/** * @file PDF_plotter.cpp * @brief KiCad: specialized plotter for PDF files format */ /* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 1992-2012 Lorenzo Marcantonio, l.marcantonio@logossrl.com * Copyright (C) 1992-2021 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include "plotters_pslike.h" std::string PDF_PLOTTER::encodeStringForPlotter( const wxString& aText ) { // returns a string compatible with PDF string convention from a unicode string. // if the initial text is only ASCII7, return the text between ( and ) for a good readability // if the initial text is no ASCII7, return the text between < and > // and encoded using 16 bits hexa (4 digits) by wide char (unicode 16) std::string result; // Is aText only ASCII7 ? bool is_ascii7 = true; for( size_t ii = 0; ii < aText.Len(); ii++ ) { if( aText[ii] >= 0x7F ) { is_ascii7 = false; break; } } if( is_ascii7 ) { result = '('; for( unsigned ii = 0; ii < aText.Len(); ii++ ) { unsigned int code = aText[ii]; // These characters must be escaped switch( code ) { case '(': case ')': case '\\': result += '\\'; KI_FALLTHROUGH; default: result += code; break; } } result += ')'; } else { result = "GetDefaultPenWidth(); if( aWidth == 0 ) aWidth = 1; wxASSERT_MSG( aWidth > 0, "Plotter called to set negative pen width" ); if( aWidth != m_currentPenWidth ) fprintf( workFile, "%g w\n", userToDeviceSize( aWidth ) ); m_currentPenWidth = aWidth; } void PDF_PLOTTER::emitSetRGBColor( double r, double g, double b ) { wxASSERT( workFile ); fprintf( workFile, "%g %g %g rg %g %g %g RG\n", r, g, b, r, g, b ); } void PDF_PLOTTER::SetDash( PLOT_DASH_TYPE dashed ) { wxASSERT( workFile ); switch( dashed ) { case PLOT_DASH_TYPE::DASH: fprintf( workFile, "[%d %d] 0 d\n", (int) GetDashMarkLenIU(), (int) GetDashGapLenIU() ); break; case PLOT_DASH_TYPE::DOT: fprintf( workFile, "[%d %d] 0 d\n", (int) GetDotMarkLenIU(), (int) GetDashGapLenIU() ); break; case PLOT_DASH_TYPE::DASHDOT: fprintf( workFile, "[%d %d %d %d] 0 d\n", (int) GetDashMarkLenIU(), (int) GetDashGapLenIU(), (int) GetDotMarkLenIU(), (int) GetDashGapLenIU() ); break; default: fputs( "[] 0 d\n", workFile ); } } void PDF_PLOTTER::Rect( const wxPoint& p1, const wxPoint& p2, FILL_TYPE fill, int width ) { wxASSERT( workFile ); DPOINT p1_dev = userToDeviceCoordinates( p1 ); DPOINT p2_dev = userToDeviceCoordinates( p2 ); SetCurrentLineWidth( width ); fprintf( workFile, "%g %g %g %g re %c\n", p1_dev.x, p1_dev.y, p2_dev.x - p1_dev.x, p2_dev.y - p1_dev.y, fill == FILL_TYPE::NO_FILL ? 'S' : 'B' ); } void PDF_PLOTTER::Circle( const wxPoint& pos, int diametre, FILL_TYPE aFill, int width ) { wxASSERT( workFile ); DPOINT pos_dev = userToDeviceCoordinates( pos ); double radius = userToDeviceSize( diametre / 2.0 ); /* OK. Here's a trick. PDF doesn't support circles or circular angles, that's a fact. You'll have to do with cubic beziers. These *can't* represent circular arcs (NURBS can, beziers don't). But there is a widely known approximation which is really good */ SetCurrentLineWidth( width ); // If diameter is less than width, switch to filled mode if( aFill == FILL_TYPE::NO_FILL && diametre < width ) { aFill = FILL_TYPE::FILLED_SHAPE; SetCurrentLineWidth( 0 ); radius = userToDeviceSize( ( diametre / 2.0 ) + ( width / 2.0 ) ); } double magic = radius * 0.551784; // You don't want to know where this come from // This is the convex hull for the bezier approximated circle fprintf( workFile, "%g %g m " "%g %g %g %g %g %g c " "%g %g %g %g %g %g c " "%g %g %g %g %g %g c " "%g %g %g %g %g %g c %c\n", pos_dev.x - radius, pos_dev.y, pos_dev.x - radius, pos_dev.y + magic, pos_dev.x - magic, pos_dev.y + radius, pos_dev.x, pos_dev.y + radius, pos_dev.x + magic, pos_dev.y + radius, pos_dev.x + radius, pos_dev.y + magic, pos_dev.x + radius, pos_dev.y, pos_dev.x + radius, pos_dev.y - magic, pos_dev.x + magic, pos_dev.y - radius, pos_dev.x, pos_dev.y - radius, pos_dev.x - magic, pos_dev.y - radius, pos_dev.x - radius, pos_dev.y - magic, pos_dev.x - radius, pos_dev.y, aFill == FILL_TYPE::NO_FILL ? 's' : 'b' ); } void PDF_PLOTTER::Arc( const wxPoint& centre, double StAngle, double EndAngle, int radius, FILL_TYPE fill, int width ) { wxASSERT( workFile ); if( radius <= 0 ) { Circle( centre, width, FILL_TYPE::FILLED_SHAPE, 0 ); return; } /* Arcs are not so easily approximated by beziers (in the general case), so we approximate them in the old way */ wxPoint start, end; const int delta = 50; // increment (in 0.1 degrees) to draw circles if( StAngle > EndAngle ) std::swap( StAngle, EndAngle ); SetCurrentLineWidth( width ); // Usual trig arc plotting routine... start.x = centre.x + KiROUND( cosdecideg( radius, -StAngle ) ); start.y = centre.y + KiROUND( sindecideg( radius, -StAngle ) ); DPOINT pos_dev = userToDeviceCoordinates( start ); fprintf( workFile, "%g %g m ", pos_dev.x, pos_dev.y ); for( int ii = StAngle + delta; ii < EndAngle; ii += delta ) { end.x = centre.x + KiROUND( cosdecideg( radius, -ii ) ); end.y = centre.y + KiROUND( sindecideg( radius, -ii ) ); pos_dev = userToDeviceCoordinates( end ); fprintf( workFile, "%g %g l ", pos_dev.x, pos_dev.y ); } end.x = centre.x + KiROUND( cosdecideg( radius, -EndAngle ) ); end.y = centre.y + KiROUND( sindecideg( radius, -EndAngle ) ); pos_dev = userToDeviceCoordinates( end ); fprintf( workFile, "%g %g l ", pos_dev.x, pos_dev.y ); // The arc is drawn... if not filled we stroke it, otherwise we finish // closing the pie at the center if( fill == FILL_TYPE::NO_FILL ) { fputs( "S\n", workFile ); } else { pos_dev = userToDeviceCoordinates( centre ); fprintf( workFile, "%g %g l b\n", pos_dev.x, pos_dev.y ); } } void PDF_PLOTTER::PlotPoly( const std::vector< wxPoint >& aCornerList, FILL_TYPE aFill, int aWidth, void* aData ) { wxASSERT( workFile ); if( aCornerList.size() <= 1 ) return; SetCurrentLineWidth( aWidth ); DPOINT pos = userToDeviceCoordinates( aCornerList[0] ); fprintf( workFile, "%g %g m\n", pos.x, pos.y ); for( unsigned ii = 1; ii < aCornerList.size(); ii++ ) { pos = userToDeviceCoordinates( aCornerList[ii] ); fprintf( workFile, "%g %g l\n", pos.x, pos.y ); } // Close path and stroke(/fill) fprintf( workFile, "%c\n", aFill == FILL_TYPE::NO_FILL ? 'S' : 'b' ); } void PDF_PLOTTER::PenTo( const wxPoint& pos, char plume ) { wxASSERT( workFile ); if( plume == 'Z' ) { if( m_penState != 'Z' ) { fputs( "S\n", workFile ); m_penState = 'Z'; m_penLastpos.x = -1; m_penLastpos.y = -1; } return; } if( m_penState != plume || pos != m_penLastpos ) { DPOINT pos_dev = userToDeviceCoordinates( pos ); fprintf( workFile, "%g %g %c\n", pos_dev.x, pos_dev.y, ( plume=='D' ) ? 'l' : 'm' ); } m_penState = plume; m_penLastpos = pos; } void PDF_PLOTTER::PlotImage( const wxImage & aImage, const wxPoint& aPos, double aScaleFactor ) { wxASSERT( workFile ); wxSize pix_size( aImage.GetWidth(), aImage.GetHeight() ); // Requested size (in IUs) DPOINT drawsize( aScaleFactor * pix_size.x, aScaleFactor * pix_size.y ); // calculate the bitmap start position wxPoint start( aPos.x - drawsize.x / 2, aPos.y + drawsize.y / 2); DPOINT dev_start = userToDeviceCoordinates( start ); /* PDF has an uhm... simplified coordinate system handling. There is *one* operator to do everything (the PS concat equivalent). At least they kept the matrix stack to save restore environments. Also images are always emitted at the origin with a size of 1x1 user units. What we need to do is: 1) save the CTM end establish the new one 2) plot the image 3) restore the CTM 4) profit */ fprintf( workFile, "q %g 0 0 %g %g %g cm\n", // Step 1 userToDeviceSize( drawsize.x ), userToDeviceSize( drawsize.y ), dev_start.x, dev_start.y ); /* An inline image is a cross between a dictionary and a stream. A real ugly construct (compared with the elegance of the PDF format). Also it accepts some 'abbreviations', which is stupid since the content stream is usually compressed anyway... */ fprintf( workFile, "BI\n" " /BPC 8\n" " /CS %s\n" " /W %d\n" " /H %d\n" "ID\n", m_colorMode ? "/RGB" : "/G", pix_size.x, pix_size.y ); /* Here comes the stream (in binary!). I *could* have hex or ascii84 encoded it, but who cares? I'll go through zlib anyway */ for( int y = 0; y < pix_size.y; y++ ) { for( int x = 0; x < pix_size.x; x++ ) { unsigned char r = aImage.GetRed( x, y ) & 0xFF; unsigned char g = aImage.GetGreen( x, y ) & 0xFF; unsigned char b = aImage.GetBlue( x, y ) & 0xFF; // PDF inline images don't support alpha, so premultiply against white background if( aImage.HasAlpha() ) { unsigned char alpha = aImage.GetAlpha( x, y ) & 0xFF; if( alpha < 0xFF ) { float a = 1.0 - ( (float) alpha / 255.0 ); r = ( int )( r + ( a * 0xFF ) ) & 0xFF; g = ( int )( g + ( a * 0xFF ) ) & 0xFF; b = ( int )( b + ( a * 0xFF ) ) & 0xFF; } } if( aImage.HasMask() ) { if( r == aImage.GetMaskRed() && g == aImage.GetMaskGreen() && b == aImage.GetMaskBlue() ) { r = 0xFF; g = 0xFF; b = 0xFF; } } // As usual these days, stdio buffering has to suffeeeeerrrr if( m_colorMode ) { putc( r, workFile ); putc( g, workFile ); putc( b, workFile ); } else { // Greyscale conversion (CIE 1931) unsigned char grey = KiROUND( r * 0.2126 + g * 0.7152 + b * 0.0722 ); putc( grey, workFile ); } } } fputs( "EI Q\n", workFile ); // Finish step 2 and do step 3 } int PDF_PLOTTER::allocPdfObject() { xrefTable.push_back( 0 ); return xrefTable.size() - 1; } int PDF_PLOTTER::startPdfObject(int handle) { wxASSERT( m_outputFile ); wxASSERT( !workFile ); if( handle < 0) handle = allocPdfObject(); xrefTable[handle] = ftell( m_outputFile ); fprintf( m_outputFile, "%d 0 obj\n", handle ); return handle; } void PDF_PLOTTER::closePdfObject() { wxASSERT( m_outputFile ); wxASSERT( !workFile ); fputs( "endobj\n", m_outputFile ); } int PDF_PLOTTER::startPdfStream( int handle ) { wxASSERT( m_outputFile ); wxASSERT( !workFile ); handle = startPdfObject( handle ); // This is guaranteed to be handle+1 but needs to be allocated since // you could allocate more object during stream preparation streamLengthHandle = allocPdfObject(); if( ADVANCED_CFG::GetCfg().m_DebugPDFWriter ) { fprintf( m_outputFile, "<< /Length %d 0 R >>\n" // Length is deferred "stream\n", handle + 1 ); } else { fprintf( m_outputFile, "<< /Length %d 0 R /Filter /FlateDecode >>\n" // Length is deferred "stream\n", handle + 1 ); } // Open a temporary file to accumulate the stream workFilename = wxFileName::CreateTempFileName( "" ); workFile = wxFopen( workFilename, wxT( "w+b" ) ); wxASSERT( workFile ); return handle; } void PDF_PLOTTER::closePdfStream() { wxASSERT( workFile ); long stream_len = ftell( workFile ); if( stream_len < 0 ) { wxASSERT( false ); return; } // Rewind the file, read in the page stream and DEFLATE it fseek( workFile, 0, SEEK_SET ); unsigned char *inbuf = new unsigned char[stream_len]; int rc = fread( inbuf, 1, stream_len, workFile ); wxASSERT( rc == stream_len ); (void) rc; // We are done with the temporary file, junk it fclose( workFile ); workFile = nullptr; ::wxRemoveFile( workFilename ); unsigned out_count; if( ADVANCED_CFG::GetCfg().m_DebugPDFWriter ) { out_count = stream_len; fwrite( inbuf, out_count, 1, m_outputFile ); } else { // NULL means memos owns the memory, but provide a hint on optimum size needed. wxMemoryOutputStream memos( nullptr, std::max( 2000l, stream_len ) ) ; { /* Somewhat standard parameters to compress in DEFLATE. The PDF spec is * misleading, it says it wants a DEFLATE stream but it really want a ZLIB * stream! (a DEFLATE stream would be generated with -15 instead of 15) * rc = deflateInit2( &zstrm, Z_BEST_COMPRESSION, Z_DEFLATED, 15, * 8, Z_DEFAULT_STRATEGY ); */ wxZlibOutputStream zos( memos, wxZ_BEST_COMPRESSION, wxZLIB_ZLIB ); zos.Write( inbuf, stream_len ); } // flush the zip stream using zos destructor wxStreamBuffer* sb = memos.GetOutputStreamBuffer(); out_count = sb->Tell(); fwrite( sb->GetBufferStart(), 1, out_count, m_outputFile ); } delete[] inbuf; fputs( "endstream\n", m_outputFile ); closePdfObject(); // Writing the deferred length as an indirect object startPdfObject( streamLengthHandle ); fprintf( m_outputFile, "%u\n", out_count ); closePdfObject(); } void PDF_PLOTTER::StartPage() { wxASSERT( m_outputFile ); wxASSERT( !workFile ); // Compute the paper size in IUs m_paperSize = m_pageInfo.GetSizeMils(); m_paperSize.x *= 10.0 / m_iuPerDeviceUnit; m_paperSize.y *= 10.0 / m_iuPerDeviceUnit; // Open the content stream; the page object will go later pageStreamHandle = startPdfStream(); /* Now, until ClosePage *everything* must be wrote in workFile, to be compressed later in closePdfStream */ // Default graphic settings (coordinate system, default color and line style) fprintf( workFile, "%g 0 0 %g 0 0 cm 1 J 1 j 0 0 0 rg 0 0 0 RG %g w\n", 0.0072 * plotScaleAdjX, 0.0072 * plotScaleAdjY, userToDeviceSize( m_renderSettings->GetDefaultPenWidth() ) ); } void PDF_PLOTTER::ClosePage() { wxASSERT( workFile ); // Close the page stream (and compress it) closePdfStream(); // Emit the page object and put it in the page list for later pageHandles.push_back( startPdfObject() ); /* Page size is in 1/72 of inch (default user space units) Works like the bbox in postscript but there is no need for swapping the sizes, since PDF doesn't require a portrait page. We use the MediaBox but PDF has lots of other less used boxes to use */ const double BIGPTsPERMIL = 0.072; wxSize psPaperSize = m_pageInfo.GetSizeMils(); fprintf( m_outputFile, "<<\n" "/Type /Page\n" "/Parent %d 0 R\n" "/Resources <<\n" " /ProcSet [/PDF /Text /ImageC /ImageB]\n" " /Font %d 0 R >>\n" "/MediaBox [0 0 %d %d]\n" "/Contents %d 0 R\n" ">>\n", pageTreeHandle, fontResDictHandle, int( ceil( psPaperSize.x * BIGPTsPERMIL ) ), int( ceil( psPaperSize.y * BIGPTsPERMIL ) ), pageStreamHandle ); closePdfObject(); // Mark the page stream as idle pageStreamHandle = 0; } bool PDF_PLOTTER::StartPlot() { wxASSERT( m_outputFile ); // First things first: the customary null object xrefTable.clear(); xrefTable.push_back( 0 ); /* The header (that's easy!). The second line is binary junk required to make the file binary from the beginning (the important thing is that they must have the bit 7 set) */ fputs( "%PDF-1.5\n%\200\201\202\203\n", m_outputFile ); /* Allocate an entry for the page tree root, it will go in every page parent entry */ pageTreeHandle = allocPdfObject(); /* In the same way, the font resource dictionary is used by every page (it *could* be inherited via the Pages tree */ fontResDictHandle = allocPdfObject(); /* Now, the PDF is read from the end, (more or less)... so we start with the page stream for page 1. Other more important stuff is written at the end */ StartPage(); return true; } bool PDF_PLOTTER::EndPlot() { wxASSERT( m_outputFile ); // Close the current page (often the only one) ClosePage(); /* We need to declare the resources we're using (fonts in particular) The useful standard one is the Helvetica family. Adding external fonts is *very* involved! */ struct { const char *psname; const char *rsname; int font_handle; } fontdefs[4] = { { "/Helvetica", "/KicadFont", 0 }, { "/Helvetica-Oblique", "/KicadFontI", 0 }, { "/Helvetica-Bold", "/KicadFontB", 0 }, { "/Helvetica-BoldOblique", "/KicadFontBI", 0 } }; /* Declare the font resources. Since they're builtin fonts, no descriptors (yay!) We'll need metrics anyway to do any alignment (these are in the shared with the postscript engine) */ for( int i = 0; i < 4; i++ ) { fontdefs[i].font_handle = startPdfObject(); fprintf( m_outputFile, "<< /BaseFont %s\n" " /Type /Font\n" " /Subtype /Type1\n" /* Adobe is so Mac-based that the nearest thing to Latin1 is the Windows ANSI encoding! */ " /Encoding /WinAnsiEncoding\n" ">>\n", fontdefs[i].psname ); closePdfObject(); } // Named font dictionary (was allocated, now we emit it) startPdfObject( fontResDictHandle ); fputs( "<<\n", m_outputFile ); for( int i = 0; i < 4; i++ ) { fprintf( m_outputFile, " %s %d 0 R\n", fontdefs[i].rsname, fontdefs[i].font_handle ); } fputs( ">>\n", m_outputFile ); closePdfObject(); /* The page tree: it's a B-tree but luckily we only have few pages! So we use just an array... The handle was allocated at the beginning, now we instantiate the corresponding object */ startPdfObject( pageTreeHandle ); fputs( "<<\n" "/Type /Pages\n" "/Kids [\n", m_outputFile ); for( unsigned i = 0; i < pageHandles.size(); i++ ) fprintf( m_outputFile, "%d 0 R\n", pageHandles[i] ); fprintf( m_outputFile, "]\n" "/Count %ld\n" ">>\n", (long) pageHandles.size() ); closePdfObject(); // The info dictionary int infoDictHandle = startPdfObject(); char date_buf[250]; time_t ltime = time( nullptr ); strftime( date_buf, 250, "D:%Y%m%d%H%M%S", localtime( <ime ) ); if( m_title.IsEmpty() ) { // Windows uses '\' and other platforms use '/' as separator m_title = m_filename.AfterLast( '\\'); m_title = m_title.AfterLast( '/'); } fprintf( m_outputFile, "<<\n" "/Producer (KiCad PDF)\n" "/CreationDate (%s)\n" "/Creator %s\n" "/Title %s\n", date_buf, encodeStringForPlotter( m_creator ).c_str(), encodeStringForPlotter( m_title ).c_str() ); fputs( ">>\n", m_outputFile ); closePdfObject(); // The catalog, at last int catalogHandle = startPdfObject(); fprintf( m_outputFile, "<<\n" "/Type /Catalog\n" "/Pages %d 0 R\n" "/Version /1.5\n" "/PageMode /UseNone\n" "/PageLayout /SinglePage\n" ">>\n", pageTreeHandle ); closePdfObject(); /* Emit the xref table (format is crucial to the byte, each entry must be 20 bytes long, and object zero must be done in that way). Also the offset must be kept along for the trailer */ long xref_start = ftell( m_outputFile ); fprintf( m_outputFile, "xref\n" "0 %ld\n" "0000000000 65535 f \n", (long) xrefTable.size() ); for( unsigned i = 1; i < xrefTable.size(); i++ ) { fprintf( m_outputFile, "%010ld 00000 n \n", xrefTable[i] ); } // Done the xref, go for the trailer fprintf( m_outputFile, "trailer\n" "<< /Size %lu /Root %d 0 R /Info %d 0 R >>\n" "startxref\n" "%ld\n" // The offset we saved before "%%%%EOF\n", (unsigned long) xrefTable.size(), catalogHandle, infoDictHandle, xref_start ); fclose( m_outputFile ); m_outputFile = nullptr; return true; } void PDF_PLOTTER::Text( const wxPoint& aPos, const COLOR4D& aColor, const wxString& aText, double aOrient, const wxSize& aSize, enum EDA_TEXT_HJUSTIFY_T aH_justify, enum EDA_TEXT_VJUSTIFY_T aV_justify, int aWidth, bool aItalic, bool aBold, bool aMultilineAllowed, void* aData ) { // PDF files do not like 0 sized texts which create broken files. if( aSize.x == 0 || aSize.y == 0 ) return; // Render phantom text (which will be searchable) behind the stroke font. This won't // be pixel-accurate, but it doesn't matter for searching. int render_mode = 3; // invisible const char *fontname = aItalic ? ( aBold ? "/KicadFontBI" : "/KicadFontI" ) : ( aBold ? "/KicadFontB" : "/KicadFont" ); // Compute the copious transformation parameters of the Current Transform Matrix double ctm_a, ctm_b, ctm_c, ctm_d, ctm_e, ctm_f; double wideningFactor, heightFactor; computeTextParameters( aPos, aText, aOrient, aSize, m_plotMirror, aH_justify, aV_justify, aWidth, aItalic, aBold, &wideningFactor, &ctm_a, &ctm_b, &ctm_c, &ctm_d, &ctm_e, &ctm_f, &heightFactor ); SetColor( aColor ); SetCurrentLineWidth( aWidth, aData ); /* We use the full CTM instead of the text matrix because the same coordinate system will be used for the overlining. Also the %f for the trig part of the matrix to avoid %g going in exponential format (which is not supported) */ fprintf( workFile, "q %f %f %f %f %g %g cm BT %s %g Tf %d Tr %g Tz ", ctm_a, ctm_b, ctm_c, ctm_d, ctm_e, ctm_f, fontname, heightFactor, render_mode, wideningFactor * 100 ); // The text must be escaped correctly std:: string txt_pdf = encodeStringForPlotter( aText ); fprintf( workFile, "%s Tj ET\n", txt_pdf.c_str() ); // Restore the CTM fputs( "Q\n", workFile ); // Plot the stroked text (if requested) PLOTTER::Text( aPos, aColor, aText, aOrient, aSize, aH_justify, aV_justify, aWidth, aItalic, aBold, aMultilineAllowed ); }