/* * This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 2016-2018 CERN * @author Tomasz Wlostowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #ifdef PROFILE #include #endif bool CN_CONNECTIVITY_ALGO::Remove( BOARD_ITEM* aItem ) { markItemNetAsDirty( aItem ); switch( aItem->Type() ) { case PCB_MODULE_T: for( auto pad : static_cast( aItem ) -> Pads() ) { m_itemMap[ static_cast( pad ) ].MarkItemsAsInvalid(); m_itemMap.erase( static_cast( pad ) ); } m_itemList.SetDirty( true ); break; case PCB_PAD_T: m_itemMap[ static_cast( aItem ) ].MarkItemsAsInvalid(); m_itemMap.erase( static_cast( aItem ) ); m_itemList.SetDirty( true ); break; case PCB_TRACE_T: m_itemMap[ static_cast( aItem ) ].MarkItemsAsInvalid(); m_itemMap.erase( static_cast( aItem ) ); m_itemList.SetDirty( true ); break; case PCB_VIA_T: m_itemMap[ static_cast( aItem ) ].MarkItemsAsInvalid(); m_itemMap.erase( static_cast( aItem ) ); m_itemList.SetDirty( true ); break; case PCB_ZONE_AREA_T: { m_itemMap[ static_cast( aItem ) ].MarkItemsAsInvalid(); m_itemMap.erase ( static_cast( aItem ) ); m_itemList.SetDirty( true ); break; } default: return false; } // Once we delete an item, it may connect between lists, so mark both as potentially invalid m_itemList.SetHasInvalid( true ); return true; } void CN_CONNECTIVITY_ALGO::markItemNetAsDirty( const BOARD_ITEM* aItem ) { if( aItem->IsConnected() ) { auto citem = static_cast( aItem ); MarkNetAsDirty( citem->GetNetCode() ); } else { if( aItem->Type() == PCB_MODULE_T ) { auto mod = static_cast ( aItem ); for( auto pad : mod->Pads() ) MarkNetAsDirty( pad->GetNetCode() ); } } } bool CN_CONNECTIVITY_ALGO::Add( BOARD_ITEM* aItem ) { if( !aItem->IsOnCopperLayer() ) return false; markItemNetAsDirty ( aItem ); switch( aItem->Type() ) { case PCB_NETINFO_T: { MarkNetAsDirty( static_cast( aItem )->GetNet() ); break; } case PCB_MODULE_T: for( auto pad : static_cast( aItem ) -> Pads() ) { if( m_itemMap.find( pad ) != m_itemMap.end() ) return false; add( m_itemList, pad ); } break; case PCB_PAD_T: if( m_itemMap.find ( static_cast( aItem ) ) != m_itemMap.end() ) return false; add( m_itemList, static_cast( aItem ) ); break; case PCB_TRACE_T: { if( m_itemMap.find( static_cast( aItem ) ) != m_itemMap.end() ) return false; add( m_itemList, static_cast( aItem ) ); break; } case PCB_VIA_T: if( m_itemMap.find( static_cast( aItem ) ) != m_itemMap.end() ) return false; add( m_itemList, static_cast( aItem ) ); break; case PCB_ZONE_AREA_T: { auto zone = static_cast( aItem ); if( m_itemMap.find( static_cast( aItem ) ) != m_itemMap.end() ) return false; m_itemMap[zone] = ITEM_MAP_ENTRY(); for( auto zitem : m_itemList.Add( zone ) ) m_itemMap[zone].Link(zitem); break; } default: return false; } return true; } void CN_CONNECTIVITY_ALGO::searchConnections() { #ifdef CONNECTIVITY_DEBUG printf("Search start\n"); #endif #ifdef PROFILE PROF_COUNTER garbage_collection( "garbage-collection" ); #endif std::vector garbage; garbage.reserve( 1024 ); m_itemList.RemoveInvalidItems( garbage ); for( auto item : garbage ) delete item; #ifdef PROFILE garbage_collection.Show(); PROF_COUNTER search_basic( "search-basic" ); #endif std::vector dirtyItems; std::copy_if( m_itemList.begin(), m_itemList.end(), std::back_inserter( dirtyItems ), [] ( CN_ITEM* aItem ) { return aItem->Dirty(); } ); if( m_progressReporter ) { m_progressReporter->SetMaxProgress( dirtyItems.size() ); m_progressReporter->KeepRefreshing(); } if( m_itemList.IsDirty() ) { size_t parallelThreadCount = std::min( std::thread::hardware_concurrency(), ( dirtyItems.size() + 7 ) / 8 ); std::atomic nextItem( 0 ); std::vector> returns( parallelThreadCount ); auto conn_lambda = [&nextItem, &dirtyItems] ( CN_LIST* aItemList, PROGRESS_REPORTER* aReporter) -> size_t { for( size_t i = nextItem++; i < dirtyItems.size(); i = nextItem++ ) { CN_VISITOR visitor( dirtyItems[i] ); aItemList->FindNearby( dirtyItems[i], visitor ); if( aReporter ) aReporter->AdvanceProgress(); } return 1; }; if( parallelThreadCount <= 1 ) conn_lambda( &m_itemList, m_progressReporter ); else { for( size_t ii = 0; ii < parallelThreadCount; ++ii ) returns[ii] = std::async( std::launch::async, conn_lambda, &m_itemList, m_progressReporter ); for( size_t ii = 0; ii < parallelThreadCount; ++ii ) { // Here we balance returns with a 100ms timeout to allow UI updating std::future_status status; do { if( m_progressReporter ) m_progressReporter->KeepRefreshing(); status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) ); } while( status != std::future_status::ready ); } } if( m_progressReporter ) m_progressReporter->KeepRefreshing(); } #ifdef PROFILE search_basic.Show(); #endif m_itemList.ClearDirtyFlags(); #ifdef CONNECTIVITY_DEBUG printf("Search end\n"); #endif } const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode ) { constexpr KICAD_T types[] = { PCB_TRACE_T, PCB_PAD_T, PCB_VIA_T, PCB_ZONE_AREA_T, PCB_MODULE_T, EOT }; constexpr KICAD_T no_zones[] = { PCB_TRACE_T, PCB_PAD_T, PCB_VIA_T, PCB_MODULE_T, EOT }; if( aMode == CSM_PROPAGATE ) return SearchClusters( aMode, no_zones, -1 ); else return SearchClusters( aMode, types, -1 ); } const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode, const KICAD_T aTypes[], int aSingleNet ) { bool withinAnyNet = ( aMode != CSM_PROPAGATE ); std::deque Q; CN_ITEM* head = nullptr; CLUSTERS clusters; if( m_itemList.IsDirty() ) searchConnections(); auto addToSearchList = [&head, withinAnyNet, aSingleNet, aTypes] ( CN_ITEM *aItem ) { if( withinAnyNet && aItem->Net() <= 0 ) return; if( !aItem->Valid() ) return; if( aSingleNet >=0 && aItem->Net() != aSingleNet ) return; bool found = false; for( int i = 0; aTypes[i] != EOT; i++ ) { if( aItem->Parent()->Type() == aTypes[i] ) { found = true; break; } } if( !found ) return; aItem->ListClear(); aItem->SetVisited( false ); if( !head ) head = aItem; else head->ListInsert( aItem ); }; std::for_each( m_itemList.begin(), m_itemList.end(), addToSearchList ); while( head ) { CN_CLUSTER_PTR cluster ( new CN_CLUSTER() ); Q.clear(); CN_ITEM* root = head; root->SetVisited ( true ); head = root->ListRemove(); Q.push_back( root ); while( Q.size() ) { CN_ITEM* current = Q.front(); Q.pop_front(); cluster->Add( current ); for( auto n : current->ConnectedItems() ) { if( withinAnyNet && n->Net() != root->Net() ) continue; if( !n->Visited() && n->Valid() ) { n->SetVisited( true ); Q.push_back( n ); head = n->ListRemove(); } } } clusters.push_back( cluster ); } std::sort( clusters.begin(), clusters.end(), []( CN_CLUSTER_PTR a, CN_CLUSTER_PTR b ) { return a->OriginNet() < b->OriginNet(); } ); #ifdef CONNECTIVITY_DEBUG printf("Active clusters: %d\n", clusters.size() ); for( auto cl : clusters ) { printf( "Net %d\n", cl->OriginNet() ); cl->Dump(); } #endif return clusters; } void CN_CONNECTIVITY_ALGO::Build( BOARD* aBoard ) { for( int i = 0; iGetAreaCount(); i++ ) { auto zone = aBoard->GetArea( i ); Add( zone ); } for( auto tv : aBoard->Tracks() ) Add( tv ); for( auto mod : aBoard->Modules() ) { for( auto pad : mod->Pads() ) Add( pad ); } /*wxLogTrace( "CN", "zones : %lu, pads : %lu vias : %lu tracks : %lu\n", m_zoneList.Size(), m_padList.Size(), m_viaList.Size(), m_trackList.Size() );*/ } void CN_CONNECTIVITY_ALGO::Build( const std::vector& aItems ) { for( auto item : aItems ) { switch( item->Type() ) { case PCB_TRACE_T: case PCB_VIA_T: case PCB_PAD_T: Add( item ); break; case PCB_MODULE_T: { for( auto pad : static_cast( item )->Pads() ) { Add( pad ); } break; } default: break; } } } void CN_CONNECTIVITY_ALGO::propagateConnections( BOARD_COMMIT* aCommit ) { for( const auto& cluster : m_connClusters ) { if( cluster->IsConflicting() ) { wxLogTrace( "CN", "Conflicting nets in cluster %p\n", cluster.get() ); } else if( cluster->IsOrphaned() ) { wxLogTrace( "CN", "Skipping orphaned cluster %p [net: %s]\n", cluster.get(), (const char*) cluster->OriginNetName().c_str() ); } else if( cluster->HasValidNet() ) { // normal cluster: just propagate from the pads int n_changed = 0; for( auto item : *cluster ) { if( item->CanChangeNet() ) { if( item->Valid() && item->Parent()->GetNetCode() != cluster->OriginNet() ) { MarkNetAsDirty( item->Parent()->GetNetCode() ); MarkNetAsDirty( cluster->OriginNet() ); if( aCommit ) aCommit->Modify( item->Parent() ); item->Parent()->SetNetCode( cluster->OriginNet() ); n_changed++; } } } if( n_changed ) wxLogTrace( "CN", "Cluster %p : net : %d %s\n", cluster.get(), cluster->OriginNet(), (const char*) cluster->OriginNetName().c_str() ); else wxLogTrace( "CN", "Cluster %p : nothing to propagate\n", cluster.get() ); } else { wxLogTrace( "CN", "Cluster %p : connected to unused net\n", cluster.get() ); } } } void CN_CONNECTIVITY_ALGO::PropagateNets( BOARD_COMMIT* aCommit ) { m_connClusters = SearchClusters( CSM_PROPAGATE ); propagateConnections( aCommit ); } void CN_CONNECTIVITY_ALGO::FindIsolatedCopperIslands( ZONE_CONTAINER* aZone, std::vector& aIslands ) { if( aZone->GetFilledPolysList().IsEmpty() ) return; aIslands.clear(); Remove( aZone ); Add( aZone ); m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK ); for( const auto& cluster : m_connClusters ) { if( cluster->Contains( aZone ) && cluster->IsOrphaned() ) { for( auto z : *cluster ) { if( z->Parent() == aZone ) { aIslands.push_back( static_cast(z)->SubpolyIndex() ); } } } } wxLogTrace( "CN", "Found %u isolated islands\n", (unsigned)aIslands.size() ); } void CN_CONNECTIVITY_ALGO::FindIsolatedCopperIslands( std::vector& aZones ) { for ( auto& z : aZones ) Remove( z.m_zone ); for ( auto& z : aZones ) { if( !z.m_zone->GetFilledPolysList().IsEmpty() ) Add( z.m_zone ); } m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK ); for ( auto& zone : aZones ) { if( zone.m_zone->GetFilledPolysList().IsEmpty() ) continue; for( const auto& cluster : m_connClusters ) { if( cluster->Contains( zone.m_zone ) && cluster->IsOrphaned() ) { for( auto z : *cluster ) { if( z->Parent() == zone.m_zone ) { zone.m_islands.push_back( static_cast(z)->SubpolyIndex() ); } } } } } } const CN_CONNECTIVITY_ALGO::CLUSTERS& CN_CONNECTIVITY_ALGO::GetClusters() { m_ratsnestClusters = SearchClusters( CSM_RATSNEST ); return m_ratsnestClusters; } void CN_CONNECTIVITY_ALGO::MarkNetAsDirty( int aNet ) { if( aNet < 0 ) return; if( (int) m_dirtyNets.size() <= aNet ) { int lastNet = m_dirtyNets.size() - 1; if( lastNet < 0 ) lastNet = 0; m_dirtyNets.resize( aNet + 1 ); for( int i = lastNet; i < aNet + 1; i++ ) m_dirtyNets[i] = true; } m_dirtyNets[aNet] = true; } void CN_VISITOR::checkZoneItemConnection( CN_ZONE* aZone, CN_ITEM* aItem ) { auto zoneItem = static_cast ( aZone ); if( zoneItem->Net() != aItem->Net() && !aItem->CanChangeNet() ) return; if( zoneItem->ContainsPoint( aItem->GetAnchor( 0 ) ) || ( aItem->Parent()->Type() == PCB_TRACE_T && zoneItem->ContainsPoint( aItem->GetAnchor( 1 ) ) ) ) { zoneItem->Connect( aItem ); aItem->Connect( zoneItem ); } } void CN_VISITOR::checkZoneZoneConnection( CN_ZONE* aZoneA, CN_ZONE* aZoneB ) { const auto refParent = static_cast( aZoneA->Parent() ); const auto testedParent = static_cast( aZoneB->Parent() ); if( testedParent->Type () != PCB_ZONE_AREA_T ) return; if( aZoneB == aZoneA || refParent == testedParent ) return; if( aZoneB->Net() != aZoneA->Net() ) return; // we only test zones belonging to the same net const auto& outline = refParent->GetFilledPolysList().COutline( aZoneA->SubpolyIndex() ); for( int i = 0; i < outline.PointCount(); i++ ) { if( aZoneB->ContainsPoint( outline.CPoint( i ) ) ) { aZoneA->Connect( aZoneB ); aZoneB->Connect( aZoneA ); return; } } const auto& outline2 = testedParent->GetFilledPolysList().COutline( aZoneB->SubpolyIndex() ); for( int i = 0; i < outline2.PointCount(); i++ ) { if( aZoneA->ContainsPoint( outline2.CPoint( i ) ) ) { aZoneA->Connect( aZoneB ); aZoneB->Connect( aZoneA ); return; } } } bool CN_VISITOR::operator()( CN_ITEM* aCandidate ) { const auto parentA = aCandidate->Parent(); const auto parentB = m_item->Parent(); if( !aCandidate->Valid() || !m_item->Valid() ) return true; if( parentA == parentB ) return true; if( !( parentA->GetLayerSet() & parentB->GetLayerSet() ).any() ) return true; // If both m_item and aCandidate are marked dirty, they will both be searched // Since we are reciprocal in our connection, we arbitrarily pick one of the connections // to conduct the expensive search if( aCandidate->Dirty() && aCandidate < m_item ) return true; // We should handle zone-zone connection separately if ( parentA->Type() == PCB_ZONE_AREA_T && parentB->Type() == PCB_ZONE_AREA_T ) { checkZoneZoneConnection( static_cast( m_item ), static_cast( aCandidate ) ); return true; } if( parentA->Type() == PCB_ZONE_AREA_T ) { checkZoneItemConnection( static_cast( aCandidate ), m_item ); return true; } if( parentB->Type() == PCB_ZONE_AREA_T ) { checkZoneItemConnection( static_cast( m_item ), aCandidate ); return true; } // Items do not necessarily have reciprocity as we only check for anchors // therefore, we check HitTest both directions A->B & B->A // TODO: Check for collision geometry on extended features wxPoint ptA1( aCandidate->GetAnchor( 0 ).x, aCandidate->GetAnchor( 0 ).y ); wxPoint ptA2( aCandidate->GetAnchor( 1 ).x, aCandidate->GetAnchor( 1 ).y ); wxPoint ptB1( m_item->GetAnchor( 0 ).x, m_item->GetAnchor( 0 ).y ); wxPoint ptB2( m_item->GetAnchor( 1 ).x, m_item->GetAnchor( 1 ).y ); if( parentA->HitTest( ptB1 ) || parentB->HitTest( ptA1 ) || ( parentA->Type() == PCB_TRACE_T && parentB->HitTest( ptA2 ) ) || ( parentB->Type() == PCB_TRACE_T && parentA->HitTest( ptB2 ) ) ) { m_item->Connect( aCandidate ); aCandidate->Connect( m_item ); } return true; }; void CN_CONNECTIVITY_ALGO::Clear() { m_ratsnestClusters.clear(); m_connClusters.clear(); m_itemMap.clear(); m_itemList.Clear(); } void CN_CONNECTIVITY_ALGO::ForEachItem( const std::function& aFunc ) { for( auto item : m_itemList ) aFunc( *item ); } void CN_CONNECTIVITY_ALGO::ForEachAnchor( const std::function& aFunc ) { ForEachItem( [aFunc] ( CN_ITEM& item ) { for( const auto& anchor : item.Anchors() ) aFunc( *anchor ); } ); } void CN_CONNECTIVITY_ALGO::SetProgressReporter( PROGRESS_REPORTER* aReporter ) { m_progressReporter = aReporter; }