/** * @file aperture_macro.cpp */ /* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 1992-2017 Jean-Pierre Charras * Copyright (C) 2010 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include // for KiROUND #include #include /** * Function scaletoIU * converts a distance given in floating point to our internal units */ extern int scaletoIU( double aCoord, bool isMetric ); // defined it rs274d_read_XY_and_IJ_coordiantes.cpp /** * Function mapPt * translates a point from the aperture macro coordinate system to our * deci-mils coordinate system. * @return wxPoint - The GerbView coordinate system vector. */ static wxPoint mapPt( double x, double y, bool isMetric ) { wxPoint ret( scaletoIU( x, isMetric ), scaletoIU( y, isMetric ) ); return ret; } bool AM_PRIMITIVE::IsAMPrimitiveExposureOn( const GERBER_DRAW_ITEM* aParent ) const { /* * Some but not all primitives use the first parameter as an exposure control. * Others are always ON. * In a aperture macro shape, a basic primitive with exposure off is a hole in the shape * it is NOT a negative shape */ wxASSERT( params.size() ); switch( primitive_id ) { case AMP_CIRCLE: case AMP_LINE2: case AMP_LINE20: case AMP_LINE_CENTER: case AMP_LINE_LOWER_LEFT: case AMP_OUTLINE: case AMP_POLYGON: // All have an exposure parameter and can return a value (0 or 1) return params[0].GetValue( aParent->GetDcodeDescr() ) != 0; break; case AMP_THERMAL: // Exposure is always on case AMP_MOIRE: // Exposure is always on case AMP_EOF: case AMP_UNKNOWN: default: return 1; // All have no exposure parameter and are always 0N return true break; } } // TODO(snh): Remove hard coded count const int seg_per_circle = 64; // Number of segments to approximate a circle void AM_PRIMITIVE::DrawBasicShape( const GERBER_DRAW_ITEM* aParent, SHAPE_POLY_SET& aShapeBuffer, wxPoint aShapePos ) { #define TO_POLY_SHAPE { aShapeBuffer.NewOutline(); \ for( unsigned jj = 0; jj < polybuffer.size(); jj++ )\ aShapeBuffer.Append( polybuffer[jj].x, polybuffer[jj].y );\ aShapeBuffer.Append( polybuffer[0].x, polybuffer[0].y );} // Draw the primitive shape for flashed items. static std::vector polybuffer; // create a static buffer to avoid a lot of memory reallocation polybuffer.clear(); wxPoint curPos = aShapePos; D_CODE* tool = aParent->GetDcodeDescr(); double rotation; switch( primitive_id ) { case AMP_CIRCLE: // Circle, given diameter and position { /* Generated by an aperture macro declaration like: * "1,1,0.3,0.5, 1.0*" * type (1), exposure, diameter, pos.x, pos.y, * is a optional parameter: rotation from origin. * type is not stored in parameters list, so the first parameter is exposure */ ConvertShapeToPolygon( aParent, polybuffer ); // shape rotation (if any): if( params.size() >= 5 ) { rotation = params[4].GetValue( tool ) * 10.0; if( rotation != 0) { for( unsigned ii = 0; ii < polybuffer.size(); ii++ ) RotatePoint( &polybuffer[ii], -rotation ); } } // Move to current position: for( unsigned ii = 0; ii < polybuffer.size(); ii++ ) { polybuffer[ii] += curPos; polybuffer[ii] = aParent->GetABPosition( polybuffer[ii] ); } TO_POLY_SHAPE; } break; case AMP_LINE2: case AMP_LINE20: // Line with rectangle ends. (Width, start and end pos + rotation) { /* Vector Line, Primitive Code 20. * A vector line is a rectangle defined by its line width, start and end points. * The line ends are rectangular. */ /* Generated by an aperture macro declaration like: * "2,1,0.3,0,0, 0.5, 1.0,-135*" * type (2), exposure, width, start.x, start.y, end.x, end.y, rotation * type is not stored in parameters list, so the first parameter is exposure */ ConvertShapeToPolygon( aParent, polybuffer ); // shape rotation: rotation = params[6].GetValue( tool ) * 10.0; if( rotation != 0) { for( unsigned ii = 0; ii < polybuffer.size(); ii++ ) RotatePoint( &polybuffer[ii], -rotation ); } // Move to current position: for( unsigned ii = 0; ii < polybuffer.size(); ii++ ) { polybuffer[ii] += curPos; polybuffer[ii] = aParent->GetABPosition( polybuffer[ii] ); } TO_POLY_SHAPE; } break; case AMP_LINE_CENTER: { /* Center Line, Primitive Code 21 * A center line primitive is a rectangle defined by its width, height, and center point */ /* Generated by an aperture macro declaration like: * "21,1,0.3,0.03,0,0,-135*" * type (21), exposure, ,width, height, center pos.x, center pos.y, rotation * type is not stored in parameters list, so the first parameter is exposure */ ConvertShapeToPolygon( aParent, polybuffer ); // shape rotation: rotation = params[5].GetValue( tool ) * 10.0; if( rotation != 0 ) { for( unsigned ii = 0; ii < polybuffer.size(); ii++ ) RotatePoint( &polybuffer[ii], -rotation ); } // Move to current position: for( unsigned ii = 0; ii < polybuffer.size(); ii++ ) { polybuffer[ii] += curPos; polybuffer[ii] = aParent->GetABPosition( polybuffer[ii] ); } TO_POLY_SHAPE; } break; case AMP_LINE_LOWER_LEFT: { /* Generated by an aperture macro declaration like: * "22,1,0.3,0.03,0,0,-135*" * type (22), exposure, ,width, height, corner pos.x, corner pos.y, rotation * type is not stored in parameters list, so the first parameter is exposure */ ConvertShapeToPolygon( aParent, polybuffer ); // shape rotation: rotation = params[5].GetValue( tool ) * 10.0; if( rotation != 0) { for( unsigned ii = 0; ii < polybuffer.size(); ii++ ) RotatePoint( &polybuffer[ii], -rotation ); } // Move to current position: for( unsigned ii = 0; ii < polybuffer.size(); ii++ ) { polybuffer[ii] += curPos; polybuffer[ii] = aParent->GetABPosition( polybuffer[ii] ); } TO_POLY_SHAPE; } break; case AMP_THERMAL: { /* Generated by an aperture macro declaration like: * "7, 0,0,1.0,0.3,0.01,-13*" * type (7), center.x , center.y, outside diam, inside diam, crosshair thickness, rotation * type is not stored in parameters list, so the first parameter is center.x * * The thermal primitive is a ring (annulus) interrupted by four gaps. Exposure is always on. */ std::vector subshape_poly; curPos += mapPt( params[0].GetValue( tool ), params[1].GetValue( tool ), m_GerbMetric ); ConvertShapeToPolygon( aParent, subshape_poly ); // shape rotation: rotation = params[5].GetValue( tool ) * 10.0; // Because a thermal shape has 4 identical sub-shapes, only one is created in subshape_poly. // We must draw 4 sub-shapes rotated by 90 deg for( int ii = 0; ii < 4; ii++ ) { polybuffer = subshape_poly; double sub_rotation = rotation + 900 * ii; for( unsigned jj = 0; jj < polybuffer.size(); jj++ ) RotatePoint( &polybuffer[jj], -sub_rotation ); // Move to current position: for( unsigned jj = 0; jj < polybuffer.size(); jj++ ) { polybuffer[jj] += curPos; polybuffer[jj] = aParent->GetABPosition( polybuffer[jj] ); } TO_POLY_SHAPE; } } break; case AMP_MOIRE: { /* Moire, Primitive Code 6 * The moire primitive is a cross hair centered on concentric rings (annuli). * Exposure is always on. */ curPos += mapPt( params[0].GetValue( tool ), params[1].GetValue( tool ), m_GerbMetric ); /* Generated by an aperture macro declaration like: * "6,0,0,0.125,.01,0.01,3,0.003,0.150,0" * type(6), pos.x, pos.y, diam, penwidth, gap, circlecount, crosshair thickness, crosshaire len, rotation * type is not stored in parameters list, so the first parameter is pos.x */ int outerDiam = scaletoIU( params[2].GetValue( tool ), m_GerbMetric ); int penThickness = scaletoIU( params[3].GetValue( tool ), m_GerbMetric ); int gap = scaletoIU( params[4].GetValue( tool ), m_GerbMetric ); int numCircles = KiROUND( params[5].GetValue( tool ) ); // Draw circles: wxPoint center = aParent->GetABPosition( curPos ); // adjust outerDiam by this on each nested circle int diamAdjust = (gap + penThickness) * 2; for( int i = 0; i < numCircles; ++i, outerDiam -= diamAdjust ) { if( outerDiam <= 0 ) break; // Note: outerDiam is the outer diameter of the ring. // the ring graphic diameter is (outerDiam - penThickness) if( outerDiam <= penThickness ) { // No room to draw a ring (no room for the hole): // draw a circle instead (with no hole), with the right diameter TransformCircleToPolygon( aShapeBuffer, center, outerDiam / 2, ARC_HIGH_DEF, ERROR_INSIDE ); } else { TransformRingToPolygon( aShapeBuffer, center, ( outerDiam - penThickness ) / 2, penThickness, ARC_HIGH_DEF, ERROR_INSIDE ); } } // Draw the cross: ConvertShapeToPolygon( aParent, polybuffer ); rotation = params[8].GetValue( tool ) * 10.0; for( unsigned ii = 0; ii < polybuffer.size(); ii++ ) { // shape rotation: RotatePoint( &polybuffer[ii], -rotation ); // Move to current position: polybuffer[ii] += curPos; polybuffer[ii] = aParent->GetABPosition( polybuffer[ii] ); } TO_POLY_SHAPE; } break; case AMP_OUTLINE: { /* Outline, Primitive Code 4 * An outline primitive is an area enclosed by an n-point polygon defined by its start point and n * subsequent points. The outline must be closed, i.e. the last point must be equal to the start * point. There must be at least one subsequent point (to close the outline). * The outline of the primitive is actually the contour (see 2.6) that consists of linear segments * only, so it must conform to all the requirements described for contours. * Warning: Make no mistake: n is the number of subsequent points, being the number of * vertices of the outline or one less than the number of coordinate pairs. */ /* Generated by an aperture macro declaration like: * "4,1,3,0.0,0.0,0.0,0.5,0.5,0.5,0.5,0.0,-25" * type(4), exposure, corners count, corner1.x, corner.1y, ..., corner1.x, corner.1y, rotation * type is not stored in parameters list, so the first parameter is exposure */ // params[0] is the exposure and params[1] is the corners count after the first corner int numCorners = (int) params[1].GetValue( tool ); // the shape rotation is the last param of list, after corners int last_prm = params.size() - 1; rotation = params[last_prm].GetValue( tool ) * 10.0; wxPoint pos; // Read points. // Note: numCorners is the polygon corner count, following the first corner // * the polygon is always closed, // * therefore the last XY coordinate is the same as the first int prm_idx = 2; // params[2] is the first X coordinate for( int i = 0; i <= numCorners; ++i ) { pos.x = scaletoIU( params[prm_idx].GetValue( tool ), m_GerbMetric ); prm_idx++; pos.y = scaletoIU( params[prm_idx].GetValue( tool ), m_GerbMetric ); prm_idx++; polybuffer.push_back(pos); // Guard: ensure prm_idx < last_prm // I saw malformed gerber files with numCorners = number // of coordinates instead of number of coordinates following the first point if( prm_idx >= last_prm ) break; } // rotate polygon and move it to the actual position // shape rotation: for( unsigned ii = 0; ii < polybuffer.size(); ii++ ) { RotatePoint( &polybuffer[ii], -rotation ); } // Move to current position: for( unsigned ii = 0; ii < polybuffer.size(); ii++ ) { polybuffer[ii] += curPos; polybuffer[ii] = aParent->GetABPosition( polybuffer[ii] ); } TO_POLY_SHAPE; } break; case AMP_POLYGON: /* Polygon, Primitive Code 5 * A polygon primitive is a regular polygon defined by the number of vertices n, the center point * and the diameter of the circumscribed circle */ /* Generated by an aperture macro declaration like: * "5,1,0.6,0,0,0.5,25" * type(5), exposure, vertices count, pox.x, pos.y, diameter, rotation * type is not stored in parameters list, so the first parameter is exposure */ curPos += mapPt( params[2].GetValue( tool ), params[3].GetValue( tool ), m_GerbMetric ); // Creates the shape: ConvertShapeToPolygon( aParent, polybuffer ); // rotate polygon and move it to the actual position rotation = params[5].GetValue( tool ) * 10.0; for( unsigned ii = 0; ii < polybuffer.size(); ii++ ) { RotatePoint( &polybuffer[ii], -rotation ); polybuffer[ii] += curPos; polybuffer[ii] = aParent->GetABPosition( polybuffer[ii] ); } TO_POLY_SHAPE; break; case AMP_EOF: // not yet supported, waiting for you. break; case AMP_UNKNOWN: default: break; } } /** * Function ConvertShapeToPolygon (virtual) * convert a shape to an equivalent polygon. * Arcs and circles are approximated by segments * Useful when a shape is not a graphic primitive (shape with hole, * rotated shape ... ) and cannot be easily drawn. * note for some schapes conbining circles and solid lines (rectangles), only rectangles are converted * because circles are very easy to draw (no rotation problem) so convert them in polygons, * and draw them as polygons is not a good idea. */ void AM_PRIMITIVE::ConvertShapeToPolygon( const GERBER_DRAW_ITEM* aParent, std::vector& aBuffer ) { D_CODE* tool = aParent->GetDcodeDescr(); switch( primitive_id ) { case AMP_CIRCLE: { /* Generated by an aperture macro declaration like: * "1,1,0.3,0.5, 1.0*" * type (1), exposure, diameter, pos.x, pos.y, * is a optional parameter: rotation from origin. * type is not stored in parameters list, so the first parameter is exposure */ wxPoint center = mapPt( params[2].GetValue( tool ), params[3].GetValue( tool ), m_GerbMetric ); int radius = scaletoIU( params[1].GetValue( tool ), m_GerbMetric ) / 2; wxPoint corner; const int delta = 3600 / seg_per_circle; // rot angle in 0.1 degree for( int angle = 0; angle < 3600; angle += delta ) { corner.x = radius; corner.y = 0; RotatePoint( &corner, angle ); corner += center; aBuffer.push_back( corner ); } } break; case AMP_LINE2: case AMP_LINE20: // Line with rectangle ends. (Width, start and end pos + rotation) { int width = scaletoIU( params[1].GetValue( tool ), m_GerbMetric ); wxPoint start = mapPt( params[2].GetValue( tool ), params[3].GetValue( tool ), m_GerbMetric ); wxPoint end = mapPt( params[4].GetValue( tool ), params[5].GetValue( tool ), m_GerbMetric ); wxPoint delta = end - start; int len = KiROUND( EuclideanNorm( delta ) ); // To build the polygon, we must create a horizontal polygon starting to "start" // and rotate it to have the end point to "end" wxPoint currpt; currpt.y += width / 2; // Upper left aBuffer.push_back( currpt ); currpt.x = len; // Upper right aBuffer.push_back( currpt ); currpt.y -= width; // lower right aBuffer.push_back( currpt ); currpt.x = 0; // lower left aBuffer.push_back( currpt ); // Rotate rectangle and move it to the actual start point double angle = ArcTangente( delta.y, delta.x ); for( unsigned ii = 0; ii < 4; ii++ ) { RotatePoint( &aBuffer[ii], -angle ); aBuffer[ii] += start; } } break; case AMP_LINE_CENTER: { wxPoint size = mapPt( params[1].GetValue( tool ), params[2].GetValue( tool ), m_GerbMetric ); wxPoint pos = mapPt( params[3].GetValue( tool ), params[4].GetValue( tool ), m_GerbMetric ); // Build poly: pos.x -= size.x / 2; pos.y -= size.y / 2; // Lower left aBuffer.push_back( pos ); pos.y += size.y; // Upper left aBuffer.push_back( pos ); pos.x += size.x; // Upper right aBuffer.push_back( pos ); pos.y -= size.y; // lower right aBuffer.push_back( pos ); } break; case AMP_LINE_LOWER_LEFT: { wxPoint size = mapPt( params[1].GetValue( tool ), params[2].GetValue( tool ), m_GerbMetric ); wxPoint lowerLeft = mapPt( params[3].GetValue( tool ), params[4].GetValue( tool ), m_GerbMetric ); // Build poly: aBuffer.push_back( lowerLeft ); lowerLeft.y += size.y; // Upper left aBuffer.push_back( lowerLeft ); lowerLeft.x += size.x; // Upper right aBuffer.push_back( lowerLeft ); lowerLeft.y -= size.y; // lower right aBuffer.push_back( lowerLeft ); } break; case AMP_THERMAL: { // Only 1/4 of the full shape is built, because the other 3 shapes will be draw from this first // rotated by 90, 180 and 270 deg. // params = center.x (unused here), center.y (unused here), outside diam, inside diam, crosshair thickness int outerRadius = scaletoIU( params[2].GetValue( tool ), m_GerbMetric ) / 2; int innerRadius = scaletoIU( params[3].GetValue( tool ), m_GerbMetric ) / 2; // Safety checks to guarantee no divide-by-zero outerRadius = std::max( 1, outerRadius ); innerRadius = std::max( 1, innerRadius ); int halfthickness = scaletoIU( params[4].GetValue( tool ), m_GerbMetric ) / 2; double angle_start = RAD2DECIDEG( asin( (double) halfthickness / innerRadius ) ); // Draw shape in the first cadrant (X and Y > 0) wxPoint pos, startpos; // Inner arc startpos.x = innerRadius; double angle_end = 900 - angle_start; for( double angle = angle_start; angle < angle_end; angle += 100 ) { pos = startpos; RotatePoint( &pos, angle ); aBuffer.push_back( pos ); } // Last point pos = startpos; RotatePoint( &pos, angle_end ); aBuffer.push_back( pos ); // outer arc startpos.x = outerRadius; startpos.y = 0; angle_start = RAD2DECIDEG( asin( (double) halfthickness / outerRadius ) ); angle_end = 900 - angle_start; // First point, near Y axis, outer arc for( double angle = angle_end; angle > angle_start; angle -= 100 ) { pos = startpos; RotatePoint( &pos, angle ); aBuffer.push_back( pos ); } // last point pos = startpos; RotatePoint( &pos, angle_start ); aBuffer.push_back( pos ); aBuffer.push_back( aBuffer[0] ); // Close poly } break; case AMP_MOIRE: // A cross hair with n concentric circles. Only the cros is build as polygon // because circles can be drawn easily { int crossHairThickness = scaletoIU( params[6].GetValue( tool ), m_GerbMetric ); int crossHairLength = scaletoIU( params[7].GetValue( tool ), m_GerbMetric ); // Create cross. First create 1/4 of the shape. // Others point are the same, totated by 90, 180 and 270 deg wxPoint pos( crossHairThickness / 2, crossHairLength / 2 ); aBuffer.push_back( pos ); pos.y = crossHairThickness / 2; aBuffer.push_back( pos ); pos.x = -crossHairLength / 2; aBuffer.push_back( pos ); pos.y = -crossHairThickness / 2; aBuffer.push_back( pos ); // Copy the 4 shape, rotated by 90, 180 and 270 deg for( int jj = 1; jj <= 3; jj ++ ) { for( int ii = 0; ii < 4; ii++ ) { pos = aBuffer[ii]; RotatePoint( &pos, jj*900 ); aBuffer.push_back( pos ); } } } break; case AMP_OUTLINE: // already is a polygon. Do nothing break; case AMP_POLYGON: // Creates a regular polygon { int vertexcount = KiROUND( params[1].GetValue( tool ) ); int radius = scaletoIU( params[4].GetValue( tool ), m_GerbMetric ) / 2; // rs274x said: vertex count = 3 ... 10, and the first corner is on the X axis if( vertexcount < 3 ) vertexcount = 3; if( vertexcount > 10 ) vertexcount = 10; for( int ii = 0; ii <= vertexcount; ii++ ) { wxPoint pos( radius, 0); RotatePoint( &pos, ii * 3600 / vertexcount ); aBuffer.push_back( pos ); } } break; case AMP_COMMENT: case AMP_UNKNOWN: case AMP_EOF: break; } } /** GetShapeDim * Calculate a value that can be used to evaluate the size of text * when displaying the D-Code of an item * due to the complexity of the shape of some primitives * one cannot calculate the "size" of a shape (only abounding box) * but here, the "dimension" of the shape is the diameter of the primitive * or for lines the width of the line * @param aParent = the parent GERBER_DRAW_ITEM which is actually drawn * @return a dimension, or -1 if no dim to calculate */ int AM_PRIMITIVE::GetShapeDim( const GERBER_DRAW_ITEM* aParent ) { int dim = -1; D_CODE* tool = aParent->GetDcodeDescr(); switch( primitive_id ) { case AMP_CIRCLE: // params = exposure, diameter, pos.x, pos.y dim = scaletoIU( params[1].GetValue( tool ), m_GerbMetric ); // Diameter break; case AMP_LINE2: case AMP_LINE20: // Line with rectangle ends. (Width, start and end pos + rotation) dim = scaletoIU( params[1].GetValue( tool ), m_GerbMetric ); // linne width break; case AMP_LINE_CENTER: { wxPoint size = mapPt( params[1].GetValue( tool ), params[2].GetValue( tool ), m_GerbMetric ); dim = std::min(size.x, size.y); } break; case AMP_LINE_LOWER_LEFT: { wxPoint size = mapPt( params[1].GetValue( tool ), params[2].GetValue( tool ), m_GerbMetric ); dim = std::min(size.x, size.y); } break; case AMP_THERMAL: { // Only 1/4 of the full shape is built, because the other 3 shapes will be draw from this first // rotated by 90, 180 and 270 deg. // params = center.x (unused here), center.y (unused here), outside diam, inside diam, crosshair thickness dim = scaletoIU( params[2].GetValue( tool ), m_GerbMetric ) / 2; // Outer diam } break; case AMP_MOIRE: // A cross hair with n concentric circles. dim = scaletoIU( params[7].GetValue( tool ), m_GerbMetric ); // = cross hair len break; case AMP_OUTLINE: // a free polygon : // dim = min side of the bounding box (this is a poor criteria, but what is a good criteria b?) { // exposure, corners count, corner1.x, corner.1y, ..., rotation // note: corners count is the count of corners following corner1 int numPoints = (int) params[1].GetValue( tool ); // Read points. numPoints does not include the starting point, so add 1. // and calculate the bounding box; wxSize pos_min, pos_max, pos; int prm_idx = 2; // params[2] is the first X coordinate int last_prm = params.size() - 1; for( int i = 0; i<= numPoints; ++i ) { pos.x = scaletoIU( params[prm_idx].GetValue( tool ), m_GerbMetric ); prm_idx++; pos.y = scaletoIU( params[prm_idx].GetValue( tool ), m_GerbMetric ); prm_idx++; if( i == 0 ) pos_min = pos_max = pos; else { // upper right corner: if( pos_min.x > pos.x ) pos_min.x = pos.x; if( pos_min.y > pos.y ) pos_min.y = pos.y; // lower left corner: if( pos_max.x < pos.x ) pos_max.x = pos.x; if( pos_max.y < pos.y ) pos_max.y = pos.y; } // Guard: ensure prm_idx < last_prm (last prm is orientation) // I saw malformed gerber files with numCorners = number // of coordinates instead of number of coordinates following the first point if( prm_idx >= last_prm ) break; } // calculate dim wxSize size; size.x = pos_max.x - pos_min.x; size.y = pos_max.y - pos_min.y; dim = std::min( size.x, size.y ); } break; case AMP_POLYGON: // Regular polygon dim = scaletoIU( params[4].GetValue( tool ), m_GerbMetric ) / 2; // Radius break; case AMP_COMMENT: case AMP_UNKNOWN: case AMP_EOF: break; } return dim; } SHAPE_POLY_SET* APERTURE_MACRO::GetApertureMacroShape( const GERBER_DRAW_ITEM* aParent, wxPoint aShapePos ) { SHAPE_POLY_SET holeBuffer; bool hasHole = false; m_shape.RemoveAllContours(); for( AM_PRIMITIVES::iterator prim_macro = primitives.begin(); prim_macro != primitives.end(); ++prim_macro ) { if( prim_macro->primitive_id == AMP_COMMENT ) continue; if( prim_macro->IsAMPrimitiveExposureOn( aParent ) ) prim_macro->DrawBasicShape( aParent, m_shape, aShapePos ); else { prim_macro->DrawBasicShape( aParent, holeBuffer, aShapePos ); if( holeBuffer.OutlineCount() ) // we have a new hole in shape: remove the hole { m_shape.BooleanSubtract( holeBuffer, SHAPE_POLY_SET::PM_FAST ); holeBuffer.RemoveAllContours(); hasHole = true; } } } // If a hole is defined inside a polygon, we must fracture the polygon // to be able to drawn it (i.e link holes by overlapping edges) if( hasHole ) m_shape.Fracture( SHAPE_POLY_SET::PM_FAST ); m_boundingBox = EDA_RECT( wxPoint( 0, 0 ), wxSize( 1, 1 ) ); auto bb = m_shape.BBox(); wxPoint center( bb.Centre().x, bb.Centre().y ); m_boundingBox.Move( aParent->GetABPosition( center ) ); m_boundingBox.Inflate( bb.GetWidth() / 2, bb.GetHeight() / 2 ); return &m_shape; } /* * Function DrawApertureMacroShape * Draw the primitive shape for flashed items. * When an item is flashed, this is the shape of the item */ void APERTURE_MACRO::DrawApertureMacroShape( GERBER_DRAW_ITEM* aParent, EDA_RECT* aClipBox, wxDC* aDC, COLOR4D aColor, wxPoint aShapePos, bool aFilledShape ) { SHAPE_POLY_SET* shapeBuffer = GetApertureMacroShape( aParent, aShapePos ); if( shapeBuffer->OutlineCount() == 0 ) return; for( int ii = 0; ii < shapeBuffer->OutlineCount(); ii++ ) { SHAPE_LINE_CHAIN& poly = shapeBuffer->Outline( ii ); GRClosedPoly( aClipBox, aDC, poly.PointCount(), (wxPoint*) &poly.CPoint( 0 ), aFilledShape, aColor, aColor ); } } /** GetShapeDim * Calculate a value that can be used to evaluate the size of text * when displaying the D-Code of an item * due to the complexity of a shape using many primitives * one cannot calculate the "size" of a shape (only abounding box) * but most of aperture macro are using one or few primitives * and the "dimension" of the shape is the diameter of the primitive * (or the max diameter of primitives) * @return a dimension, or -1 if no dim to calculate */ int APERTURE_MACRO::GetShapeDim( GERBER_DRAW_ITEM* aParent ) { int dim = -1; for( AM_PRIMITIVES::iterator prim_macro = primitives.begin(); prim_macro != primitives.end(); ++prim_macro ) { int pdim = prim_macro->GetShapeDim( aParent ); if( dim < pdim ) dim = pdim; } return dim; } /** * function GetLocalParam * Usually, parameters are defined inside the aperture primitive * using immediate mode or defered mode. * in defered mode the value is defined in a DCODE that want to use the aperture macro. * But some parameters are defined outside the aperture primitive * and are local to the aperture macro * @return the value of a defered parameter defined inside the aperture macro * @param aParamId = the param id (defined by $3 or $5 ..) to evaluate */ double APERTURE_MACRO::GetLocalParam( const D_CODE* aDcode, unsigned aParamId ) const { // find parameter descr. const AM_PARAM * param = NULL; for( unsigned ii = 0; ii < m_localparamStack.size(); ii ++ ) { if( m_localparamStack[ii].GetIndex() == aParamId ) { param = &m_localparamStack[ii]; break; } } if ( param == NULL ) // not found return 0.0; // Evaluate parameter double value = param->GetValue( aDcode ); return value; }