/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2017-2023 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include // for KiROUND #include #include #include #include #include /** * Function gen_arc * generates an arc using arc approximation by lines: * Center aCenter * Angle "angle" (in 0.1 deg) * @param aBuffer = a buffer to store points. * @param aStartPoint = starting point of arc. * @param aCenter = arc centre. * @param a_ArcAngle = arc length in 0.1 degrees. */ static void gen_arc( std::vector& aBuffer, const VECTOR2I& aStartPoint, const VECTOR2I& aCenter, const EDA_ANGLE& a_ArcAngle ) { auto first_point = aStartPoint - aCenter; auto radius = KiROUND( EuclideanNorm( first_point ) ); int seg_count = GetArcToSegmentCount( radius, ARC_HIGH_DEF, a_ArcAngle ); double increment_angle = a_ArcAngle.AsRadians() / seg_count; // Creates nb_seg point to approximate arc by segments: for( int ii = 1; ii <= seg_count; ii++ ) { double rot_angle = increment_angle * ii; double fcos = cos( rot_angle ); double fsin = sin( rot_angle ); VECTOR2I currpt; // Rotate current point: currpt.x = KiROUND( ( first_point.x * fcos + first_point.y * fsin ) ); currpt.y = KiROUND( ( first_point.y * fcos - first_point.x * fsin ) ); auto corner = aCenter + currpt; aBuffer.push_back( corner ); } } enum class INDUCTOR_S_SHAPE_RESULT { OK, /// S-shape constructed TOO_LONG, /// Requested length too long TOO_SHORT, /// Requested length too short NO_REPR, /// Requested length can't be represented }; /** * Function BuildCornersList_S_Shape * Create a path like a S-shaped coil * @param aBuffer = a buffer where to store points (ends of segments) * @param aStartPoint = starting point of the path * @param aEndPoint = ending point of the path * @param aLength = full length of the path * @param aWidth = segment width */ static INDUCTOR_S_SHAPE_RESULT BuildCornersList_S_Shape( std::vector& aBuffer, const VECTOR2I& aStartPoint, const VECTOR2I& aEndPoint, int aLength, int aWidth ) { /* We must determine: * segm_count = number of segments perpendicular to the direction * segm_len = length of a strand * radius = radius of rounded parts of the coil * stubs_len = length of the 2 stubs( segments parallel to the direction) * connecting the start point to the start point of the S shape * and the ending point to the end point of the S shape * The equations are (assuming the area size of the entire shape is Size: * Size.x = 2 * radius + segm_len * Size.y = (segm_count + 2 ) * 2 * radius + 2 * stubs_len * aInductorPattern.m_length = 2 * delta // connections to the coil * + (segm_count-2) * segm_len // length of the strands except 1st and last * + (segm_count) * (PI * radius) // length of rounded * segm_len + / 2 - radius * 2) // length of 1st and last bit * * The constraints are: * segm_count >= 2 * radius < m_Size.x * Size.y = (radius * 4) + (2 * stubs_len) * segm_len > radius * 2 * * The calculation is conducted in the following way: * first: * segm_count = 2 * radius = 4 * Size.x (arbitrarily fixed value) * Then: * Increasing the number of segments to the desired length * (radius decreases if necessary) */ wxPoint size; // This scale factor adjusts the arc length to handle // the arc to segment approximation. // because we use SEGM_COUNT_PER_360DEG segment to approximate a circle, // the trace len must be corrected when calculated using arcs // this factor adjust calculations and must be changed if SEGM_COUNT_PER_360DEG is modified // because trace using segment is shorter the corresponding arc // ADJUST_SIZE is the ratio between tline len and the arc len for an arc // of 360/ADJUST_SIZE angle #define ADJUST_SIZE 0.988 auto pt = aEndPoint - aStartPoint; EDA_ANGLE angle( pt ); int min_len = KiROUND( EuclideanNorm( pt ) ); int segm_len = 0; // length of segments int full_len; // full len of shape (sum of length of all segments + arcs) angle = -angle; /* Note: calculations are made for a vertical coil (more easy calculations) * and after points are rotated to their actual position * So the main direction is the Y axis. * the 2 stubs are on the Y axis * the others segments are parallel to the X axis. */ // Calculate the size of area (for a vertical shape) size.x = min_len / 2; size.y = min_len; // Choose a reasonable starting value for the radius of the arcs. int radius = std::min( aWidth * 5, size.x / 4 ); int segm_count; // number of full len segments // the half size segments (first and last segment) are not counted here int stubs_len = 0; // length of first or last segment (half size of others segments) for( segm_count = 0; ; segm_count++ ) { stubs_len = ( size.y - ( radius * 2 * (segm_count + 2 ) ) ) / 2; if( stubs_len < size.y / 10 ) // Reduce radius. { stubs_len = size.y / 10; radius = ( size.y - (2 * stubs_len) ) / ( 2 * (segm_count + 2) ); if( radius < aWidth ) // Radius too small. { // Unable to create line: Requested length value is too large for room return INDUCTOR_S_SHAPE_RESULT::TOO_LONG; } } segm_len = size.x - ( radius * 2 ); full_len = 2 * stubs_len; // Length of coil connections. full_len += segm_len * segm_count; // Length of full length segments. full_len += KiROUND( ( segm_count + 2 ) * M_PI * ADJUST_SIZE * radius ); // Ard arcs len full_len += segm_len - (2 * radius); // Length of first and last segments // (half size segments len = segm_len/2 - radius). if( full_len >= aLength ) break; } // Adjust len by adjusting segm_len: int delta_size = full_len - aLength; // reduce len of the segm_count segments + 2 half size segments (= 1 full size segment) segm_len -= delta_size / (segm_count + 1); // at this point, it could still be that the requested length is too // short (because 4 quarter-circles are too long) // to fix this is a relatively complex numerical problem which probably // needs a refactor in this area. For now, just reject these cases: { const int min_total_length = 2 * stubs_len + 2 * M_PI * ADJUST_SIZE * radius; if( min_total_length > aLength ) { // we can't express this inductor with 90-deg arcs of this radius return INDUCTOR_S_SHAPE_RESULT::TOO_SHORT; } } if( segm_len - 2 * radius < 0 ) { // we can't represent this exact requested length with this number // of segments (using the current algorithm). This stems from when // you add a segment, you also add another half-circle, so there's a // little bit of "dead" space. // It's a bit ugly to just reject the input, as it might be possible // to tweak the radius, but, again, that probably needs a refactor. return INDUCTOR_S_SHAPE_RESULT::NO_REPR; } // Generate first line (the first stub) and first arc (90 deg arc) pt = aStartPoint; aBuffer.push_back( pt ); pt.y += stubs_len; aBuffer.push_back( pt ); auto centre = pt; centre.x -= radius; gen_arc( aBuffer, pt, centre, -ANGLE_90 ); pt = aBuffer.back(); int half_size_seg_len = segm_len / 2 - radius; if( half_size_seg_len ) { pt.x -= half_size_seg_len; aBuffer.push_back( pt ); } // Create shape. int ii; int sign = 1; segm_count += 1; // increase segm_count to create the last half_size segment for( ii = 0; ii < segm_count; ii++ ) { if( ii & 1 ) // odd order arcs are greater than 0 sign = -1; else sign = 1; centre = pt; centre.y += radius; gen_arc( aBuffer, pt, centre, ANGLE_180 * sign ); pt = aBuffer.back(); pt.x += segm_len * sign; aBuffer.push_back( pt ); } // The last point is false: // it is the end of a full size segment, but must be // the end of the second half_size segment. Change it. sign *= -1; aBuffer.back().x = aStartPoint.x + radius * sign; // create last arc pt = aBuffer.back(); centre = pt; centre.y += radius; gen_arc( aBuffer, pt, centre, ANGLE_90 * sign ); // Rotate point angle += ANGLE_90; for( unsigned jj = 0; jj < aBuffer.size(); jj++ ) RotatePoint( aBuffer[jj], aStartPoint, angle ); // push last point (end point) aBuffer.push_back( aEndPoint ); return INDUCTOR_S_SHAPE_RESULT::OK; } void MICROWAVE_TOOL::createInductorBetween( const VECTOR2I& aStart, const VECTOR2I& aEnd ) { PCB_EDIT_FRAME& editFrame = *getEditFrame(); MICROWAVE_INDUCTOR_PATTERN pattern; pattern.m_Width = board()->GetDesignSettings().GetCurrentTrackWidth(); pattern.m_Start = { aStart.x, aStart.y }; pattern.m_End = { aEnd.x, aEnd.y }; wxString errorMessage; auto inductorFP = std::unique_ptr( createMicrowaveInductor( pattern, errorMessage ) ); // on any error, report if we can if ( !inductorFP || !errorMessage.IsEmpty() ) { if ( !errorMessage.IsEmpty() ) editFrame.ShowInfoBarError( errorMessage ); } else { // at this point, we can save the footprint m_toolMgr->RunAction( PCB_ACTIONS::selectItem, true, inductorFP.get() ); BOARD_COMMIT commit( this ); commit.Add( inductorFP.release() ); commit.Push( _("Add microwave inductor" ) ); } } FOOTPRINT* MICROWAVE_TOOL::createMicrowaveInductor( MICROWAVE_INDUCTOR_PATTERN& aInductorPattern, wxString& aErrorMessage ) { /* Build a microwave inductor footprint. * - Length Mself.lng * - Extremities Mself.m_Start and Mself.m_End * We must determine: * Mself.nbrin = number of segments perpendicular to the direction * (The coil nbrin will demicercles + 1 + 2 1 / 4 circle) * Mself.lbrin = length of a strand * Mself.radius = radius of rounded parts of the coil * Mself.delta = segments extremities connection between him and the coil even * * The equations are * Mself.m_Size.x = 2 * Mself.radius + Mself.lbrin * Mself.m_Size.y * Mself.delta = 2 + 2 * Mself.nbrin * Mself.radius * Mself.lng = 2 * Mself.delta / / connections to the coil + (Mself.nbrin-2) * Mself.lbrin / / length of the strands except 1st and last + (Mself.nbrin 1) * (PI * Mself.radius) / / length of rounded * Mself.lbrin + / 2 - Melf.radius * 2) / / length of 1st and last bit * * The constraints are: * Nbrin >= 2 * Mself.radius < Mself.m_Size.x * Mself.m_Size.y = Mself.radius * 4 + 2 * Mself.raccord * Mself.lbrin> Mself.radius * 2 * * The calculation is conducted in the following way: * Initially: * Nbrin = 2 * Radius = 4 * m_Size.x (arbitrarily fixed value) * Then: * Increasing the number of segments to the desired length * (Radius decreases if necessary) */ PAD* pad; PCB_EDIT_FRAME* editFrame = getEditFrame(); VECTOR2I pt = aInductorPattern.m_End - aInductorPattern.m_Start; int min_len = KiROUND( EuclideanNorm( pt ) ); aInductorPattern.m_Length = min_len; // Enter the desired length. wxString msg = editFrame->StringFromValue( aInductorPattern.m_Length ); WX_TEXT_ENTRY_DIALOG dlg( editFrame, _( "Length of Trace:" ), wxEmptyString, msg ); if( dlg.ShowQuasiModal() != wxID_OK ) return nullptr; // canceled by user aInductorPattern.m_Length = editFrame->ValueFromString( dlg.GetValue() ); // Control values (ii = minimum length) if( aInductorPattern.m_Length < min_len ) { aErrorMessage = _( "Requested length < minimum length" ); return nullptr; } // Calculate the elements. std::vector buffer; const INDUCTOR_S_SHAPE_RESULT res = BuildCornersList_S_Shape( buffer, aInductorPattern.m_Start, aInductorPattern.m_End, aInductorPattern.m_Length, aInductorPattern.m_Width ); switch( res ) { case INDUCTOR_S_SHAPE_RESULT::TOO_LONG: aErrorMessage = _( "Requested length too large" ); return nullptr; case INDUCTOR_S_SHAPE_RESULT::TOO_SHORT: aErrorMessage = _( "Requested length too small" ); return nullptr; case INDUCTOR_S_SHAPE_RESULT::NO_REPR: aErrorMessage = _( "Requested length can't be represented" ); return nullptr; case INDUCTOR_S_SHAPE_RESULT::OK: break; } // Generate footprint. the value is also used as footprint name. msg = wxT( "L" ); WX_TEXT_ENTRY_DIALOG cmpdlg( editFrame, _( "Component Value:" ), wxEmptyString, msg ); cmpdlg.SetTextValidator( FOOTPRINT_NAME_VALIDATOR( &msg ) ); if( ( cmpdlg.ShowQuasiModal() != wxID_OK ) || msg.IsEmpty() ) return nullptr; // Aborted by user FOOTPRINT* footprint = editFrame->CreateNewFootprint( msg, true ); footprint->SetFPID( LIB_ID( wxEmptyString, wxT( "mw_inductor" ) ) ); footprint->SetAttributes( FP_EXCLUDE_FROM_POS_FILES | FP_EXCLUDE_FROM_BOM ); footprint->ClearFlags(); footprint->SetPosition( aInductorPattern.m_End ); // Generate segments for( unsigned jj = 1; jj < buffer.size(); jj++ ) { PCB_SHAPE* seg = new PCB_SHAPE( footprint, SHAPE_T::SEGMENT ); seg->SetStart( buffer[jj - 1] ); seg->SetEnd( buffer[jj] ); seg->SetStroke( STROKE_PARAMS( aInductorPattern.m_Width, PLOT_DASH_TYPE::SOLID ) ); seg->SetLayer( footprint->GetLayer() ); footprint->Add( seg ); } // Place a pad on each end of coil. pad = new PAD( footprint ); footprint->Add( pad ); pad->SetNumber( wxT( "1" ) ); pad->SetPosition( aInductorPattern.m_End ); pad->SetSize( VECTOR2I( aInductorPattern.m_Width, aInductorPattern.m_Width ) ); pad->SetLayerSet( LSET( footprint->GetLayer() ) ); pad->SetAttribute( PAD_ATTRIB::SMD ); pad->SetShape( PAD_SHAPE::CIRCLE ); PAD* newpad = new PAD( *pad ); const_cast( newpad->m_Uuid ) = KIID(); footprint->Add( newpad ); pad = newpad; pad->SetNumber( wxT( "2" ) ); pad->SetPosition( aInductorPattern.m_Start ); // Modify text positions. VECTOR2I refPos( ( aInductorPattern.m_Start.x + aInductorPattern.m_End.x ) / 2, ( aInductorPattern.m_Start.y + aInductorPattern.m_End.y ) / 2 ); VECTOR2I valPos = refPos; refPos.y -= footprint->Reference().GetTextSize().y; footprint->Reference().SetPosition( refPos ); valPos.y += footprint->Value().GetTextSize().y; footprint->Value().SetPosition( valPos ); return footprint; }