_layerSet; } else { return LSET( m_Layer ); } } void ZONE_CONTAINER::ViewGetLayers( int aLayers[], int& aCount ) const { if( GetIsKeepout() ) { LSEQ layers = m_layerSet.Seq(); for( unsigned int idx = 0; idx < layers.size(); idx++ ) aLayers[idx] = layers[idx]; aCount = layers.size(); } else { aLayers[0] = m_Layer; aCount = 1; } } bool ZONE_CONTAINER::IsOnLayer( PCB_LAYER_ID aLayer ) const { if( GetIsKeepout() ) return m_layerSet.test( aLayer ); return BOARD_ITEM::IsOnLayer( aLayer ); } const EDA_RECT ZONE_CONTAINER::GetBoundingBox() const { auto bb = m_Poly->BBox(); EDA_RECT ret( (wxPoint) bb.GetOrigin(), wxSize( bb.GetWidth(), bb.GetHeight() ) ); return ret; } int ZONE_CONTAINER::GetThermalReliefGap( D_PAD* aPad ) const { if( aPad == NULL || aPad->GetThermalGap() == 0 ) return m_ThermalReliefGap; else return aPad->GetThermalGap(); } int ZONE_CONTAINER::GetThermalReliefCopperBridge( D_PAD* aPad ) const { if( aPad == NULL || aPad->GetThermalWidth() == 0 ) return m_ThermalReliefCopperBridge; else return aPad->GetThermalWidth(); } void ZONE_CONTAINER::SetCornerRadius( unsigned int aRadius ) { if( m_cornerRadius != aRadius ) SetNeedRefill( true ); m_cornerRadius = aRadius; } bool ZONE_CONTAINER::HitTest( const wxPoint& aPosition, int aAccuracy ) const { // Normally accuracy is zoom-relative, but for the generic HitTest we just use // a fixed (small) value. int accuracy = std::max( aAccuracy, Millimeter2iu( 0.1 ) ); return HitTestForCorner( aPosition, accuracy * 2 ) || HitTestForEdge( aPosition, accuracy ); } void ZONE_CONTAINER::SetSelectedCorner( const wxPoint& aPosition, int aAccuracy ) { SHAPE_POLY_SET::VERTEX_INDEX corner; // If there is some corner to be selected, assign it to m_CornerSelection if( HitTestForCorner( aPosition, aAccuracy * 2, corner ) || HitTestForEdge( aPosition, aAccuracy, corner ) ) { if( m_CornerSelection == nullptr ) m_CornerSelection = new SHAPE_POLY_SET::VERTEX_INDEX; *m_CornerSelection = corner; } } bool ZONE_CONTAINER::HitTestForCorner( const wxPoint& refPos, int aAccuracy, SHAPE_POLY_SET::VERTEX_INDEX& aCornerHit ) const { return m_Poly->CollideVertex( VECTOR2I( refPos ), aCornerHit, aAccuracy ); } bool ZONE_CONTAINER::HitTestForCorner( const wxPoint& refPos, int aAccuracy ) const { SHAPE_POLY_SET::VERTEX_INDEX dummy; return HitTestForCorner( refPos, aAccuracy, dummy ); } bool ZONE_CONTAINER::HitTestForEdge( const wxPoint& refPos, int aAccuracy, SHAPE_POLY_SET::VERTEX_INDEX& aCornerHit ) const { return m_Poly->CollideEdge( VECTOR2I( refPos ), aCornerHit, aAccuracy ); } bool ZONE_CONTAINER::HitTestForEdge( const wxPoint& refPos, int aAccuracy ) const { SHAPE_POLY_SET::VERTEX_INDEX dummy; return HitTestForEdge( refPos, aAccuracy, dummy ); } bool ZONE_CONTAINER::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const { // Calculate bounding box for zone EDA_RECT bbox = GetBoundingBox(); bbox.Normalize(); EDA_RECT arect = aRect; arect.Normalize(); arect.Inflate( aAccuracy ); if( aContained ) { return arect.Contains( bbox ); } else // Test for intersection between aBox and the polygon // For a polygon, using its bounding box has no sense here { // Fast test: if aBox is outside the polygon bounding box, rectangles cannot intersect if( !arect.Intersects( bbox ) ) return false; int count = m_Poly->TotalVertices(); for( int ii = 0; ii < count; ii++ ) { auto vertex = m_Poly->CVertex( ii ); auto vertexNext = m_Poly->CVertex( ( ii + 1 ) % count ); // Test if the point is within the rect if( arect.Contains( ( wxPoint ) vertex ) ) { return true; } // Test if this edge intersects the rect if( arect.Intersects( ( wxPoint ) vertex, ( wxPoint ) vertexNext ) ) { return true; } } return false; } } int ZONE_CONTAINER::GetClearance( BOARD_ITEM* aItem, wxString* aSource ) const { if( m_isKeepout ) return 0; int clearance = BOARD_CONNECTED_ITEM::GetClearance( aItem, aSource ); if( m_ZoneClearance > clearance ) { clearance = m_ZoneClearance; if( aSource ) *aSource = _( "zone" ); } return clearance; } bool ZONE_CONTAINER::HitTestFilledArea( const wxPoint& aRefPos ) const { return m_FilledPolysList.Contains( VECTOR2I( aRefPos.x, aRefPos.y ) ); } bool ZONE_CONTAINER::HitTestCutout( const VECTOR2I& aRefPos, int* aOutlineIdx, int* aHoleIdx ) const { // Iterate over each outline polygon in the zone and then iterate over // each hole it has to see if the point is in it. for( int i = 0; i < m_Poly->OutlineCount(); i++ ) { for( int j = 0; j < m_Poly->HoleCount( i ); j++ ) { if( m_Poly->Hole( i, j ).PointInside( aRefPos ) ) { if( aOutlineIdx ) *aOutlineIdx = i; if( aHoleIdx ) *aHoleIdx = j; return true; } } } return false; } void ZONE_CONTAINER::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) { EDA_UNITS units = aFrame->GetUserUnits(); wxString msg, msg2; if( GetIsKeepout() ) msg = _( "Keepout Area" ); else if( IsOnCopperLayer() ) msg = _( "Copper Zone" ); else msg = _( "Non-copper Zone" ); // Display Cutout instead of Outline for holes inside a zone // i.e. when num contour !=0 // Check whether the selected corner is in a hole; i.e., in any contour but the first one. if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 ) msg << wxT( " " ) << _( "Cutout" ); aList.emplace_back( MSG_PANEL_ITEM( _( "Type" ), msg, DARKCYAN ) ); if( GetIsKeepout() ) { msg.Empty(); if( GetDoNotAllowVias() ) AccumulateDescription( msg, _( "No vias" ) ); if( GetDoNotAllowTracks() ) AccumulateDescription( msg, _( "No tracks" ) ); if( GetDoNotAllowPads() ) AccumulateDescription( msg, _( "No pads" ) ); if( GetDoNotAllowCopperPour() ) AccumulateDescription( msg, _( "No copper zones" ) ); if( GetDoNotAllowFootprints() ) AccumulateDescription( msg, _( "No footprints" ) ); aList.emplace_back( MSG_PANEL_ITEM( _( "Keepout" ), msg, RED ) ); } else if( IsOnCopperLayer() ) { if( GetNetCode() >= 0 ) { NETINFO_ITEM* net = GetNet(); NETCLASS* netclass = nullptr; if( net ) { if( net->GetNet() ) netclass = GetNetClass(); else netclass = GetBoard()->GetDesignSettings().GetDefault(); msg = UnescapeString( net->GetNetname() ); } else { msg = wxT( "" ); } aList.emplace_back( _( "Net" ), msg, RED ); if( netclass ) aList.emplace_back( _( "NetClass" ), netclass->GetName(), DARKMAGENTA ); } // Display priority level msg.Printf( wxT( "%d" ), GetPriority() ); aList.emplace_back( MSG_PANEL_ITEM( _( "Priority" ), msg, BLUE ) ); } aList.emplace_back( _( "Layer" ), LayerMaskDescribe( GetBoard(), m_layerSet ), DARKGREEN ); switch( m_FillMode ) { case ZONE_FILL_MODE::POLYGONS: msg = _( "Solid" ); break; case ZONE_FILL_MODE::HATCH_PATTERN: msg = _( "Hatched" ); break; default: msg = _( "Unknown" ); break; } aList.emplace_back( _( "Fill Mode" ), msg, BROWN ); msg = MessageTextFromValue( units, m_area, false, EDA_DATA_TYPE::AREA ); aList.emplace_back( _( "Filled Area" ), msg, BLUE ); wxString source; int clearance = GetClearance( nullptr, &source ); msg.Printf( _( "Min Clearance: %s" ), MessageTextFromValue( units, clearance, true ) ); msg2.Printf( _( "Source: %s" ), source ); aList.emplace_back( msg, msg2, BLACK ); } /* Geometric transforms: */ void ZONE_CONTAINER::Move( const wxPoint& offset ) { /* move outlines */ m_Poly->Move( offset ); Hatch(); m_FilledPolysList.Move( offset ); for( SEG& seg : m_FillSegmList ) { seg.A += VECTOR2I( offset ); seg.B += VECTOR2I( offset ); } } void ZONE_CONTAINER::MoveEdge( const wxPoint& offset, int aEdge ) { int next_corner; if( m_Poly->GetNeighbourIndexes( aEdge, nullptr, &next_corner ) ) { m_Poly->SetVertex( aEdge, m_Poly->CVertex( aEdge ) + VECTOR2I( offset ) ); m_Poly->SetVertex( next_corner, m_Poly->CVertex( next_corner ) + VECTOR2I( offset ) ); Hatch(); SetNeedRefill( true ); } } void ZONE_CONTAINER::Rotate( const wxPoint& centre, double angle ) { wxPoint pos; angle = -DECIDEG2RAD( angle ); m_Poly->Rotate( angle, VECTOR2I( centre ) ); Hatch(); /* rotate filled areas: */ m_FilledPolysList.Rotate( angle, VECTOR2I( centre ) ); for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ ) { wxPoint a( m_FillSegmList[ic].A ); RotatePoint( &a, centre, angle ); m_FillSegmList[ic].A = a; wxPoint b( m_FillSegmList[ic].B ); RotatePoint( &b, centre, angle ); m_FillSegmList[ic].B = a; } } void ZONE_CONTAINER::Flip( const wxPoint& aCentre, bool aFlipLeftRight ) { Mirror( aCentre, aFlipLeftRight ); int copperLayerCount = GetBoard()->GetCopperLayerCount(); if( GetIsKeepout() ) SetLayerSet( FlipLayerMask( GetLayerSet(), copperLayerCount ) ); else SetLayer( FlipLayer( GetLayer(), copperLayerCount ) ); } void ZONE_CONTAINER::Mirror( const wxPoint& aMirrorRef, bool aMirrorLeftRight ) { // ZONE_CONTAINERs mirror about the x-axis (why?!?) m_Poly->Mirror( aMirrorLeftRight, !aMirrorLeftRight, VECTOR2I( aMirrorRef ) ); Hatch(); m_FilledPolysList.Mirror( aMirrorLeftRight, !aMirrorLeftRight, VECTOR2I( aMirrorRef ) ); for( SEG& seg : m_FillSegmList ) { if( aMirrorLeftRight ) { MIRROR( seg.A.x, aMirrorRef.x ); MIRROR( seg.B.x, aMirrorRef.x ); } else { MIRROR( seg.A.y, aMirrorRef.y ); MIRROR( seg.B.y, aMirrorRef.y ); } } } ZONE_CONNECTION ZONE_CONTAINER::GetPadConnection( D_PAD* aPad ) const { if( aPad == NULL || aPad->GetZoneConnection() == ZONE_CONNECTION::INHERITED ) return m_PadConnection; else return aPad->GetZoneConnection(); } void ZONE_CONTAINER::RemoveCutout( int aOutlineIdx, int aHoleIdx ) { // Ensure the requested cutout is valid if( m_Poly->OutlineCount() < aOutlineIdx || m_Poly->HoleCount( aOutlineIdx ) < aHoleIdx ) return; SHAPE_POLY_SET cutPoly( m_Poly->Hole( aOutlineIdx, aHoleIdx ) ); // Add the cutout back to the zone m_Poly->BooleanAdd( cutPoly, SHAPE_POLY_SET::PM_FAST ); SetNeedRefill( true ); } void ZONE_CONTAINER::AddPolygon( const SHAPE_LINE_CHAIN& aPolygon ) { wxASSERT( aPolygon.IsClosed() ); // Add the outline as a new polygon in the polygon set if( m_Poly->OutlineCount() == 0 ) m_Poly->AddOutline( aPolygon ); else m_Poly->AddHole( aPolygon ); SetNeedRefill( true ); } void ZONE_CONTAINER::AddPolygon( std::vector< wxPoint >& aPolygon ) { if( aPolygon.empty() ) return; SHAPE_LINE_CHAIN outline; // Create an outline and populate it with the points of aPolygon for( const wxPoint& pt : aPolygon) outline.Append( pt ); outline.SetClosed( true ); AddPolygon( outline ); } bool ZONE_CONTAINER::AppendCorner( wxPoint aPosition, int aHoleIdx, bool aAllowDuplication ) { // Ensure the main outline exists: if( m_Poly->OutlineCount() == 0 ) m_Poly->NewOutline(); // If aHoleIdx >= 0, the corner musty be added to the hole, index aHoleIdx. // (remember: the index of the first hole is 0) // Return error if if does dot exist. if( aHoleIdx >= m_Poly->HoleCount( 0 ) ) return false; m_Poly->Append( aPosition.x, aPosition.y, -1, aHoleIdx, aAllowDuplication ); SetNeedRefill( true ); return true; } wxString ZONE_CONTAINER::GetSelectMenuText( EDA_UNITS aUnits ) const { wxString text; // Check whether the selected contour is a hole (contour index > 0) if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 ) text << wxT( " " ) << _( "(Cutout)" ); if( GetIsKeepout() ) text << wxT( " " ) << _( "(Keepout)" ); else text << GetNetnameMsg(); return wxString::Format( _( "Zone Outline %s on %s" ), text, GetLayerName() ); } int ZONE_CONTAINER::GetHatchPitch() const { return m_hatchPitch; } void ZONE_CONTAINER::SetHatch( ZONE_HATCH_STYLE aHatchStyle, int aHatchPitch, bool aRebuildHatch ) { SetHatchPitch( aHatchPitch ); m_hatchStyle = aHatchStyle; if( aRebuildHatch ) Hatch(); } void ZONE_CONTAINER::SetHatchPitch( int aPitch ) { m_hatchPitch = aPitch; } void ZONE_CONTAINER::UnHatch() { m_HatchLines.clear(); } // Creates hatch lines inside the outline of the complex polygon // sort function used in ::Hatch to sort points by descending wxPoint.x values bool sortEndsByDescendingX( const VECTOR2I& ref, const VECTOR2I& tst ) { return tst.x < ref.x; } void ZONE_CONTAINER::Hatch() { UnHatch(); if( m_hatchStyle == ZONE_HATCH_STYLE::NO_HATCH || m_hatchPitch == 0 || m_Poly->IsEmpty() ) return; // define range for hatch lines int min_x = m_Poly->CVertex( 0 ).x; int max_x = m_Poly->CVertex( 0 ).x; int min_y = m_Poly->CVertex( 0 ).y; int max_y = m_Poly->CVertex( 0 ).y; for( auto iterator = m_Poly->IterateWithHoles(); iterator; iterator++ ) { if( iterator->x < min_x ) min_x = iterator->x; if( iterator->x > max_x ) max_x = iterator->x; if( iterator->y < min_y ) min_y = iterator->y; if( iterator->y > max_y ) max_y = iterator->y; } // Calculate spacing between 2 hatch lines int spacing; if( m_hatchStyle == ZONE_HATCH_STYLE::DIAGONAL_EDGE ) spacing = m_hatchPitch; else spacing = m_hatchPitch * 2; // set the "length" of hatch lines (the length on horizontal axis) int hatch_line_len = m_hatchPitch; // To have a better look, give a slope depending on the layer LAYER_NUM layer = GetLayer(); int slope_flag = (layer & 1) ? 1 : -1; // 1 or -1 double slope = 0.707106 * slope_flag; // 45 degrees slope int max_a, min_a; if( slope_flag == 1 ) { max_a = KiROUND( max_y - slope * min_x ); min_a = KiROUND( min_y - slope * max_x ); } else { max_a = KiROUND( max_y - slope * max_x ); min_a = KiROUND( min_y - slope * min_x ); } min_a = (min_a / spacing) * spacing; // calculate an offset depending on layer number, // for a better look of hatches on a multilayer board int offset = (layer * 7) / 8; min_a += offset; // loop through hatch lines #define MAXPTS 200 // Usually we store only few values per one hatch line // depending on the complexity of the zone outline static std::vector pointbuffer; pointbuffer.clear(); pointbuffer.reserve( MAXPTS + 2 ); for( int a = min_a; a < max_a; a += spacing ) { // get intersection points for this hatch line // Note: because we should have an even number of intersections with the // current hatch line and the zone outline (a closed polygon, // or a set of closed polygons), if an odd count is found // we skip this line (should not occur) pointbuffer.clear(); // Iterate through all vertices for( auto iterator = m_Poly->IterateSegmentsWithHoles(); iterator; iterator++ ) { double x, y, x2, y2; int ok; SEG segment = *iterator; ok = FindLineSegmentIntersection( a, slope, segment.A.x, segment.A.y, segment.B.x, segment.B.y, &x, &y, &x2, &y2 ); if( ok ) { VECTOR2I point( KiROUND( x ), KiROUND( y ) ); pointbuffer.push_back( point ); } if( ok == 2 ) { VECTOR2I point( KiROUND( x2 ), KiROUND( y2 ) ); pointbuffer.push_back( point ); } if( pointbuffer.size() >= MAXPTS ) // overflow { wxASSERT( 0 ); break; } } // ensure we have found an even intersection points count // because intersections are the ends of segments // inside the polygon(s) and a segment has 2 ends. // if not, this is a strange case (a bug ?) so skip this hatch if( pointbuffer.size() % 2 != 0 ) continue; // sort points in order of descending x (if more than 2) to // ensure the starting point and the ending point of the same segment // are stored one just after the other. if( pointbuffer.size() > 2 ) sort( pointbuffer.begin(), pointbuffer.end(), sortEndsByDescendingX ); // creates lines or short segments inside the complex polygon for( unsigned ip = 0; ip < pointbuffer.size(); ip += 2 ) { int dx = pointbuffer[ip + 1].x - pointbuffer[ip].x; // Push only one line for diagonal hatch, // or for small lines < twice the line length // else push 2 small lines if( m_hatchStyle == ZONE_HATCH_STYLE::DIAGONAL_FULL || std::abs( dx ) < 2 * hatch_line_len ) { m_HatchLines.emplace_back( SEG( pointbuffer[ip], pointbuffer[ip + 1] ) ); } else { double dy = pointbuffer[ip + 1].y - pointbuffer[ip].y; slope = dy / dx; if( dx > 0 ) dx = hatch_line_len; else dx = -hatch_line_len; int x1 = KiROUND( pointbuffer[ip].x + dx ); int x2 = KiROUND( pointbuffer[ip + 1].x - dx ); int y1 = KiROUND( pointbuffer[ip].y + dx * slope ); int y2 = KiROUND( pointbuffer[ip + 1].y - dx * slope ); m_HatchLines.emplace_back( SEG( pointbuffer[ip].x, pointbuffer[ip].y, x1, y1 ) ); m_HatchLines.emplace_back( SEG( pointbuffer[ip+1].x, pointbuffer[ip+1].y, x2, y2 ) ); } } } } int ZONE_CONTAINER::GetDefaultHatchPitch() { return Mils2iu( 20 ); } BITMAP_DEF ZONE_CONTAINER::GetMenuImage() const { return add_zone_xpm; } void ZONE_CONTAINER::SwapData( BOARD_ITEM* aImage ) { assert( aImage->Type() == PCB_ZONE_AREA_T ); std::swap( *((ZONE_CONTAINER*) this), *((ZONE_CONTAINER*) aImage) ); } void ZONE_CONTAINER::CacheTriangulation() { m_FilledPolysList.CacheTriangulation(); } /* * Some intersecting zones, despite being on the same layer with the same net, cannot be * merged due to other parameters such as fillet radius. The copper pour will end up * effectively merged though, so we want to keep the corners of such intersections sharp. */ void ZONE_CONTAINER::GetColinearCorners( BOARD* aBoard, std::set& aCorners ) { int epsilon = Millimeter2iu( 0.001 ); // Things get messy when zone of different nets intersect. To do it right we'd need to // run our colinear test with the final filled regions rather than the outline regions. // However, since there's no order dependance the only way to do that is to iterate // through successive zone fills until the results are no longer changing -- and that's // not going to happen. So we punt and ignore any "messy" corners. std::set colinearCorners; std::set messyCorners; for( ZONE_CONTAINER* candidate : aBoard->Zones() ) { if( candidate == this ) continue; if( candidate->GetLayerSet() != GetLayerSet() ) continue; if( candidate->GetIsKeepout() != GetIsKeepout() ) continue; for( auto iter = m_Poly->CIterate(); iter; iter++ ) { if( candidate->m_Poly->Collide( iter.Get(), epsilon ) ) { if( candidate->GetNetCode() == GetNetCode() ) colinearCorners.insert( VECTOR2I( iter.Get() ) ); else messyCorners.insert( VECTOR2I( iter.Get() ) ); } } } for( VECTOR2I corner : colinearCorners ) { if( messyCorners.count( corner ) == 0 ) aCorners.insert( corner ); } } bool ZONE_CONTAINER::BuildSmoothedPoly( SHAPE_POLY_SET& aSmoothedPoly, std::set* aPreserveCorners ) const { if( GetNumCorners() <= 2 ) // malformed zone. polygon calculations do not like it ... return false; // Make a smoothed polygon out of the user-drawn polygon if required switch( m_cornerSmoothingType ) { case ZONE_SETTINGS::SMOOTHING_CHAMFER: aSmoothedPoly = m_Poly->Chamfer( m_cornerRadius, aPreserveCorners ); break; case ZONE_SETTINGS::SMOOTHING_FILLET: { auto board = GetBoard(); int maxError = ARC_HIGH_DEF; if( board ) maxError = board->GetDesignSettings().m_MaxError; aSmoothedPoly = m_Poly->Fillet( m_cornerRadius, maxError, aPreserveCorners ); break; } default: // Acute angles between adjacent edges can create issues in calculations, // in inflate/deflate outlines transforms, especially when the angle is very small. // We can avoid issues by creating a very small chamfer which remove acute angles, // or left it without chamfer and use only CPOLYGONS_LIST::InflateOutline to create // clearance areas aSmoothedPoly = m_Poly->Chamfer( Millimeter2iu( 0.0 ), aPreserveCorners ); break; } return true; }; double ZONE_CONTAINER::CalculateFilledArea() { m_area = 0.0; // Iterate over each outline polygon in the zone and then iterate over // each hole it has to compute the total area. for( int i = 0; i < m_FilledPolysList.OutlineCount(); i++ ) { m_area += m_FilledPolysList.Outline( i ).Area(); for( int j = 0; j < m_FilledPolysList.HoleCount( i ); j++ ) { m_area -= m_FilledPolysList.Hole( i, j ).Area(); } } return m_area; } /* Function TransformOutlinesShapeWithClearanceToPolygon * Convert the zone filled areas polygons to polygons * inflated (optional) by max( aClearanceValue, the zone clearance) * and copy them in aCornerBuffer * @param aClearance the clearance around outlines * @param aPreserveCorners an optional set of corners which should not be chamfered/filleted */ void ZONE_CONTAINER::TransformOutlinesShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, int aClearance, std::set* aPreserveCorners ) const { // Creates the zone outline polygon (with holes if any) SHAPE_POLY_SET polybuffer; BuildSmoothedPoly( polybuffer, aPreserveCorners ); // Calculate the polygon with clearance // holes are linked to the main outline, so only one polygon is created. if( aClearance ) { BOARD* board = GetBoard(); int maxError = ARC_HIGH_DEF; if( board ) maxError = board->GetDesignSettings().m_MaxError; int segCount = std::max( GetArcToSegmentCount( aClearance, maxError, 360.0 ), 3 ); polybuffer.Inflate( aClearance, segCount ); } polybuffer.Fracture( SHAPE_POLY_SET::PM_FAST ); aCornerBuffer.Append( polybuffer ); } // /********* MODULE_ZONE_CONTAINER **************/ // MODULE_ZONE_CONTAINER::MODULE_ZONE_CONTAINER( BOARD_ITEM_CONTAINER* aParent ) : ZONE_CONTAINER( aParent, true ) { // in a footprint, net classes are not managed. // so set the net to NETINFO_LIST::ORPHANED_ITEM SetNetCode( -1, true ); } MODULE_ZONE_CONTAINER::MODULE_ZONE_CONTAINER( const MODULE_ZONE_CONTAINER& aZone ) : ZONE_CONTAINER( aZone.GetParent(), true ) { initDataFromSrcInCopyCtor( aZone ); } MODULE_ZONE_CONTAINER& MODULE_ZONE_CONTAINER::operator=( const MODULE_ZONE_CONTAINER& aOther ) { ZONE_CONTAINER::operator=( aOther ); return *this; } EDA_ITEM* MODULE_ZONE_CONTAINER::Clone() const { return new MODULE_ZONE_CONTAINER( *this ); } unsigned int MODULE_ZONE_CONTAINER::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const { const int HIDE = std::numeric_limits::max(); if( !aView ) return 0; bool flipped = GetParent() && GetParent()->GetLayer() == B_Cu; // Handle Render tab switches if( !flipped && !aView->IsLayerVisible( LAYER_MOD_FR ) ) return HIDE; if( flipped && !aView->IsLayerVisible( LAYER_MOD_BK ) ) return HIDE; // Other layers are shown without any conditions return 0; }