/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2009-2013 Lorenzo Mercantonio * Copyright (C) 2014-2017 Cirilo Bernardo * Copyright (C) 2018 Jean-Pierre Charras jp.charras at wanadoo.fr * Copyright (C) 2004-2020 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ //#include #include #include #include #include #include #include "3d_cache/3d_cache.h" #include "3d_cache/3d_info.h" #include "class_board.h" #include "class_edge_mod.h" #include "class_module.h" #include "class_pcb_text.h" #include "class_track.h" #include "class_zone.h" #include "convert_to_biu.h" #include #include "gr_text.h" #include "plugins/3dapi/ifsg_all.h" #include "streamwrapper.h" #include "vrml_layer.h" #include "pcb_edit_frame.h" #include #include #include // minimum width (mm) of a VRML line #define MIN_VRML_LINEWIDTH 0.05 // previously 0.12 // offset for art layers, mm (silk, paste, etc) #define ART_OFFSET 0.025 // offset for plating #define PLATE_OFFSET 0.005 static S3D_CACHE* cache; static bool USE_INLINES; // true to use legacy inline{} behavior static bool USE_DEFS; // true to reuse component definitions static bool USE_RELPATH; // true to use relative paths in VRML inline{} static double WORLD_SCALE = 1.0; // scaling from 0.1 in to desired VRML unit static double BOARD_SCALE; // scaling from mm to desired VRML world scale static const int PRECISION = 6; // legacy precision factor (now set to 6) static wxString SUBDIR_3D; // legacy 3D subdirectory static wxString PROJ_DIR; // project directory struct VRML_COLOR { float diffuse_red; float diffuse_grn; float diffuse_blu; float spec_red; float spec_grn; float spec_blu; float emit_red; float emit_grn; float emit_blu; float ambient; float transp; float shiny; VRML_COLOR() { // default green diffuse_red = 0.13f; diffuse_grn = 0.81f; diffuse_blu = 0.22f; spec_red = 0.01f; spec_grn = 0.08f; spec_blu = 0.02f; emit_red = 0.0f; emit_grn = 0.0f; emit_blu = 0.0f; ambient = 0.8f; transp = 0.0f; shiny = 0.02f; } VRML_COLOR( float dr, float dg, float db, float sr, float sg, float sb, float er, float eg, float eb, float am, float tr, float sh ) { diffuse_red = dr; diffuse_grn = dg; diffuse_blu = db; spec_red = sr; spec_grn = sg; spec_blu = sb; emit_red = er; emit_grn = eg; emit_blu = eb; ambient = am; transp = tr; shiny = sh; } }; enum VRML_COLOR_INDEX { VRML_COLOR_NONE = -1, VRML_COLOR_PCB = 0, VRML_COLOR_TRACK, VRML_COLOR_SILK, VRML_COLOR_TIN, VRML_COLOR_LAST }; static VRML_COLOR colors[VRML_COLOR_LAST]; static SGNODE* sgmaterial[VRML_COLOR_LAST] = { NULL }; class MODEL_VRML { private: double m_layer_z[PCB_LAYER_ID_COUNT]; int m_iMaxSeg; // max. sides to a small circle double m_arcMinLen, m_arcMaxLen; // min and max lengths of an arc chord public: IFSG_TRANSFORM m_OutputPCB; VRML_LAYER m_holes; VRML_LAYER m_board; VRML_LAYER m_top_copper; VRML_LAYER m_bot_copper; VRML_LAYER m_top_silk; VRML_LAYER m_bot_silk; VRML_LAYER m_top_tin; VRML_LAYER m_bot_tin; VRML_LAYER m_plated_holes; std::list< SGNODE* > m_components; bool m_plainPCB; double m_minLineWidth; // minimum width of a VRML line segment double m_tx; // global translation along X double m_ty; // global translation along Y double m_brd_thickness; // depth of the PCB LAYER_NUM m_text_layer; int m_text_width; MODEL_VRML() : m_OutputPCB( (SGNODE*) NULL ) { for( unsigned i = 0; i < arrayDim( m_layer_z ); ++i ) m_layer_z[i] = 0; m_holes.GetArcParams( m_iMaxSeg, m_arcMinLen, m_arcMaxLen ); // this default only makes sense if the output is in mm m_brd_thickness = 1.6; // pcb green colors[VRML_COLOR_PCB] = VRML_COLOR( 0.07f, 0.3f, 0.12f, 0.01f, 0.03f, 0.01f, 0.0f, 0.0f, 0.0f, 0.8f, 0.0f, 0.02f ); // track green colors[VRML_COLOR_TRACK] = VRML_COLOR( 0.08f, 0.5f, 0.1f, 0.01f, 0.05f, 0.01f, 0.0f, 0.0f, 0.0f, 0.8f, 0.0f, 0.02f ); // silkscreen white colors[VRML_COLOR_SILK] = VRML_COLOR( 0.9f, 0.9f, 0.9f, 0.1f, 0.1f, 0.1f, 0.0f, 0.0f, 0.0f, 0.9f, 0.0f, 0.02f ); // pad silver colors[VRML_COLOR_TIN] = VRML_COLOR( 0.749f, 0.756f, 0.761f, 0.749f, 0.756f, 0.761f, 0.0f, 0.0f, 0.0f, 0.8f, 0.0f, 0.8f ); m_plainPCB = false; SetOffset( 0.0, 0.0 ); m_text_layer = F_Cu; m_text_width = 1; m_minLineWidth = MIN_VRML_LINEWIDTH; } ~MODEL_VRML() { // destroy any unassociated material appearances for( int j = 0; j < VRML_COLOR_LAST; ++j ) { if( sgmaterial[j] && NULL == S3D::GetSGNodeParent( sgmaterial[j] ) ) S3D::DestroyNode( sgmaterial[j] ); sgmaterial[j] = NULL; } if( !m_components.empty() ) { IFSG_TRANSFORM tmp( false ); for( auto i : m_components ) { tmp.Attach( i ); tmp.SetParent( NULL ); } m_components.clear(); m_OutputPCB.Destroy(); } } VRML_COLOR& GetColor( VRML_COLOR_INDEX aIndex ) { return colors[aIndex]; } void SetOffset( double aXoff, double aYoff ) { m_tx = aXoff; m_ty = -aYoff; m_holes.SetVertexOffsets( aXoff, aYoff ); m_board.SetVertexOffsets( aXoff, aYoff ); m_top_copper.SetVertexOffsets( aXoff, aYoff ); m_bot_copper.SetVertexOffsets( aXoff, aYoff ); m_top_silk.SetVertexOffsets( aXoff, aYoff ); m_bot_silk.SetVertexOffsets( aXoff, aYoff ); m_top_tin.SetVertexOffsets( aXoff, aYoff ); m_bot_tin.SetVertexOffsets( aXoff, aYoff ); m_plated_holes.SetVertexOffsets( aXoff, aYoff ); } double GetLayerZ( LAYER_NUM aLayer ) { if( unsigned( aLayer ) >= arrayDim( m_layer_z ) ) return 0; return m_layer_z[ aLayer ]; } void SetLayerZ( LAYER_NUM aLayer, double aValue ) { m_layer_z[aLayer] = aValue; } // set the scaling of the VRML world bool SetScale( double aWorldScale ) { if( aWorldScale < 0.001 || aWorldScale > 10.0 ) throw( std::runtime_error( "WorldScale out of range (valid range is 0.001 to 10.0)" ) ); m_OutputPCB.SetScale( aWorldScale * 2.54 ); WORLD_SCALE = aWorldScale * 2.54; return true; } }; // static var. for dealing with text static MODEL_VRML* model_vrml; // select the VRML layer object to draw on; return true if // a layer has been selected. static bool GetLayer( MODEL_VRML& aModel, LAYER_NUM layer, VRML_LAYER** vlayer ) { switch( layer ) { case B_Cu: *vlayer = &aModel.m_bot_copper; return true; case F_Cu: *vlayer = &aModel.m_top_copper; return true; case B_SilkS: *vlayer = &aModel.m_bot_silk; return true; case F_SilkS: *vlayer = &aModel.m_top_silk; return true; default: return false; } } static void create_vrml_shell( IFSG_TRANSFORM& PcbOutput, VRML_COLOR_INDEX colorID, VRML_LAYER* layer, double top_z, double bottom_z ); static void create_vrml_plane( IFSG_TRANSFORM& PcbOutput, VRML_COLOR_INDEX colorID, VRML_LAYER* layer, double aHeight, bool aTopPlane ); static void write_triangle_bag( std::ostream& aOut_file, VRML_COLOR& aColor, VRML_LAYER* aLayer, bool aPlane, bool aTop, double aTop_z, double aBottom_z ) { /* A lot of nodes are not required, but blender sometimes chokes * without them */ static const char* shape_boiler[] = { "Transform {\n", " children [\n", " Group {\n", " children [\n", " Shape {\n", " appearance Appearance {\n", " material Material {\n", 0, // Material marker " }\n", " }\n", " geometry IndexedFaceSet {\n", " solid TRUE\n", " coord Coordinate {\n", " point [\n", 0, // Coordinates marker " ]\n", " }\n", " coordIndex [\n", 0, // Index marker " ]\n", " }\n", " }\n", " ]\n", " }\n", " ]\n", "}\n", 0 // End marker }; int marker_found = 0, lineno = 0; while( marker_found < 4 ) { if( shape_boiler[lineno] ) aOut_file << shape_boiler[lineno]; else { marker_found++; switch( marker_found ) { case 1: // Material marker aOut_file << " diffuseColor " << std::setprecision(3); aOut_file << aColor.diffuse_red << " "; aOut_file << aColor.diffuse_grn << " "; aOut_file << aColor.diffuse_blu << "\n"; aOut_file << " specularColor "; aOut_file << aColor.spec_red << " "; aOut_file << aColor.spec_grn << " "; aOut_file << aColor.spec_blu << "\n"; aOut_file << " emissiveColor "; aOut_file << aColor.emit_red << " "; aOut_file << aColor.emit_grn << " "; aOut_file << aColor.emit_blu << "\n"; aOut_file << " ambientIntensity " << aColor.ambient << "\n"; aOut_file << " transparency " << aColor.transp << "\n"; aOut_file << " shininess " << aColor.shiny << "\n"; break; case 2: if( aPlane ) aLayer->WriteVertices( aTop_z, aOut_file, PRECISION ); else aLayer->Write3DVertices( aTop_z, aBottom_z, aOut_file, PRECISION ); aOut_file << "\n"; break; case 3: if( aPlane ) aLayer->WriteIndices( aTop, aOut_file ); else aLayer->Write3DIndices( aOut_file ); aOut_file << "\n"; break; default: break; } } lineno++; } } static void write_layers( MODEL_VRML& aModel, BOARD* aPcb, const char* aFileName, OSTREAM* aOutputFile ) { // VRML_LAYER board; aModel.m_board.Tesselate( &aModel.m_holes ); double brdz = aModel.m_brd_thickness / 2.0 - ( Millimeter2iu( ART_OFFSET / 2.0 ) ) * BOARD_SCALE; if( USE_INLINES ) { write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_PCB ), &aModel.m_board, false, false, brdz, -brdz ); } else { create_vrml_shell( aModel.m_OutputPCB, VRML_COLOR_PCB, &aModel.m_board, brdz, -brdz ); } if( aModel.m_plainPCB ) { if( !USE_INLINES ) S3D::WriteVRML( aFileName, true, aModel.m_OutputPCB.GetRawPtr(), USE_DEFS, true ); return; } // VRML_LAYER m_top_copper; aModel.m_top_copper.Tesselate( &aModel.m_holes ); if( USE_INLINES ) { write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_TRACK ), &aModel.m_top_copper, true, true, aModel.GetLayerZ( F_Cu ), 0 ); } else { create_vrml_plane( aModel.m_OutputPCB, VRML_COLOR_TRACK, &aModel.m_top_copper, aModel.GetLayerZ( F_Cu ), true ); } // VRML_LAYER m_top_tin; aModel.m_top_tin.Tesselate( &aModel.m_holes ); if( USE_INLINES ) { write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_TIN ), &aModel.m_top_tin, true, true, aModel.GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE, 0 ); } else { create_vrml_plane( aModel.m_OutputPCB, VRML_COLOR_TIN, &aModel.m_top_tin, aModel.GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE, true ); } // VRML_LAYER m_bot_copper; aModel.m_bot_copper.Tesselate( &aModel.m_holes ); if( USE_INLINES ) { write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_TRACK ), &aModel.m_bot_copper, true, false, aModel.GetLayerZ( B_Cu ), 0 ); } else { create_vrml_plane( aModel.m_OutputPCB, VRML_COLOR_TRACK, &aModel.m_bot_copper, aModel.GetLayerZ( B_Cu ), false ); } // VRML_LAYER m_bot_tin; aModel.m_bot_tin.Tesselate( &aModel.m_holes ); if( USE_INLINES ) { write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_TIN ), &aModel.m_bot_tin, true, false, aModel.GetLayerZ( B_Cu ) - Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE, 0 ); } else { create_vrml_plane( aModel.m_OutputPCB, VRML_COLOR_TIN, &aModel.m_bot_tin, aModel.GetLayerZ( B_Cu ) - Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE, false ); } // VRML_LAYER PTH; aModel.m_plated_holes.Tesselate( NULL, true ); if( USE_INLINES ) { write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_TIN ), &aModel.m_plated_holes, false, false, aModel.GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE, aModel.GetLayerZ( B_Cu ) - Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE ); } else { create_vrml_shell( aModel.m_OutputPCB, VRML_COLOR_TIN, &aModel.m_plated_holes, aModel.GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE, aModel.GetLayerZ( B_Cu ) - Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE ); } // VRML_LAYER m_top_silk; aModel.m_top_silk.Tesselate( &aModel.m_holes ); if( USE_INLINES ) { write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_SILK ), &aModel.m_top_silk, true, true, aModel.GetLayerZ( F_SilkS ), 0 ); } else { create_vrml_plane( aModel.m_OutputPCB, VRML_COLOR_SILK, &aModel.m_top_silk, aModel.GetLayerZ( F_SilkS ), true ); } // VRML_LAYER m_bot_silk; aModel.m_bot_silk.Tesselate( &aModel.m_holes ); if( USE_INLINES ) { write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_SILK ), &aModel.m_bot_silk, true, false, aModel.GetLayerZ( B_SilkS ), 0 ); } else { create_vrml_plane( aModel.m_OutputPCB, VRML_COLOR_SILK, &aModel.m_bot_silk, aModel.GetLayerZ( B_SilkS ), false ); } if( !USE_INLINES ) S3D::WriteVRML( aFileName, true, aModel.m_OutputPCB.GetRawPtr(), true, true ); } static void compute_layer_Zs( MODEL_VRML& aModel, BOARD* pcb ) { int copper_layers = pcb->GetCopperLayerCount(); // We call it 'layer' thickness, but it's the whole board thickness! aModel.m_brd_thickness = pcb->GetDesignSettings().GetBoardThickness() * BOARD_SCALE; double half_thickness = aModel.m_brd_thickness / 2; // Compute each layer's Z value, more or less like the 3d view for( LSEQ seq = LSET::AllCuMask().Seq(); seq; ++seq ) { PCB_LAYER_ID i = *seq; if( i < copper_layers ) aModel.SetLayerZ( i, half_thickness - aModel.m_brd_thickness * i / (copper_layers - 1) ); else aModel.SetLayerZ( i, - half_thickness ); // bottom layer } /* To avoid rounding interference, we apply an epsilon to each * successive layer */ double epsilon_z = Millimeter2iu( ART_OFFSET ) * BOARD_SCALE; aModel.SetLayerZ( B_Paste, -half_thickness - epsilon_z * 4 ); aModel.SetLayerZ( B_Adhes, -half_thickness - epsilon_z * 3 ); aModel.SetLayerZ( B_SilkS, -half_thickness - epsilon_z * 2 ); aModel.SetLayerZ( B_Mask, -half_thickness - epsilon_z ); aModel.SetLayerZ( F_Mask, half_thickness + epsilon_z ); aModel.SetLayerZ( F_SilkS, half_thickness + epsilon_z * 2 ); aModel.SetLayerZ( F_Adhes, half_thickness + epsilon_z * 3 ); aModel.SetLayerZ( F_Paste, half_thickness + epsilon_z * 4 ); aModel.SetLayerZ( Dwgs_User, half_thickness + epsilon_z * 5 ); aModel.SetLayerZ( Cmts_User, half_thickness + epsilon_z * 6 ); aModel.SetLayerZ( Eco1_User, half_thickness + epsilon_z * 7 ); aModel.SetLayerZ( Eco2_User, half_thickness + epsilon_z * 8 ); aModel.SetLayerZ( Edge_Cuts, 0 ); } static void export_vrml_line( MODEL_VRML& aModel, LAYER_NUM layer, double startx, double starty, double endx, double endy, double width ) { VRML_LAYER* vlayer; if( !GetLayer( aModel, layer, &vlayer ) ) return; if( width < aModel.m_minLineWidth) width = aModel.m_minLineWidth; starty = -starty; endy = -endy; double angle = atan2( endy - starty, endx - startx ) * 180.0 / M_PI; double length = Distance( startx, starty, endx, endy ) + width; double cx = ( startx + endx ) / 2.0; double cy = ( starty + endy ) / 2.0; if( !vlayer->AddSlot( cx, cy, length, width, angle, false ) ) throw( std::runtime_error( vlayer->GetError() ) ); } static void export_vrml_circle( MODEL_VRML& aModel, LAYER_NUM layer, double startx, double starty, double endx, double endy, double width ) { VRML_LAYER* vlayer; if( !GetLayer( aModel, layer, &vlayer ) ) return; if( width < aModel.m_minLineWidth ) width = aModel.m_minLineWidth; starty = -starty; endy = -endy; double hole, radius; radius = Distance( startx, starty, endx, endy ) + ( width / 2); hole = radius - width; if( !vlayer->AddCircle( startx, starty, radius, false ) ) throw( std::runtime_error( vlayer->GetError() ) ); if( hole > 0.0001 ) { if( !vlayer->AddCircle( startx, starty, hole, true ) ) throw( std::runtime_error( vlayer->GetError() ) ); } } static void export_vrml_arc( MODEL_VRML& aModel, LAYER_NUM layer, double centerx, double centery, double arc_startx, double arc_starty, double width, double arc_angle ) { VRML_LAYER* vlayer; if( !GetLayer( aModel, layer, &vlayer ) ) return; if( width < aModel.m_minLineWidth ) width = aModel.m_minLineWidth; centery = -centery; arc_starty = -arc_starty; if( !vlayer->AddArc( centerx, centery, arc_startx, arc_starty, width, -arc_angle, false ) ) throw( std::runtime_error( vlayer->GetError() ) ); } static void export_vrml_polygon( MODEL_VRML& aModel, LAYER_NUM layer, DRAWSEGMENT *aOutline, double aOrientation, wxPoint aPos ) { if( aOutline->IsPolyShapeValid() ) { SHAPE_POLY_SET shape = aOutline->GetPolyShape(); VRML_LAYER* vlayer; if( !GetLayer( aModel, layer, &vlayer ) ) return; if( aOutline->GetWidth() ) { int numSegs = GetArcToSegmentCount( aOutline->GetWidth() / 2, ARC_HIGH_DEF, 360.0 ); shape.Inflate( aOutline->GetWidth() / 2, numSegs ); shape.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); } shape.Rotate( -aOrientation, VECTOR2I( 0, 0 ) ); shape.Move( aPos ); const SHAPE_LINE_CHAIN& outline = shape.COutline( 0 ); int seg = vlayer->NewContour(); for( int j = 0; j < outline.PointCount(); j++ ) { if( !vlayer->AddVertex( seg, outline.CPoint( j ).x * BOARD_SCALE, -outline.CPoint( j ).y * BOARD_SCALE ) ) throw( std::runtime_error( vlayer->GetError() ) ); } vlayer->EnsureWinding( seg, false ); } } static void export_vrml_drawsegment( MODEL_VRML& aModel, DRAWSEGMENT* drawseg ) { LAYER_NUM layer = drawseg->GetLayer(); double w = drawseg->GetWidth() * BOARD_SCALE; double x = drawseg->GetStart().x * BOARD_SCALE; double y = drawseg->GetStart().y * BOARD_SCALE; double xf = drawseg->GetEnd().x * BOARD_SCALE; double yf = drawseg->GetEnd().y * BOARD_SCALE; double r = sqrt( pow( x - xf, 2 ) + pow( y - yf, 2 ) ); // Items on the edge layer are handled elsewhere; just return if( layer == Edge_Cuts ) return; switch( drawseg->GetShape() ) { case S_ARC: export_vrml_arc( aModel, layer, (double) drawseg->GetCenter().x * BOARD_SCALE, (double) drawseg->GetCenter().y * BOARD_SCALE, (double) drawseg->GetArcStart().x * BOARD_SCALE, (double) drawseg->GetArcStart().y * BOARD_SCALE, w, drawseg->GetAngle() / 10 ); break; case S_CIRCLE: // Break circles into two 180 arcs to prevent the vrml hole from obscuring objects // within the hole area of the circle. export_vrml_arc( aModel, layer, x, y, x, y-r, w, 180.0 ); export_vrml_arc( aModel, layer, x, y, x, y+r, w, 180.0 ); break; case S_POLYGON: export_vrml_polygon( aModel, layer, drawseg, 0.0, wxPoint( 0, 0 ) ); break; case S_SEGMENT: export_vrml_line( aModel, layer, x, y, xf, yf, w ); break; case S_RECT: export_vrml_line( aModel, layer, x, y, xf, y, w ); export_vrml_line( aModel, layer, xf, y, xf, yf, w ); export_vrml_line( aModel, layer, xf, yf, x, yf, w ); export_vrml_line( aModel, layer, x, yf, x, y, w ); break; default: break; } } /* C++ doesn't have closures and neither continuation forms... this is * for coupling the vrml_text_callback with the common parameters */ static void vrml_text_callback( int x0, int y0, int xf, int yf, void* aData ) { LAYER_NUM m_text_layer = model_vrml->m_text_layer; int m_text_width = model_vrml->m_text_width; export_vrml_line( *model_vrml, m_text_layer, x0 * BOARD_SCALE, y0 * BOARD_SCALE, xf * BOARD_SCALE, yf * BOARD_SCALE, m_text_width * BOARD_SCALE ); } static void export_vrml_pcbtext( MODEL_VRML& aModel, TEXTE_PCB* text ) { wxSize size = text->GetTextSize(); if( text->IsMirrored() ) size.x = -size.x; bool forceBold = true; int penWidth = text->GetEffectiveTextPenWidth(); COLOR4D color = COLOR4D::BLACK; // not actually used, but needed by GRText model_vrml->m_text_layer = text->GetLayer(); model_vrml->m_text_width = penWidth; if( text->IsMultilineAllowed() ) { wxArrayString strings_list; wxStringSplit( text->GetShownText(), strings_list, '\n' ); std::vector positions; positions.reserve( strings_list.Count() ); text->GetLinePositions( positions, strings_list.Count() ); for( unsigned ii = 0; ii < strings_list.Count(); ii++ ) { GRText( nullptr, positions[ii], color, strings_list[ii], text->GetTextAngle(), size, text->GetHorizJustify(), text->GetVertJustify(), penWidth, text->IsItalic(), forceBold, vrml_text_callback ); } } else { GRText( nullptr, text->GetTextPos(), color, text->GetShownText(), text->GetTextAngle(), size, text->GetHorizJustify(), text->GetVertJustify(), penWidth, text->IsItalic(), forceBold, vrml_text_callback ); } } static void export_vrml_drawings( MODEL_VRML& aModel, BOARD* pcb ) { // draw graphic items for( auto drawing : pcb->Drawings() ) { PCB_LAYER_ID layer = drawing->GetLayer(); if( layer != F_Cu && layer != B_Cu && layer != B_SilkS && layer != F_SilkS ) continue; switch( drawing->Type() ) { case PCB_LINE_T: export_vrml_drawsegment( aModel, (DRAWSEGMENT*) drawing ); break; case PCB_TEXT_T: export_vrml_pcbtext( aModel, (TEXTE_PCB*) drawing ); break; default: break; } } } // board edges and cutouts static void export_vrml_board( MODEL_VRML& aModel, BOARD* aPcb ) { SHAPE_POLY_SET pcbOutlines; // stores the board main outlines wxString msg; if( !aPcb->GetBoardPolygonOutlines( pcbOutlines, &msg ) ) { msg << "\n\n" << _( "Unable to calculate the board outlines; fall back to using the board boundary box." ); wxMessageBox( msg ); } int seg; for( int cnt = 0; cnt < pcbOutlines.OutlineCount(); cnt++ ) { const SHAPE_LINE_CHAIN& outline = pcbOutlines.COutline( cnt ); seg = aModel.m_board.NewContour(); for( int j = 0; j < outline.PointCount(); j++ ) { aModel.m_board.AddVertex( seg, (double)outline.CPoint(j).x * BOARD_SCALE, -((double)outline.CPoint(j).y * BOARD_SCALE ) ); } aModel.m_board.EnsureWinding( seg, false ); // Generate holes: for( int ii = 0; ii < pcbOutlines.HoleCount( cnt ); ii++ ) { const SHAPE_LINE_CHAIN& hole = pcbOutlines.Hole( cnt, ii ); seg = aModel.m_holes.NewContour(); if( seg < 0 ) { msg << "\n\n" << _( "VRML Export Failed: Could not add holes to contours." ); wxMessageBox( msg ); return; } for( int j = 0; j < hole.PointCount(); j++ ) { aModel.m_holes.AddVertex( seg, (double)hole.CPoint(j).x * BOARD_SCALE, -((double)hole.CPoint(j).y * BOARD_SCALE ) ); } aModel.m_holes.EnsureWinding( seg, true ); } } } static void export_round_padstack( MODEL_VRML& aModel, BOARD* pcb, double x, double y, double r, LAYER_NUM bottom_layer, LAYER_NUM top_layer, double hole ) { LAYER_NUM layer = top_layer; bool thru = true; // if not a thru hole do not put a hole in the board if( top_layer != F_Cu || bottom_layer != B_Cu ) thru = false; if( thru && hole > 0 ) aModel.m_holes.AddCircle( x, -y, hole, true ); if( aModel.m_plainPCB ) return; while( true ) { if( layer == B_Cu ) { aModel.m_bot_copper.AddCircle( x, -y, r ); if( hole > 0 && !thru ) aModel.m_bot_copper.AddCircle( x, -y, hole, true ); } else if( layer == F_Cu ) { aModel.m_top_copper.AddCircle( x, -y, r ); if( hole > 0 && !thru ) aModel.m_top_copper.AddCircle( x, -y, hole, true ); } if( layer == bottom_layer ) break; layer = bottom_layer; } } static void export_vrml_via( MODEL_VRML& aModel, BOARD* aPcb, const VIA* aVia ) { double x, y, r, hole; PCB_LAYER_ID top_layer, bottom_layer; hole = aVia->GetDrillValue() * BOARD_SCALE / 2.0; r = aVia->GetWidth() * BOARD_SCALE / 2.0; x = aVia->GetStart().x * BOARD_SCALE; y = aVia->GetStart().y * BOARD_SCALE; aVia->LayerPair( &top_layer, &bottom_layer ); // do not render a buried via if( top_layer != F_Cu && bottom_layer != B_Cu ) return; // Export the via padstack export_round_padstack( aModel, aPcb, x, y, r, bottom_layer, top_layer, hole ); } static void export_vrml_tracks( MODEL_VRML& aModel, BOARD* pcb ) { for( TRACK* track : pcb->Tracks() ) { if( track->Type() == PCB_VIA_T ) { export_vrml_via( aModel, pcb, (const VIA*) track ); } else if( ( track->GetLayer() == B_Cu || track->GetLayer() == F_Cu ) && !aModel.m_plainPCB ) { if( track->Type() == PCB_ARC_T ) { ARC* arc = static_cast( track ); VECTOR2D center( arc->GetCenter() ); double arc_angle_degree = arc->GetAngle()/10; // Vrml exporter does not export arcs with angle < 1.0 degree // ( to avoid issues with vrml viewers). // The best way is to convert them to a small straight line if( arc_angle_degree < -1.0 || arc_angle_degree > 1.0 ) { export_vrml_arc( aModel, track->GetLayer(), center.x * BOARD_SCALE, center.y * BOARD_SCALE, arc->GetStart().x * BOARD_SCALE, arc->GetStart().y * BOARD_SCALE, arc->GetWidth() * BOARD_SCALE, arc_angle_degree ); } else { export_vrml_line( aModel, arc->GetLayer(), arc->GetStart().x * BOARD_SCALE, arc->GetStart().y * BOARD_SCALE, arc->GetEnd().x * BOARD_SCALE, arc->GetEnd().y * BOARD_SCALE, arc->GetWidth() * BOARD_SCALE ); } } else { export_vrml_line( aModel, track->GetLayer(), track->GetStart().x * BOARD_SCALE, track->GetStart().y * BOARD_SCALE, track->GetEnd().x * BOARD_SCALE, track->GetEnd().y * BOARD_SCALE, track->GetWidth() * BOARD_SCALE ); } } } } static void export_vrml_zones( MODEL_VRML& aModel, BOARD* aPcb, COMMIT* aCommit ) { for( ZONE_CONTAINER* zone : aPcb->Zones() ) { for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() ) { VRML_LAYER* vl; if( !GetLayer( aModel, layer, &vl ) ) continue; if( !zone->IsFilled() ) { ZONE_FILLER filler( aPcb, aCommit ); zone->SetFillMode( ZONE_FILL_MODE::POLYGONS ); // use filled polygons // If the zone fill failed, don't try adding it to the export std::vector toFill = { zone }; if( !filler.Fill( toFill ) ) continue; } const SHAPE_POLY_SET& poly = zone->GetFilledPolysList( layer ); for( int i = 0; i < poly.OutlineCount(); i++ ) { const SHAPE_LINE_CHAIN& outline = poly.COutline( i ); int seg = vl->NewContour(); for( int j = 0; j < outline.PointCount(); j++ ) { if( !vl->AddVertex( seg, (double) outline.CPoint( j ).x * BOARD_SCALE, -( (double) outline.CPoint( j ).y * BOARD_SCALE ) ) ) { throw( std::runtime_error( vl->GetError() ) ); } } vl->EnsureWinding( seg, false ); } } } } static void export_vrml_text_module( TEXTE_MODULE* item ) { if( item->IsVisible() ) { wxSize size = item->GetTextSize(); if( item->IsMirrored() ) size.x = -size.x; // Text is mirrored bool forceBold = true; int penWidth = item->GetEffectiveTextPenWidth(); model_vrml->m_text_layer = item->GetLayer(); model_vrml->m_text_width = penWidth; GRText( NULL, item->GetTextPos(), BLACK, item->GetShownText(), item->GetDrawRotation(), size, item->GetHorizJustify(), item->GetVertJustify(), penWidth, item->IsItalic(), forceBold, vrml_text_callback ); } } static void export_vrml_edge_module( MODEL_VRML& aModel, EDGE_MODULE* aOutline, MODULE* aModule ) { LAYER_NUM layer = aOutline->GetLayer(); double x = aOutline->GetStart().x * BOARD_SCALE; double y = aOutline->GetStart().y * BOARD_SCALE; double xf = aOutline->GetEnd().x * BOARD_SCALE; double yf = aOutline->GetEnd().y * BOARD_SCALE; double w = aOutline->GetWidth() * BOARD_SCALE; switch( aOutline->GetShape() ) { case S_SEGMENT: export_vrml_line( aModel, layer, x, y, xf, yf, w ); break; case S_ARC: export_vrml_arc( aModel, layer, x, y, xf, yf, w, aOutline->GetAngle() / 10 ); break; case S_CIRCLE: export_vrml_circle( aModel, layer, x, y, xf, yf, w ); break; case S_POLYGON: export_vrml_polygon( aModel, layer, aOutline, aModule->GetOrientationRadians(), aModule->GetPosition() ); break; case S_RECT: export_vrml_line( aModel, layer, x, y, xf, y, w ); export_vrml_line( aModel, layer, xf, y, xf, yf, w ); export_vrml_line( aModel, layer, xf, yf, x, yf, w ); export_vrml_line( aModel, layer, x, yf, x, y, w ); break; default: break; } } static void export_vrml_padshape( MODEL_VRML& aModel, VRML_LAYER* aTinLayer, D_PAD* aPad ) { // The (maybe offset) pad position wxPoint pad_pos = aPad->ShapePos(); double pad_x = pad_pos.x * BOARD_SCALE; double pad_y = pad_pos.y * BOARD_SCALE; wxSize pad_delta = aPad->GetDelta(); double pad_dx = pad_delta.x * BOARD_SCALE / 2.0; double pad_dy = pad_delta.y * BOARD_SCALE / 2.0; double pad_w = aPad->GetSize().x * BOARD_SCALE / 2.0; double pad_h = aPad->GetSize().y * BOARD_SCALE / 2.0; switch( aPad->GetShape() ) { case PAD_SHAPE_CIRCLE: if( !aTinLayer->AddCircle( pad_x, -pad_y, pad_w, false ) ) throw( std::runtime_error( aTinLayer->GetError() ) ); break; case PAD_SHAPE_OVAL: if( !aTinLayer->AddSlot( pad_x, -pad_y, pad_w * 2.0, pad_h * 2.0, aPad->GetOrientation()/10.0, false ) ) throw( std::runtime_error( aTinLayer->GetError() ) ); break; case PAD_SHAPE_ROUNDRECT: case PAD_SHAPE_CHAMFERED_RECT: { SHAPE_POLY_SET polySet; const int corner_radius = aPad->GetRoundRectCornerRadius(); TransformRoundChamferedRectToPolygon( polySet, wxPoint( 0, 0 ), aPad->GetSize(), 0.0, corner_radius, 0.0, 0, ARC_HIGH_DEF ); std::vector< wxRealPoint > cornerList; // TransformRoundChamferedRectToPolygon creates only one convex polygon SHAPE_LINE_CHAIN poly( polySet.Outline( 0 ) ); cornerList.reserve( poly.PointCount() ); for( int ii = 0; ii < poly.PointCount(); ++ii ) cornerList.emplace_back( poly.CPoint( ii ).x * BOARD_SCALE, -poly.CPoint( ii ).y * BOARD_SCALE ); // Close polygon cornerList.push_back( cornerList[0] ); if( !aTinLayer->AddPolygon( cornerList, pad_x, -pad_y, aPad->GetOrientation() ) ) throw( std::runtime_error( aTinLayer->GetError() ) ); break; } case PAD_SHAPE_CUSTOM: { SHAPE_POLY_SET polySet; std::vector< wxRealPoint > cornerList; aPad->MergePrimitivesAsPolygon( &polySet, UNDEFINED_LAYER ); for( int cnt = 0; cnt < polySet.OutlineCount(); ++cnt ) { SHAPE_LINE_CHAIN& poly = polySet.Outline( cnt ); cornerList.clear(); for( int ii = 0; ii < poly.PointCount(); ++ii ) cornerList.emplace_back( poly.CPoint( ii ).x * BOARD_SCALE, -poly.CPoint( ii ).y * BOARD_SCALE ); // Close polygon cornerList.push_back( cornerList[0] ); if( !aTinLayer->AddPolygon( cornerList, pad_x, -pad_y, aPad->GetOrientation() ) ) throw( std::runtime_error( aTinLayer->GetError() ) ); } break; } case PAD_SHAPE_RECT: // Just to be sure :D pad_dx = 0; pad_dy = 0; // Intentionally fall through and treat a rectangle as a trapezoid with no sloped sides KI_FALLTHROUGH; case PAD_SHAPE_TRAPEZOID: { double coord[8] = { -pad_w + pad_dy, -pad_h - pad_dx, -pad_w - pad_dy, pad_h + pad_dx, +pad_w - pad_dy, -pad_h + pad_dx, +pad_w + pad_dy, pad_h - pad_dx }; for( int i = 0; i < 4; i++ ) { RotatePoint( &coord[i * 2], &coord[i * 2 + 1], aPad->GetOrientation() ); coord[i * 2] += pad_x; coord[i * 2 + 1] += pad_y; } int lines; lines = aTinLayer->NewContour(); if( lines < 0 ) throw( std::runtime_error( aTinLayer->GetError() ) ); if( !aTinLayer->AddVertex( lines, coord[0], -coord[1] ) ) throw( std::runtime_error( aTinLayer->GetError() ) ); if( !aTinLayer->AddVertex( lines, coord[4], -coord[5] ) ) throw( std::runtime_error( aTinLayer->GetError() ) ); if( !aTinLayer->AddVertex( lines, coord[6], -coord[7] ) ) throw( std::runtime_error( aTinLayer->GetError() ) ); if( !aTinLayer->AddVertex( lines, coord[2], -coord[3] ) ) throw( std::runtime_error( aTinLayer->GetError() ) ); if( !aTinLayer->EnsureWinding( lines, false ) ) throw( std::runtime_error( aTinLayer->GetError() ) ); break; } } } static void export_vrml_pad( MODEL_VRML& aModel, BOARD* aPcb, D_PAD* aPad ) { double hole_drill_w = (double) aPad->GetDrillSize().x * BOARD_SCALE / 2.0; double hole_drill_h = (double) aPad->GetDrillSize().y * BOARD_SCALE / 2.0; double hole_drill = std::min( hole_drill_w, hole_drill_h ); double hole_x = aPad->GetPosition().x * BOARD_SCALE; double hole_y = aPad->GetPosition().y * BOARD_SCALE; // Export the hole on the edge layer if( hole_drill > 0 ) { bool pth = false; if( ( aPad->GetAttribute() != PAD_ATTRIB_HOLE_NOT_PLATED ) && !aModel.m_plainPCB ) pth = true; if( aPad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ) { // Oblong hole (slot) if( pth ) { aModel.m_holes.AddSlot( hole_x, -hole_y, hole_drill_w * 2.0 + PLATE_OFFSET, hole_drill_h * 2.0 + PLATE_OFFSET, aPad->GetOrientation()/10.0, true, true ); aModel.m_plated_holes.AddSlot( hole_x, -hole_y, hole_drill_w * 2.0, hole_drill_h * 2.0, aPad->GetOrientation()/10.0, true, false ); } else { aModel.m_holes.AddSlot( hole_x, -hole_y, hole_drill_w * 2.0, hole_drill_h * 2.0, aPad->GetOrientation()/10.0, true, false ); } } else { // Drill a round hole if( pth ) { aModel.m_holes.AddCircle( hole_x, -hole_y, hole_drill + PLATE_OFFSET, true, true ); aModel.m_plated_holes.AddCircle( hole_x, -hole_y, hole_drill, true, false ); } else { aModel.m_holes.AddCircle( hole_x, -hole_y, hole_drill, true, false ); } } } if( aModel.m_plainPCB ) return; // The pad proper, on the selected layers LSET layer_mask = aPad->GetLayerSet(); if( layer_mask[B_Cu] ) { if( layer_mask[B_Mask] ) export_vrml_padshape( aModel, &aModel.m_bot_tin, aPad ); else export_vrml_padshape( aModel, &aModel.m_bot_copper, aPad ); } if( layer_mask[F_Cu] ) { if( layer_mask[F_Mask] ) export_vrml_padshape( aModel, &aModel.m_top_tin, aPad ); else export_vrml_padshape( aModel, &aModel.m_top_copper, aPad ); } } // From axis/rot to quaternion static void build_quat( double x, double y, double z, double a, double q[4] ) { double sina = sin( a / 2 ); q[0] = x * sina; q[1] = y * sina; q[2] = z * sina; q[3] = cos( a / 2 ); } // From quaternion to axis/rot static void from_quat( double q[4], double rot[4] ) { rot[3] = acos( q[3] ) * 2; for( int i = 0; i < 3; i++ ) rot[i] = q[i] / sin( rot[3] / 2 ); } // Quaternion composition static void compose_quat( double q1[4], double q2[4], double qr[4] ) { double tmp[4]; tmp[0] = q2[3] * q1[0] + q2[0] * q1[3] + q2[1] * q1[2] - q2[2] * q1[1]; tmp[1] = q2[3] * q1[1] + q2[1] * q1[3] + q2[2] * q1[0] - q2[0] * q1[2]; tmp[2] = q2[3] * q1[2] + q2[2] * q1[3] + q2[0] * q1[1] - q2[1] * q1[0]; tmp[3] = q2[3] * q1[3] - q2[0] * q1[0] - q2[1] * q1[1] - q2[2] * q1[2]; qr[0] = tmp[0]; qr[1] = tmp[1]; qr[2] = tmp[2]; qr[3] = tmp[3]; } static void export_vrml_module( MODEL_VRML& aModel, BOARD* aPcb, MODULE* aModule, std::ostream* aOutputFile ) { if( !aModel.m_plainPCB ) { // Reference and value if( aModule->Reference().IsVisible() ) export_vrml_text_module( &aModule->Reference() ); if( aModule->Value().IsVisible() ) export_vrml_text_module( &aModule->Value() ); // Export module edges for( BOARD_ITEM* item : aModule->GraphicalItems() ) { switch( item->Type() ) { case PCB_MODULE_TEXT_T: export_vrml_text_module( static_cast( item ) ); break; case PCB_MODULE_EDGE_T: export_vrml_edge_module( aModel, static_cast( item ), aModule ); break; default: break; } } } // Export pads for( D_PAD* pad : aModule->Pads() ) export_vrml_pad( aModel, aPcb, pad ); bool isFlipped = aModule->GetLayer() == B_Cu; // Export the object VRML model(s) auto sM = aModule->Models().begin(); auto eM = aModule->Models().end(); wxFileName subdir( SUBDIR_3D, "" ); while( sM != eM ) { SGNODE* mod3d = (SGNODE*) cache->Load( sM->m_Filename ); if( NULL == mod3d ) { ++sM; continue; } /* Calculate 3D shape rotation: * this is the rotation parameters, with an additional 180 deg rotation * for footprints that are flipped * When flipped, axis rotation is the horizontal axis (X axis) */ double rotx = -sM->m_Rotation.x; double roty = -sM->m_Rotation.y; double rotz = -sM->m_Rotation.z; if( isFlipped ) { rotx += 180.0; roty = -roty; rotz = -rotz; } // Do some quaternion munching double q1[4], q2[4], rot[4]; build_quat( 1, 0, 0, DEG2RAD( rotx ), q1 ); build_quat( 0, 1, 0, DEG2RAD( roty ), q2 ); compose_quat( q1, q2, q1 ); build_quat( 0, 0, 1, DEG2RAD( rotz ), q2 ); compose_quat( q1, q2, q1 ); // Note here aModule->GetOrientation() is in 0.1 degrees, // so module rotation has to be converted to radians build_quat( 0, 0, 1, DECIDEG2RAD( aModule->GetOrientation() ), q2 ); compose_quat( q1, q2, q1 ); from_quat( q1, rot ); double offsetFactor = 1000.0f * IU_PER_MILS / 25.4f; // adjust 3D shape local offset position // they are given in mm, so they are converted in board IU. double offsetx = sM->m_Offset.x * offsetFactor; double offsety = sM->m_Offset.y * offsetFactor; double offsetz = sM->m_Offset.z * offsetFactor; if( isFlipped ) offsetz = -offsetz; else // In normal mode, Y axis is reversed in Pcbnew. offsety = -offsety; RotatePoint( &offsetx, &offsety, aModule->GetOrientation() ); SGPOINT trans; trans.x = ( offsetx + aModule->GetPosition().x ) * BOARD_SCALE + aModel.m_tx; trans.y = -(offsety + aModule->GetPosition().y) * BOARD_SCALE - aModel.m_ty; trans.z = (offsetz * BOARD_SCALE ) + aModel.GetLayerZ( aModule->GetLayer() ); if( USE_INLINES ) { wxFileName srcFile = cache->GetResolver()->ResolvePath( sM->m_Filename ); wxFileName dstFile; dstFile.SetPath( SUBDIR_3D ); dstFile.SetName( srcFile.GetName() ); dstFile.SetExt( "wrl" ); // copy the file if necessary wxDateTime srcModTime = srcFile.GetModificationTime(); wxDateTime destModTime = srcModTime; destModTime.SetToCurrent(); if( dstFile.FileExists() ) destModTime = dstFile.GetModificationTime(); if( srcModTime != destModTime ) { wxString fileExt = srcFile.GetExt(); fileExt.LowerCase(); // copy VRML models and use the scenegraph library to // translate other model types if( fileExt == "wrl" ) { if( !wxCopyFile( srcFile.GetFullPath(), dstFile.GetFullPath() ) ) continue; } else { if( !S3D::WriteVRML( dstFile.GetFullPath().ToUTF8(), true, mod3d, USE_DEFS, true ) ) continue; } } (*aOutputFile) << "Transform {\n"; // only write a rotation if it is >= 0.1 deg if( std::abs( rot[3] ) > 0.0001745 ) { (*aOutputFile) << " rotation " << std::setprecision( 5 ); (*aOutputFile) << rot[0] << " " << rot[1] << " " << rot[2] << " " << rot[3] << "\n"; } (*aOutputFile) << " translation " << std::setprecision( PRECISION ); (*aOutputFile) << trans.x << " "; (*aOutputFile) << trans.y << " "; (*aOutputFile) << trans.z << "\n"; (*aOutputFile) << " scale "; (*aOutputFile) << sM->m_Scale.x << " "; (*aOutputFile) << sM->m_Scale.y << " "; (*aOutputFile) << sM->m_Scale.z << "\n"; (*aOutputFile) << " children [\n Inline {\n url \""; if( USE_RELPATH ) { wxFileName tmp = dstFile; tmp.SetExt( "" ); tmp.SetName( "" ); tmp.RemoveLastDir(); dstFile.MakeRelativeTo( tmp.GetPath() ); } wxString fn = dstFile.GetFullPath(); fn.Replace( "\\", "/" ); (*aOutputFile) << TO_UTF8( fn ) << "\"\n } ]\n"; (*aOutputFile) << " }\n"; } else { IFSG_TRANSFORM* modelShape = new IFSG_TRANSFORM( aModel.m_OutputPCB.GetRawPtr() ); // only write a rotation if it is >= 0.1 deg if( std::abs( rot[3] ) > 0.0001745 ) modelShape->SetRotation( SGVECTOR( rot[0], rot[1], rot[2] ), rot[3] ); modelShape->SetTranslation( trans ); modelShape->SetScale( SGPOINT( sM->m_Scale.x, sM->m_Scale.y, sM->m_Scale.z ) ); if( NULL == S3D::GetSGNodeParent( mod3d ) ) { aModel.m_components.push_back( mod3d ); modelShape->AddChildNode( mod3d ); } else { modelShape->AddRefNode( mod3d ); } } ++sM; } } bool PCB_EDIT_FRAME::ExportVRML_File( const wxString& aFullFileName, double aMMtoWRMLunit, bool aExport3DFiles, bool aUseRelativePaths, bool aUsePlainPCB, const wxString& a3D_Subdir, double aXRef, double aYRef ) { BOARD* pcb = GetBoard(); bool ok = true; BOARD_COMMIT commit( this ); // We may need to modify the board (for instance to // fill zones), so make sure we can revert. USE_INLINES = aExport3DFiles; USE_DEFS = true; USE_RELPATH = aUseRelativePaths; cache = Prj().Get3DCacheManager(); PROJ_DIR = Prj().GetProjectPath(); SUBDIR_3D = a3D_Subdir; MODEL_VRML model3d; model_vrml = &model3d; model3d.SetScale( aMMtoWRMLunit ); if( USE_INLINES ) { BOARD_SCALE = MM_PER_IU / 2.54; model3d.SetOffset( -aXRef / 2.54, aYRef / 2.54 ); } else { BOARD_SCALE = MM_PER_IU; model3d.SetOffset( -aXRef, aYRef ); } // plain PCB or else PCB with copper and silkscreen model3d.m_plainPCB = aUsePlainPCB; try { // Preliminary computation: the z value for each layer compute_layer_Zs( model3d, pcb ); // board edges and cutouts export_vrml_board( model3d, pcb ); // Drawing and text on the board if( !aUsePlainPCB ) export_vrml_drawings( model3d, pcb ); // Export vias and trackage export_vrml_tracks( model3d, pcb ); // Export zone fills if( !aUsePlainPCB ) export_vrml_zones( model3d, pcb, &commit ); if( USE_INLINES ) { // check if the 3D Subdir exists - create if not wxFileName subdir( SUBDIR_3D, "" ); if( ! subdir.DirExists() ) { if( !wxDir::Make( subdir.GetFullPath() ) ) throw( std::runtime_error( "Could not create 3D model subdirectory" ) ); } OPEN_OSTREAM( output_file, TO_UTF8( aFullFileName ) ); if( output_file.fail() ) { std::ostringstream ostr; ostr << "Could not open file '" << TO_UTF8( aFullFileName ) << "'"; throw( std::runtime_error( ostr.str().c_str() ) ); } output_file.imbue( std::locale( "C" ) ); // Begin with the usual VRML boilerplate wxString fn = aFullFileName; fn.Replace( "\\" , "/" ); output_file << "#VRML V2.0 utf8\n"; output_file << "WorldInfo {\n"; output_file << " title \"" << TO_UTF8( fn ) << " - Generated by Pcbnew\"\n"; output_file << "}\n"; output_file << "Transform {\n"; output_file << " scale " << std::setprecision( PRECISION ); output_file << WORLD_SCALE << " "; output_file << WORLD_SCALE << " "; output_file << WORLD_SCALE << "\n"; output_file << " children [\n"; // Export footprints for( MODULE* module : pcb->Modules() ) export_vrml_module( model3d, pcb, module, &output_file ); // write out the board and all layers write_layers( model3d, pcb, TO_UTF8( aFullFileName ), &output_file ); // Close the outer 'transform' node output_file << "]\n}\n"; CLOSE_STREAM( output_file ); } else { // Export footprints for( MODULE* module : pcb->Modules() ) export_vrml_module( model3d, pcb, module, NULL ); // write out the board and all layers write_layers( model3d, pcb, TO_UTF8( aFullFileName ), NULL ); } } catch( const std::exception& e ) { wxString msg; msg << _( "IDF Export Failed:\n" ) << FROM_UTF8( e.what() ); wxMessageBox( msg ); ok = false; } commit.Revert(); return ok; } static SGNODE* getSGColor( VRML_COLOR_INDEX colorIdx ) { if( colorIdx == -1 ) colorIdx = VRML_COLOR_PCB; else if( colorIdx == VRML_COLOR_LAST ) return NULL; if( sgmaterial[colorIdx] ) return sgmaterial[colorIdx]; IFSG_APPEARANCE vcolor( (SGNODE*) NULL ); VRML_COLOR* cp = &colors[colorIdx]; vcolor.SetSpecular( cp->spec_red, cp->spec_grn, cp->spec_blu ); vcolor.SetDiffuse( cp->diffuse_red, cp->diffuse_grn, cp->diffuse_blu ); vcolor.SetShininess( cp->shiny ); // NOTE: XXX - replace with a better equation; using this definition // of ambient will not yield the best results vcolor.SetAmbient( cp->ambient, cp->ambient, cp->ambient ); vcolor.SetTransparency( cp->transp ); sgmaterial[colorIdx] = vcolor.GetRawPtr(); return sgmaterial[colorIdx]; } static void create_vrml_plane( IFSG_TRANSFORM& PcbOutput, VRML_COLOR_INDEX colorID, VRML_LAYER* layer, double top_z, bool aTopPlane ) { std::vector< double > vertices; std::vector< int > idxPlane; if( !( *layer ).Get2DTriangles( vertices, idxPlane, top_z, aTopPlane ) ) { return; } if( ( idxPlane.size() % 3 ) ) { throw( std::runtime_error( "[BUG] index lists are not a multiple of 3 (not a triangle list)" ) ); } std::vector< SGPOINT > vlist; size_t nvert = vertices.size() / 3; size_t j = 0; for( size_t i = 0; i < nvert; ++i, j+= 3 ) vlist.emplace_back( vertices[j], vertices[j+1], vertices[j+2] ); // create the intermediate scenegraph IFSG_TRANSFORM tx0( PcbOutput.GetRawPtr() ); // tx0 = Transform for this outline IFSG_SHAPE shape( tx0 ); // shape will hold (a) all vertices and (b) a local list of normals IFSG_FACESET face( shape ); // this face shall represent the top and bottom planes IFSG_COORDS cp( face ); // coordinates for all faces cp.SetCoordsList( nvert, &vlist[0] ); IFSG_COORDINDEX coordIdx( face ); // coordinate indices for top and bottom planes only coordIdx.SetIndices( idxPlane.size(), &idxPlane[0] ); IFSG_NORMALS norms( face ); // normals for the top and bottom planes // set the normals if( aTopPlane ) { for( size_t i = 0; i < nvert; ++i ) norms.AddNormal( 0.0, 0.0, 1.0 ); } else { for( size_t i = 0; i < nvert; ++i ) norms.AddNormal( 0.0, 0.0, -1.0 ); } // assign a color from the palette SGNODE* modelColor = getSGColor( colorID ); if( NULL != modelColor ) { if( NULL == S3D::GetSGNodeParent( modelColor ) ) shape.AddChildNode( modelColor ); else shape.AddRefNode( modelColor ); } } static void create_vrml_shell( IFSG_TRANSFORM& PcbOutput, VRML_COLOR_INDEX colorID, VRML_LAYER* layer, double top_z, double bottom_z ) { std::vector< double > vertices; std::vector< int > idxPlane; std::vector< int > idxSide; if( top_z < bottom_z ) { double tmp = top_z; top_z = bottom_z; bottom_z = tmp; } if( !( *layer ).Get3DTriangles( vertices, idxPlane, idxSide, top_z, bottom_z ) || idxPlane.empty() || idxSide.empty() ) { return; } if( ( idxPlane.size() % 3 ) || ( idxSide.size() % 3 ) ) { throw( std::runtime_error( "[BUG] index lists are not a multiple of 3 (not a " "triangle list)" ) ); } std::vector< SGPOINT > vlist; size_t nvert = vertices.size() / 3; size_t j = 0; for( size_t i = 0; i < nvert; ++i, j+= 3 ) vlist.emplace_back( vertices[j], vertices[j+1], vertices[j+2] ); // create the intermediate scenegraph IFSG_TRANSFORM tx0( PcbOutput.GetRawPtr() ); // tx0 = Transform for this outline IFSG_SHAPE shape( tx0 ); // shape will hold (a) all vertices and (b) a local list of normals IFSG_FACESET face( shape ); // this face shall represent the top and bottom planes IFSG_COORDS cp( face ); // coordinates for all faces cp.SetCoordsList( nvert, &vlist[0] ); IFSG_COORDINDEX coordIdx( face ); // coordinate indices for top and bottom planes only coordIdx.SetIndices( idxPlane.size(), &idxPlane[0] ); IFSG_NORMALS norms( face ); // normals for the top and bottom planes // number of TOP (and bottom) vertices j = nvert / 2; // set the TOP normals for( size_t i = 0; i < j; ++i ) norms.AddNormal( 0.0, 0.0, 1.0 ); // set the BOTTOM normals for( size_t i = 0; i < j; ++i ) norms.AddNormal( 0.0, 0.0, -1.0 ); // assign a color from the palette SGNODE* modelColor = getSGColor( colorID ); if( NULL != modelColor ) { if( NULL == S3D::GetSGNodeParent( modelColor ) ) shape.AddChildNode( modelColor ); else shape.AddRefNode( modelColor ); } // create a second shape describing the vertical walls of the extrusion // using per-vertex-per-face-normals shape.NewNode( tx0 ); shape.AddRefNode( modelColor ); // set the color to be the same as the top/bottom face.NewNode( shape ); cp.NewNode( face ); // new vertex list norms.NewNode( face ); // new normals list coordIdx.NewNode( face ); // new index list // populate the new per-face vertex list and its indices and normals std::vector< int >::iterator sI = idxSide.begin(); std::vector< int >::iterator eI = idxSide.end(); size_t sidx = 0; // index to the new coord set SGPOINT p1, p2, p3; SGVECTOR vnorm; while( sI != eI ) { p1 = vlist[*sI]; cp.AddCoord( p1 ); ++sI; p2 = vlist[*sI]; cp.AddCoord( p2 ); ++sI; p3 = vlist[*sI]; cp.AddCoord( p3 ); ++sI; vnorm.SetVector( S3D::CalcTriNorm( p1, p2, p3 ) ); norms.AddNormal( vnorm ); norms.AddNormal( vnorm ); norms.AddNormal( vnorm ); coordIdx.AddIndex( (int)sidx ); ++sidx; coordIdx.AddIndex( (int)sidx ); ++sidx; coordIdx.AddIndex( (int)sidx ); ++sidx; } }