/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #ifdef WITH_DEBUG_FRAME #include "DwarfDebugFrame.h" #endif #include "DwarfEhFrame.h" #include "DwarfEhFrameWithHdr.h" #include "MemoryBuffer.h" #ifdef WITH_DEBUG_FRAME #include "MemoryXz.h" #endif #include "Symbols.h" namespace unwindstack { ElfInterface::~ElfInterface() { for (auto symbol : symbols_) { delete symbol; } } bool ElfInterface::IsValidPc(uint64_t pc) { if (!pt_loads_.empty()) { for (auto& entry : pt_loads_) { uint64_t start = entry.second.table_offset; uint64_t end = start + entry.second.table_size; if (pc >= start && pc < end) { return true; } } return false; } // No PT_LOAD data, look for a fde for this pc in the section data. if (debug_frame_ != nullptr && debug_frame_->GetFdeFromPc(pc) != nullptr) { return true; } if (eh_frame_ != nullptr && eh_frame_->GetFdeFromPc(pc) != nullptr) { return true; } return false; } bool ElfInterface::GetTextRange(uint64_t* addr, uint64_t* size) { if (text_size_ != 0) { *addr = text_addr_; *size = text_size_; return true; } return false; } #ifdef WITH_DEBUG_FRAME std::unique_ptr ElfInterface::CreateGnuDebugdataMemory() { if (gnu_debugdata_offset_ == 0 || gnu_debugdata_size_ == 0) { return nullptr; } auto decompressed = std::make_unique(memory_, gnu_debugdata_offset_, gnu_debugdata_size_, GetSoname()); if (!decompressed || !decompressed->Init()) { gnu_debugdata_offset_ = 0; gnu_debugdata_size_ = 0; return nullptr; } return decompressed; } #endif template void ElfInterfaceImpl::InitHeaders() { if (eh_frame_hdr_offset_ != 0) { DwarfEhFrameWithHdr* eh_frame_hdr = new DwarfEhFrameWithHdr(memory_); eh_frame_.reset(eh_frame_hdr); if (!eh_frame_hdr->EhFrameInit(eh_frame_offset_, eh_frame_size_, eh_frame_section_bias_) || !eh_frame_->Init(eh_frame_hdr_offset_, eh_frame_hdr_size_, eh_frame_hdr_section_bias_)) { eh_frame_.reset(nullptr); } } if (eh_frame_.get() == nullptr && eh_frame_offset_ != 0) { // If there is an eh_frame section without an eh_frame_hdr section, // or using the frame hdr object failed to init. eh_frame_.reset(new DwarfEhFrame(memory_)); if (!eh_frame_->Init(eh_frame_offset_, eh_frame_size_, eh_frame_section_bias_)) { eh_frame_.reset(nullptr); } } if (eh_frame_.get() == nullptr) { eh_frame_hdr_offset_ = 0; eh_frame_hdr_section_bias_ = 0; eh_frame_hdr_size_ = static_cast(-1); eh_frame_offset_ = 0; eh_frame_section_bias_ = 0; eh_frame_size_ = static_cast(-1); } #ifdef WITH_DEBUG_FRAME if (debug_frame_offset_ != 0) { debug_frame_.reset(new DwarfDebugFrame(memory_)); if (!debug_frame_->Init(debug_frame_offset_, debug_frame_size_, debug_frame_section_bias_)) { debug_frame_.reset(nullptr); debug_frame_offset_ = 0; debug_frame_size_ = static_cast(-1); } } #endif } template bool ElfInterfaceImpl::ReadAllHeaders(int64_t* load_bias) { EhdrType ehdr; if (!memory_->ReadFully(0, &ehdr, sizeof(ehdr))) { last_error_.code = ERROR_MEMORY_INVALID; last_error_.address = 0; return false; } // If we have enough information that this is an elf file, then allow // malformed program and section headers. ReadProgramHeaders(ehdr, load_bias); ReadSectionHeaders(ehdr); return true; } template int64_t ElfInterface::GetLoadBias(Memory* memory) { EhdrType ehdr; if (!memory->ReadFully(0, &ehdr, sizeof(ehdr))) { return false; } uint64_t offset = ehdr.e_phoff; for (size_t i = 0; i < ehdr.e_phnum; i++, offset += ehdr.e_phentsize) { PhdrType phdr; if (!memory->ReadFully(offset, &phdr, sizeof(phdr))) { return 0; } // Find the first executable load when looking for the load bias. if (phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) { return static_cast(phdr.p_vaddr) - phdr.p_offset; } } return 0; } template void ElfInterfaceImpl::ReadProgramHeaders(const EhdrType& ehdr, int64_t* load_bias) { uint64_t offset = ehdr.e_phoff; bool first_exec_load_header = true; for (size_t i = 0; i < ehdr.e_phnum; i++, offset += ehdr.e_phentsize) { PhdrType phdr; if (!memory_->ReadFully(offset, &phdr, sizeof(phdr))) { return; } switch (phdr.p_type) { case PT_LOAD: { if ((phdr.p_flags & PF_X) == 0) { continue; } pt_loads_[phdr.p_offset] = LoadInfo{phdr.p_offset, phdr.p_vaddr, static_cast(phdr.p_memsz)}; // Only set the load bias from the first executable load header. if (first_exec_load_header) { *load_bias = static_cast(phdr.p_vaddr) - phdr.p_offset; } first_exec_load_header = false; break; } case PT_GNU_EH_FRAME: // This is really the pointer to the .eh_frame_hdr section. eh_frame_hdr_offset_ = phdr.p_offset; eh_frame_hdr_section_bias_ = static_cast(phdr.p_vaddr) - phdr.p_offset; eh_frame_hdr_size_ = phdr.p_memsz; break; case PT_DYNAMIC: dynamic_offset_ = phdr.p_offset; dynamic_vaddr_start_ = phdr.p_vaddr; if (__builtin_add_overflow(dynamic_vaddr_start_, phdr.p_memsz, &dynamic_vaddr_end_)) { dynamic_offset_ = 0; dynamic_vaddr_start_ = 0; dynamic_vaddr_end_ = 0; } break; default: HandleUnknownType(phdr.p_type, phdr.p_offset, phdr.p_filesz); break; } } } template std::string ElfInterfaceImpl::ReadBuildID() { // Ensure there is no overflow in any of the calulations below. uint64_t tmp; if (__builtin_add_overflow(gnu_build_id_offset_, gnu_build_id_size_, &tmp)) { return ""; } uint64_t offset = 0; while (offset < gnu_build_id_size_) { if (gnu_build_id_size_ - offset < sizeof(NhdrType)) { return ""; } NhdrType hdr; if (!memory_->ReadFully(gnu_build_id_offset_ + offset, &hdr, sizeof(hdr))) { return ""; } offset += sizeof(hdr); if (gnu_build_id_size_ - offset < hdr.n_namesz) { return ""; } if (hdr.n_namesz > 0) { std::string name(hdr.n_namesz, '\0'); if (!memory_->ReadFully(gnu_build_id_offset_ + offset, &(name[0]), hdr.n_namesz)) { return ""; } // Trim trailing \0 as GNU is stored as a C string in the ELF file. if (name.back() == '\0') name.resize(name.size() - 1); // Align hdr.n_namesz to next power multiple of 4. See man 5 elf. offset += (hdr.n_namesz + 3) & ~3; if (name == "GNU" && hdr.n_type == NT_GNU_BUILD_ID) { if (gnu_build_id_size_ - offset < hdr.n_descsz || hdr.n_descsz == 0) { return ""; } std::string build_id(hdr.n_descsz, '\0'); if (memory_->ReadFully(gnu_build_id_offset_ + offset, &build_id[0], hdr.n_descsz)) { return build_id; } return ""; } } // Align hdr.n_descsz to next power multiple of 4. See man 5 elf. offset += (hdr.n_descsz + 3) & ~3; } return ""; } template void ElfInterfaceImpl::ReadSectionHeaders(const EhdrType& ehdr) { uint64_t offset = ehdr.e_shoff; uint64_t sec_offset = 0; uint64_t sec_size = 0; // Get the location of the section header names. // If something is malformed in the header table data, we aren't going // to terminate, we'll simply ignore this part. ShdrType shdr; if (ehdr.e_shstrndx < ehdr.e_shnum) { uint64_t sh_offset = offset + ehdr.e_shstrndx * ehdr.e_shentsize; if (memory_->ReadFully(sh_offset, &shdr, sizeof(shdr))) { sec_offset = shdr.sh_offset; sec_size = shdr.sh_size; } } // Skip the first header, it's always going to be NULL. offset += ehdr.e_shentsize; for (size_t i = 1; i < ehdr.e_shnum; i++, offset += ehdr.e_shentsize) { if (!memory_->ReadFully(offset, &shdr, sizeof(shdr))) { return; } if (shdr.sh_type == SHT_SYMTAB || shdr.sh_type == SHT_DYNSYM) { // Need to go get the information about the section that contains // the string terminated names. ShdrType str_shdr; if (shdr.sh_link >= ehdr.e_shnum) { continue; } uint64_t str_offset = ehdr.e_shoff + shdr.sh_link * ehdr.e_shentsize; if (!memory_->ReadFully(str_offset, &str_shdr, sizeof(str_shdr))) { continue; } if (str_shdr.sh_type != SHT_STRTAB) { continue; } symbols_.push_back(new Symbols(shdr.sh_offset, shdr.sh_size, shdr.sh_entsize, str_shdr.sh_offset, str_shdr.sh_size)); } else if ((shdr.sh_type == SHT_PROGBITS || shdr.sh_type == SHT_NOBITS) && sec_size != 0) { // Look for the .debug_frame and .gnu_debugdata. if (shdr.sh_name < sec_size) { std::string name; if (memory_->ReadString(sec_offset + shdr.sh_name, &name, sec_size - shdr.sh_name)) { if (name == ".debug_frame") { debug_frame_offset_ = shdr.sh_offset; debug_frame_size_ = shdr.sh_size; debug_frame_section_bias_ = static_cast(shdr.sh_addr) - shdr.sh_offset; } else if (name == ".gnu_debugdata") { gnu_debugdata_offset_ = shdr.sh_offset; gnu_debugdata_size_ = shdr.sh_size; } else if (name == ".eh_frame") { eh_frame_offset_ = shdr.sh_offset; eh_frame_section_bias_ = static_cast(shdr.sh_addr) - shdr.sh_offset; eh_frame_size_ = shdr.sh_size; } else if (eh_frame_hdr_offset_ == 0 && name == ".eh_frame_hdr") { eh_frame_hdr_offset_ = shdr.sh_offset; eh_frame_hdr_section_bias_ = static_cast(shdr.sh_addr) - shdr.sh_offset; eh_frame_hdr_size_ = shdr.sh_size; } else if (name == ".data") { data_offset_ = shdr.sh_offset; data_vaddr_start_ = shdr.sh_addr; if (__builtin_add_overflow(data_vaddr_start_, shdr.sh_size, &data_vaddr_end_)) { data_offset_ = 0; data_vaddr_start_ = 0; data_vaddr_end_ = 0; } } else if (name == ".text") { text_addr_ = shdr.sh_addr; text_size_ = shdr.sh_size; } } } } else if (shdr.sh_type == SHT_STRTAB) { // In order to read soname, keep track of address to offset mapping. strtabs_.push_back(std::make_pair(static_cast(shdr.sh_addr), static_cast(shdr.sh_offset))); } else if (shdr.sh_type == SHT_NOTE) { if (shdr.sh_name < sec_size) { std::string name; if (memory_->ReadString(sec_offset + shdr.sh_name, &name, sec_size - shdr.sh_name) && name == ".note.gnu.build-id") { gnu_build_id_offset_ = shdr.sh_offset; gnu_build_id_size_ = shdr.sh_size; } } } } } template std::string ElfInterfaceImpl::GetSoname() { if (soname_type_ == SONAME_INVALID) { return ""; } if (soname_type_ == SONAME_VALID) { return soname_; } soname_type_ = SONAME_INVALID; uint64_t soname_offset = 0; uint64_t strtab_addr = 0; uint64_t strtab_size = 0; // Find the soname location from the dynamic headers section. DynType dyn; uint64_t offset = dynamic_offset_; uint64_t max_offset = offset + dynamic_vaddr_end_ - dynamic_vaddr_start_; for (uint64_t offset = dynamic_offset_; offset < max_offset; offset += sizeof(DynType)) { if (!memory_->ReadFully(offset, &dyn, sizeof(dyn))) { last_error_.code = ERROR_MEMORY_INVALID; last_error_.address = offset; return ""; } if (dyn.d_tag == DT_STRTAB) { strtab_addr = dyn.d_un.d_ptr; } else if (dyn.d_tag == DT_STRSZ) { strtab_size = dyn.d_un.d_val; } else if (dyn.d_tag == DT_SONAME) { soname_offset = dyn.d_un.d_val; } else if (dyn.d_tag == DT_NULL) { break; } } // Need to map the strtab address to the real offset. for (const auto& entry : strtabs_) { if (entry.first == strtab_addr) { soname_offset = entry.second + soname_offset; uint64_t soname_max = entry.second + strtab_size; if (soname_offset >= soname_max) { return ""; } if (!memory_->ReadString(soname_offset, &soname_, soname_max - soname_offset)) { return ""; } soname_type_ = SONAME_VALID; return soname_; } } return ""; } template bool ElfInterfaceImpl::GetFunctionName(uint64_t addr, SharedString* name, uint64_t* func_offset) { if (symbols_.empty()) { return false; } for (const auto symbol : symbols_) { if (symbol->template GetName(addr, memory_, name, func_offset)) { return true; } } return false; } template bool ElfInterfaceImpl::GetGlobalVariable(const std::string& name, uint64_t* memory_address) { if (symbols_.empty()) { return false; } for (const auto symbol : symbols_) { if (symbol->template GetGlobal(memory_, name, memory_address)) { return true; } } return false; } bool ElfInterface::Step(uint64_t pc, Regs* regs, Memory* process_memory, bool* finished, bool* is_signal_frame) { last_error_.code = ERROR_NONE; last_error_.address = 0; // Try the debug_frame first since it contains the most specific unwind // information. DwarfSection* debug_frame = debug_frame_.get(); if (debug_frame != nullptr && debug_frame->Step(pc, regs, process_memory, finished, is_signal_frame)) { return true; } // Try the eh_frame next. DwarfSection* eh_frame = eh_frame_.get(); if (eh_frame != nullptr && eh_frame->Step(pc, regs, process_memory, finished, is_signal_frame)) { return true; } if (gnu_debugdata_interface_ != nullptr && gnu_debugdata_interface_->Step(pc, regs, process_memory, finished, is_signal_frame)) { return true; } // Set the error code based on the first error encountered. DwarfSection* section = nullptr; if (debug_frame_ != nullptr) { section = debug_frame_.get(); } else if (eh_frame_ != nullptr) { section = eh_frame_.get(); } else if (gnu_debugdata_interface_ != nullptr) { last_error_ = gnu_debugdata_interface_->last_error(); return false; } else { return false; } // Convert the DWARF ERROR to an external error. DwarfErrorCode code = section->LastErrorCode(); switch (code) { case DWARF_ERROR_NONE: last_error_.code = ERROR_NONE; break; case DWARF_ERROR_MEMORY_INVALID: last_error_.code = ERROR_MEMORY_INVALID; last_error_.address = section->LastErrorAddress(); break; case DWARF_ERROR_ILLEGAL_VALUE: case DWARF_ERROR_ILLEGAL_STATE: case DWARF_ERROR_STACK_INDEX_NOT_VALID: case DWARF_ERROR_TOO_MANY_ITERATIONS: case DWARF_ERROR_CFA_NOT_DEFINED: case DWARF_ERROR_NO_FDES: last_error_.code = ERROR_UNWIND_INFO; break; case DWARF_ERROR_NOT_IMPLEMENTED: case DWARF_ERROR_UNSUPPORTED_VERSION: last_error_.code = ERROR_UNSUPPORTED; break; } return false; } // This is an estimation of the size of the elf file using the location // of the section headers and size. This assumes that the section headers // are at the end of the elf file. If the elf has a load bias, the size // will be too large, but this is acceptable. template void ElfInterfaceImpl::GetMaxSize(Memory* memory, uint64_t* size) { EhdrType ehdr; if (!memory->ReadFully(0, &ehdr, sizeof(ehdr))) { *size = 0; return; } // If this winds up as zero, the PT_LOAD reading will get a better value. uint64_t elf_size = ehdr.e_shoff + ehdr.e_shentsize * ehdr.e_shnum; // Search through the PT_LOAD values and if any result in a larger elf // size, use that. uint64_t offset = ehdr.e_phoff; for (size_t i = 0; i < ehdr.e_phnum; i++, offset += ehdr.e_phentsize) { PhdrType phdr; if (!memory->ReadFully(offset, &phdr, sizeof(phdr))) { break; } if (phdr.p_type == PT_LOAD) { uint64_t end_offset; if (__builtin_add_overflow(phdr.p_offset, phdr.p_memsz, &end_offset)) { continue; } if (end_offset > elf_size) { elf_size = end_offset; } } } *size = elf_size; } template bool GetBuildIDInfo(Memory* memory, uint64_t* build_id_offset, uint64_t* build_id_size) { EhdrType ehdr; if (!memory->ReadFully(0, &ehdr, sizeof(ehdr))) { return false; } uint64_t offset = ehdr.e_shoff; uint64_t sec_offset; uint64_t sec_size; ShdrType shdr; if (ehdr.e_shstrndx >= ehdr.e_shnum) { return false; } uint64_t sh_offset = offset + ehdr.e_shstrndx * ehdr.e_shentsize; if (!memory->ReadFully(sh_offset, &shdr, sizeof(shdr))) { return false; } sec_offset = shdr.sh_offset; sec_size = shdr.sh_size; // Skip the first header, it's always going to be NULL. offset += ehdr.e_shentsize; for (size_t i = 1; i < ehdr.e_shnum; i++, offset += ehdr.e_shentsize) { if (!memory->ReadFully(offset, &shdr, sizeof(shdr))) { return false; } std::string name; if (shdr.sh_type == SHT_NOTE && shdr.sh_name < sec_size && memory->ReadString(sec_offset + shdr.sh_name, &name, sec_size - shdr.sh_name) && name == ".note.gnu.build-id") { *build_id_offset = shdr.sh_offset; *build_id_size = shdr.sh_size; return true; } } return false; } template std::string ElfInterface::ReadBuildIDFromMemory(Memory* memory) { uint64_t note_offset; uint64_t note_size; if (!GetBuildIDInfo(memory, ¬e_offset, ¬e_size)) { return ""; } // Ensure there is no overflow in any of the calculations below. uint64_t tmp; if (__builtin_add_overflow(note_offset, note_size, &tmp)) { return ""; } uint64_t offset = 0; while (offset < note_size) { if (note_size - offset < sizeof(NhdrType)) { return ""; } NhdrType hdr; if (!memory->ReadFully(note_offset + offset, &hdr, sizeof(hdr))) { return ""; } offset += sizeof(hdr); if (note_size - offset < hdr.n_namesz) { return ""; } if (hdr.n_namesz > 0) { std::string name(hdr.n_namesz, '\0'); if (!memory->ReadFully(note_offset + offset, &(name[0]), hdr.n_namesz)) { return ""; } // Trim trailing \0 as GNU is stored as a C string in the ELF file. if (name.back() == '\0') name.resize(name.size() - 1); // Align hdr.n_namesz to next power multiple of 4. See man 5 elf. offset += (hdr.n_namesz + 3) & ~3; if (name == "GNU" && hdr.n_type == NT_GNU_BUILD_ID) { if (note_size - offset < hdr.n_descsz || hdr.n_descsz == 0) { return ""; } std::string build_id(hdr.n_descsz, '\0'); if (memory->ReadFully(note_offset + offset, &build_id[0], hdr.n_descsz)) { return build_id; } return ""; } } // Align hdr.n_descsz to next power multiple of 4. See man 5 elf. offset += (hdr.n_descsz + 3) & ~3; } return ""; } // Instantiate all of the needed template functions. template class ElfInterfaceImpl; template class ElfInterfaceImpl; template int64_t ElfInterface::GetLoadBias(Memory*); template int64_t ElfInterface::GetLoadBias(Memory*); template std::string ElfInterface::ReadBuildIDFromMemory( Memory*); template std::string ElfInterface::ReadBuildIDFromMemory( Memory*); } // namespace unwindstack