/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 1992-2023 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifndef PAD_H #define PAD_H #include #include #include #include #include #include #include #include #include class PCB_SHAPE; class PARAM_CFG; class SHAPE; class SHAPE_SEGMENT; enum CUST_PAD_SHAPE_IN_ZONE { CUST_PAD_SHAPE_IN_ZONE_OUTLINE, CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL }; class LINE_READER; class EDA_3D_CANVAS; class FOOTPRINT; namespace KIGFX { class VIEW; } class PAD : public BOARD_CONNECTED_ITEM { public: PAD( FOOTPRINT* parent ); // Copy constructor & operator= are needed because the list of basic shapes // must be duplicated in copy. PAD( const PAD& aPad ); PAD& operator=( const PAD &aOther ); /* * Default layers used for pads, according to the pad type. * * This is default values only, they can be changed for a given pad. */ static LSET PTHMask(); ///< layer set for a through hole pad static LSET SMDMask(); ///< layer set for a SMD pad on Front layer static LSET ConnSMDMask(); ///< layer set for a SMD pad on Front layer ///< used for edge board connectors static LSET UnplatedHoleMask(); ///< layer set for a mechanical unplated through hole pad static LSET ApertureMask(); ///< layer set for an aperture pad static inline bool ClassOf( const EDA_ITEM* aItem ) { return aItem && PCB_PAD_T == aItem->Type(); } bool IsType( const std::vector& aScanTypes ) const override { if( BOARD_CONNECTED_ITEM::IsType( aScanTypes ) ) return true; for( KICAD_T scanType : aScanTypes ) { if( HasHole() ) { if( scanType == PCB_LOCATE_HOLE_T ) return true; else if( scanType == PCB_LOCATE_PTH_T && m_attribute != PAD_ATTRIB::NPTH ) return true; else if( scanType == PCB_LOCATE_NPTH_T && m_attribute == PAD_ATTRIB::NPTH ) return true; } } return false; } bool HasHole() const override { return GetDrillSizeX() > 0 && GetDrillSizeY() > 0; } FOOTPRINT* GetParent() const; wxString GetParentAsString() const; bool IsLocked() const override; /** * Import the pad settings from \a aMasterPad. * * The result is "this" has the same settings (sizes, shapes ... ) as \a aMasterPad. * * @param aMasterPad the template pad. */ void ImportSettingsFrom( const PAD& aMasterPad ); /** * @return true if the pad has a footprint parent flipped on the back/bottom layer. */ bool IsFlipped() const; /** * Set the pad number (note that it can be alphanumeric, such as the array reference "AA12"). */ void SetNumber( const wxString& aNumber ) { m_number = aNumber; } const wxString& GetNumber() const { return m_number; } /** * Indicates whether or not the pad can have a number. (NPTH and SMD aperture pads can not.) */ bool CanHaveNumber() const; /** * Set the pad function (pin name in schematic) */ void SetPinFunction( const wxString& aName ) { m_pinFunction = aName; } const wxString& GetPinFunction() const { return m_pinFunction; } /** * Set the pad electrical type */ void SetPinType( const wxString& aType ) { m_pinType = aType; } const wxString& GetPinType() const { return m_pinType; } /** * Before we had custom pad shapes it was common to have multiple overlapping pads to * represent a more complex shape. */ bool SameLogicalPadAs( const PAD* aOther ) const { // hide tricks behind sensible API return GetParentFootprint() == aOther->GetParentFootprint() && !m_number.IsEmpty() && m_number == aOther->m_number; } /** * @return true if this and \param aOther represent a net-tie. */ bool SharesNetTieGroup( const PAD* aOther ) const; /** * @return true if the pad is associated with an "unconnected" pin (or a no-connect symbol) * and has no net. */ bool IsNoConnectPad() const; /** * @return true if the pad is associated with a "free" pin (not-internally-connected) and has * not yet been assigned another net (ie: by being routed to). */ bool IsFreePad() const; /** * Set the new shape of this pad. */ void SetShape( PAD_SHAPE aShape ) { m_padShape = aShape; SetDirty(); } /** * @return the shape of this pad. */ PAD_SHAPE GetShape() const { return m_padShape; } void SetPosition( const VECTOR2I& aPos ) override { m_pos = aPos; SetDirty(); } VECTOR2I GetPosition() const override { return m_pos; } /** * @return the shape of the anchor pad shape, for custom shaped pads. */ PAD_SHAPE GetAnchorPadShape() const { return m_anchorPadShape; } /** * @return the option for the custom pad shape to use as clearance area in copper zones. */ CUST_PAD_SHAPE_IN_ZONE GetCustomShapeInZoneOpt() const { return m_customShapeClearanceArea; } /** * Set the option for the custom pad shape to use as clearance area in copper zones. * * @param aOption is the clearance area shape CUST_PAD_SHAPE_IN_ZONE option */ void SetCustomShapeInZoneOpt( CUST_PAD_SHAPE_IN_ZONE aOption ) { m_customShapeClearanceArea = aOption; } /** * Set the shape of the anchor pad for custom shaped pads. * * @param aShape is the shape of the anchor pad shape( currently, only #PAD_SHAPE::RECT or * #PAD_SHAPE::CIRCLE. */ void SetAnchorPadShape( PAD_SHAPE aShape ) { m_anchorPadShape = ( aShape == PAD_SHAPE::RECT ) ? PAD_SHAPE::RECT : PAD_SHAPE::CIRCLE; SetDirty(); } /** * @return true if the pad is on any copper layer, false otherwise. */ bool IsOnCopperLayer() const override; void SetY( int y ) { m_pos.y = y; SetDirty(); } void SetX( int x ) { m_pos.x = x; SetDirty(); } void SetSize( const VECTOR2I& aSize ) { m_size = aSize; SetDirty(); } const VECTOR2I& GetSize() const { return m_size; } void SetSizeX( const int aX ) { m_size.x = aX; SetDirty(); } int GetSizeX() const { return m_size.x; } void SetSizeY( const int aY ) { m_size.y = aY; SetDirty(); } int GetSizeY() const { return m_size.y; } void SetDelta( const VECTOR2I& aSize ) { m_deltaSize = aSize; SetDirty(); } const VECTOR2I& GetDelta() const { return m_deltaSize; } void SetDrillSize( const VECTOR2I& aSize ) { m_drill = aSize; SetDirty(); } const VECTOR2I& GetDrillSize() const { return m_drill; } void SetDrillSizeX( const int aX ) { m_drill.x = aX; SetDirty(); } int GetDrillSizeX() const { return m_drill.x; } void SetDrillSizeY( const int aY ) { m_drill.y = aY; SetDirty(); } int GetDrillSizeY() const { return m_drill.y; } void SetOffset( const VECTOR2I& aOffset ) { m_offset = aOffset; SetDirty(); } const VECTOR2I& GetOffset() const { return m_offset; } VECTOR2I GetCenter() const override { return GetPosition(); } /** * Has meaning only for custom shape pads. * add a free shape to the shape list. * the shape can be * - a polygon (outline can have a thickness) * - a thick segment * - a filled circle (thickness == 0) or ring * - a filled rect (thickness == 0) or rectangular outline * - a arc * - a bezier curve */ void AddPrimitivePoly( const SHAPE_POLY_SET& aPoly, int aThickness, bool aFilled ); void AddPrimitivePoly( const std::vector& aPoly, int aThickness, bool aFilled ); void AddPrimitiveSegment( const VECTOR2I& aStart, const VECTOR2I& aEnd, int aThickness ); void AddPrimitiveCircle( const VECTOR2I& aCenter, int aRadius, int aThickness, bool aFilled ); void AddPrimitiveRect( const VECTOR2I& aStart, const VECTOR2I& aEnd, int aThickness, bool aFilled ); void AddPrimitiveArc( const VECTOR2I& aCenter, const VECTOR2I& aStart, const EDA_ANGLE& aArcAngle, int aThickness ); void AddPrimitiveCurve( const VECTOR2I& aStart, const VECTOR2I& aEnd, const VECTOR2I& aCtrl1, const VECTOR2I& aCtrl2, int aThickness ); /** * Has meaning only for custom shape pads. Allows one to specify the box in which to place * the pad number and/or net name (if they are being displayed). */ void AddPrimitiveAnnotationBox( const VECTOR2I& aStart, const VECTOR2I& aEnd ); bool GetBestAnchorPosition( VECTOR2I& aPos ); /** * Merge all basic shapes to a #SHAPE_POLY_SET. * * @note The results are relative to the pad position, orientation 0. * * @param aMergedPolygon will store the final polygon * @param aErrorLoc is used when a circle (or arc) is approximated by segments * = ERROR_INSIDE to build a polygon inside the arc/circle (usual shape to raw/plot) * = ERROR_OUIDE to build a polygon outside the arc/circle * (for instance when building a clearance area) */ void MergePrimitivesAsPolygon( SHAPE_POLY_SET* aMergedPolygon, ERROR_LOC aErrorLoc = ERROR_INSIDE ) const; /** * Clear the basic shapes list. */ void DeletePrimitivesList(); /** * Accessor to the basic shape list for custom-shaped pads. */ const std::vector>& GetPrimitives() const { return m_editPrimitives; } void Flip( const VECTOR2I& VECTOR2I, bool aFlipLeftRight ) override; /** * Flip (mirror) the primitives left to right or top to bottom, around the anchor position * in custom pads. */ void FlipPrimitives( bool aFlipLeftRight ); /** * Clear the current custom shape primitives list and import a new list. Copies the input, * which is not altered. */ void ReplacePrimitives( const std::vector>& aPrimitivesList ); /** * Import a custom shape primitive list (composed of basic shapes) and add items to the * current list. Copies the input, which is not altered. */ void AppendPrimitives( const std::vector>& aPrimitivesList ); /** * Add item to the custom shape primitives list */ void AddPrimitive( PCB_SHAPE* aPrimitive ); /** * Set the rotation angle of the pad. * * If \a aAngle is outside of 0 - 360, then it will be normalized. */ void SetOrientation( const EDA_ANGLE& aAngle ); void SetFPRelativeOrientation( const EDA_ANGLE& aAngle ); /** * Return the rotation angle of the pad. */ EDA_ANGLE GetOrientation() const { return m_orient; } EDA_ANGLE GetFPRelativeOrientation(); // For property system void SetOrientationDegrees( double aOrientation ) { SetOrientation( EDA_ANGLE( aOrientation, DEGREES_T ) ); } double GetOrientationDegrees() const { return m_orient.AsDegrees(); } void SetDrillShape( PAD_DRILL_SHAPE_T aShape ) { m_drillShape = aShape; m_shapesDirty = true; } PAD_DRILL_SHAPE_T GetDrillShape() const { return m_drillShape; } bool IsDirty() const { return m_shapesDirty || m_polyDirty; } void SetDirty() { m_shapesDirty = true; m_polyDirty = true; } void SetLayerSet( LSET aLayers ) override { m_layerMask = aLayers; } LSET GetLayerSet() const override { return m_layerMask; } void SetAttribute( PAD_ATTRIB aAttribute ); PAD_ATTRIB GetAttribute() const { return m_attribute; } void SetProperty( PAD_PROP aProperty ); PAD_PROP GetProperty() const { return m_property; } // We don't currently have an attribute for APERTURE, and adding one will change the file // format, so for now just infer a copper-less pad to be an APERTURE pad. bool IsAperturePad() const { return ( m_layerMask & LSET::AllCuMask() ).none(); } void SetPadToDieLength( int aLength ) { m_lengthPadToDie = aLength; } int GetPadToDieLength() const { return m_lengthPadToDie; } int GetLocalSolderMaskMargin() const { return m_localSolderMaskMargin; } void SetLocalSolderMaskMargin( int aMargin ) { m_localSolderMaskMargin = aMargin; } int GetLocalClearance( wxString* aSource ) const override; int GetLocalClearance() const { return m_localClearance; } void SetLocalClearance( int aClearance ) { m_localClearance = aClearance; } int GetLocalSolderPasteMargin() const { return m_localSolderPasteMargin; } void SetLocalSolderPasteMargin( int aMargin ) { m_localSolderPasteMargin = aMargin; } double GetLocalSolderPasteMarginRatio() const { return m_localSolderPasteMarginRatio; } void SetLocalSolderPasteMarginRatio( double aRatio ) { m_localSolderPasteMarginRatio = aRatio; } int GetOwnClearance( PCB_LAYER_ID aLayer, wxString* aSource = nullptr ) const override; /** * Convert the pad shape to a closed polygon. Circles and arcs are approximated by segments. * * @param aBuffer a buffer to store the polygon. * @param aClearance the clearance around the pad. * @param aMaxError maximum error from true when converting arcs. * @param aErrorLoc should the approximation error be placed outside or inside the polygon? * @param ignoreLineWidth used for edge cuts where the line width is only for visualization. */ void TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer, int aClearance, int aMaxError, ERROR_LOC aErrorLoc, bool ignoreLineWidth = false ) const override; /** * Build the corner list of the polygonal drill shape in the board coordinate system. * * @param aBuffer a buffer to fill. * @param aClearance the clearance or margin value. * @param aError maximum deviation of an arc from the polygon approximation. * @param aErrorLoc = should the approximation error be placed outside or inside the polygon? * @return false if the pad has no hole, true otherwise. */ bool TransformHoleToPolygon( SHAPE_POLY_SET& aBuffer, int aClearance, int aError, ERROR_LOC aErrorLoc ) const; /** * Some pad shapes can be complex (rounded/chamfered rectangle), even without considering * custom shapes. This routine returns a COMPOUND shape (set of simple shapes which make * up the pad for use with routing, collision determination, etc). * * @note This list can contain a SHAPE_SIMPLE (a simple single-outline non-intersecting * polygon), but should never contain a SHAPE_POLY_SET (a complex polygon consisting of * multiple outlines and/or holes). * * @param aLayer optional parameter allowing a caller to specify a particular layer (default * is to return the pad's "natural" shape). * @param aFlash optional parameter allowing a caller to force the pad to be flashed (or not * flashed) on the current layer (default is to honour the pad's setting and * the current connections for the given layer). */ virtual std::shared_ptr GetEffectiveShape( PCB_LAYER_ID aLayer = UNDEFINED_LAYER, FLASHING flashPTHPads = FLASHING::DEFAULT ) const override; const std::shared_ptr& GetEffectivePolygon() const; /** * Return a SHAPE_SEGMENT object representing the pad's hole. */ std::shared_ptr GetEffectiveHoleShape() const override; /** * Return the radius of a minimum sized circle which fully encloses this pad. * * The center is the pad position NOT THE SHAPE POS! */ int GetBoundingRadius() const; /** * Return any local clearance overrides set in the "classic" (ie: pre-rule) system. * * @param aSource [out] optionally reports the source as a user-readable string. * @return the clearance in internal units. */ int GetLocalClearanceOverrides( wxString* aSource ) const override; /** * @return the expansion for the solder mask layer * * Usually > 0 (mask shape bigger than pad). For pads **not** on copper layers, the value * is the local value because there is no default shape to build. For pads also on copper * layers, the value (used to build a default shape) is: * 1 the local value * 2 if 0, the parent footprint value * 3 if 0, the global value */ int GetSolderMaskExpansion() const; /** * Usually < 0 (mask shape smaller than pad)because the margin can be dependent on the pad * size, the margin has a x and a y value. For pads **not** on copper layers, the value is * the local value because there is no default shape to build. For pads also on copper * layers, the value (used to build a default shape) is: * 1 the local value * 2 if 0, the parent footprint value * 3 if 0, the global value * * @return the margin for the solder mask layer. */ VECTOR2I GetSolderPasteMargin() const; void SetZoneConnection( ZONE_CONNECTION aType ) { m_zoneConnection = aType; } ZONE_CONNECTION GetZoneConnection() const { return m_zoneConnection; } ZONE_CONNECTION GetLocalZoneConnectionOverride( wxString* aSource = nullptr ) const; /** * Set the width of the thermal spokes connecting the pad to a zone. If != 0 this will * override similar settings in the parent footprint and zone. */ void SetThermalSpokeWidth( int aWidth ) { m_thermalSpokeWidth = aWidth; } int GetThermalSpokeWidth() const { return m_thermalSpokeWidth; } int GetLocalSpokeWidthOverride( wxString* aSource = nullptr ) const; /** * The orientation of the thermal spokes. 45° will produce an X (the default for circular * pads and circular-anchored custom shaped pads), while 90° will produce a + (the default * for all other shapes). */ void SetThermalSpokeAngle( const EDA_ANGLE& aAngle ) { m_thermalSpokeAngle = aAngle; } EDA_ANGLE GetThermalSpokeAngle() const { return m_thermalSpokeAngle; } // For property system void SetThermalSpokeAngleDegrees( double aAngle ) { m_thermalSpokeAngle = EDA_ANGLE( aAngle, DEGREES_T ); } double GetThermalSpokeAngleDegrees() const { return m_thermalSpokeAngle.AsDegrees(); } void SetThermalGap( int aGap ) { m_thermalGap = aGap; } int GetThermalGap() const { return m_thermalGap; } int GetLocalThermalGapOverride( wxString* aSource = nullptr ) const; /** * Has meaning only for rounded rectangle pads. * * @return The radius of the rounded corners for this pad. */ void SetRoundRectCornerRadius( double aRadius ); int GetRoundRectCornerRadius() const; VECTOR2I ShapePos() const; /** * Has meaning only for rounded rectangle pads. * * Set the ratio between the smaller X or Y size and the rounded corner radius. * Cannot be > 0.5; the normalized IPC-7351C value is 0.25 */ void SetRoundRectRadiusRatio( double aRadiusScale ); double GetRoundRectRadiusRatio() const { return m_roundedCornerScale; } /** * Has meaning only for chamfered rectangular pads. * * Set the ratio between the smaller X or Y size and chamfered corner size. * Cannot be < 0.5. */ void SetChamferRectRatio( double aChamferScale ); double GetChamferRectRatio() const { return m_chamferScale; } /** * Has meaning only for chamfered rectangular pads. * * Set the position of the chamfers for orientation 0. * * @param aPositions a bit-set of #RECT_CHAMFER_POSITIONS. */ void SetChamferPositions( int aPositions ) { m_chamferPositions = aPositions; } int GetChamferPositions() const { return m_chamferPositions; } /** * @return the netcode. */ int GetSubRatsnest() const { return m_subRatsnest; } void SetSubRatsnest( int aSubRatsnest ) { m_subRatsnest = aSubRatsnest; } /** * Set the unconnected removal property. * * If true, the copper is removed on zone fill or when specifically requested when the pad * is not connected on a layer. This requires that there be a through hole. */ void SetRemoveUnconnected( bool aSet ) { m_removeUnconnectedLayer = aSet; } bool GetRemoveUnconnected() const { return m_removeUnconnectedLayer; } /** * Set whether we keep the top and bottom connections even if they are not connected. */ void SetKeepTopBottom( bool aSet ) { m_keepTopBottomLayer = aSet; } bool GetKeepTopBottom() const { return m_keepTopBottomLayer; } bool ConditionallyFlashed( PCB_LAYER_ID aLayer ) const { if( !m_removeUnconnectedLayer ) return false; if( m_keepTopBottomLayer && ( aLayer == F_Cu || aLayer == B_Cu ) ) return false; return true; } void GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) override; bool IsOnLayer( PCB_LAYER_ID aLayer, bool aIncludeCourtyards = false ) const override { return m_layerMask[aLayer]; } /** * Check to see whether the pad should be flashed on the specific layer. * * @param aLayer Layer to check for connectivity * @param aOnlyCheckIfPermitted indicates that the routine should just return whether or not * a flashed connection is permitted on this layer (without checking for a connection) * @return true if connected by pad or track (or optionally zone) */ bool FlashLayer( int aLayer, bool aOnlyCheckIfPermitted = false ) const; bool CanFlashLayer( int aLayer ) { return FlashLayer( aLayer, true ); } PCB_LAYER_ID GetLayer() const override; /** * @return the principal copper layer for SMD and CONN pads. */ PCB_LAYER_ID GetPrincipalLayer() const; /** * Check to see if the pad should be flashed to any of the layers in the set. * * @param aLayers set of layers to check the via against * @return true if connected by pad or track (or optionally zone) on any of the associated * layers */ bool FlashLayer( LSET aLayers ) const; bool HitTest( const VECTOR2I& aPosition, int aAccuracy = 0 ) const override; bool HitTest( const BOX2I& aRect, bool aContained, int aAccuracy = 0 ) const override; wxString GetClass() const override { return wxT( "PAD" ); } /** * The bounding box is cached, so this will be efficient most of the time. */ const BOX2I GetBoundingBox() const override; /** * Compare two pads and return 0 if they are equal. * * @return less than 0 if left less than right, 0 if equal, or greater than 0 if left * greater than right. */ static int Compare( const PAD* aPadRef, const PAD* aPadCmp ); void Move( const VECTOR2I& aMoveVector ) override { m_pos += aMoveVector; SetDirty(); } void Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle ) override; wxString GetItemDescription( UNITS_PROVIDER* aUnitsProvider ) const override; BITMAPS GetMenuImage() const override; /** * @return the GUI-appropriate name of the shape. */ wxString ShowPadShape() const; /** * @return the GUI-appropriate description of the pad type (attribute) : Std, SMD ... */ wxString ShowPadAttr() const; EDA_ITEM* Clone() const override; /** * Same as Clone, but returns a PAD item. * * Useful mainly for python scripts, because Clone returns an EDA_ITEM. */ PAD* ClonePad() const { return (PAD*) Clone(); } /** * Rebuild the effective shape cache (and bounding box and radius) for the pad and clears * the dirty bit. */ void BuildEffectiveShapes( PCB_LAYER_ID aLayer ) const; void BuildEffectivePolygon() const; virtual void ViewGetLayers( int aLayers[], int& aCount ) const override; double ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const override; virtual const BOX2I ViewBBox() const override; void ClearZoneLayerOverrides() { m_zoneLayerOverrides.fill( ZLO_NONE ); } const ZONE_LAYER_OVERRIDE& GetZoneLayerOverride( PCB_LAYER_ID aLayer ) const { return m_zoneLayerOverrides[ aLayer ]; } void SetZoneLayerOverride( PCB_LAYER_ID aLayer, ZONE_LAYER_OVERRIDE aOverride ) { std::unique_lock cacheLock( m_zoneLayerOverridesMutex ); m_zoneLayerOverrides[ aLayer ] = aOverride; } #if defined(DEBUG) virtual void Show( int nestLevel, std::ostream& os ) const override { ShowDummy( os ); } #endif protected: virtual void swapData( BOARD_ITEM* aImage ) override; private: void addPadPrimitivesToPolygon( SHAPE_POLY_SET* aMergedPolygon, int aError, ERROR_LOC aErrorLoc ) const; private: wxString m_number; // Pad name (pin number in schematic) wxString m_pinFunction; // Pin name in schematic wxString m_pinType; // Pin electrical type in schematic VECTOR2I m_pos; // Pad Position on board PAD_SHAPE m_padShape; // Shape: PAD_SHAPE::CIRCLE, PAD_SHAPE::RECT, // PAD_SHAPE::OVAL, PAD_SHAPE::TRAPEZOID, // PAD_SHAPE::ROUNDRECT, PAD_SHAPE_POLYGON /* * Editing definitions of primitives for custom pad shapes. In local coordinates relative * to m_Pos (NOT shapePos) at orient 0. */ std::vector> m_editPrimitives; // Must be set to true to force rebuild shapes to draw (after geometry change for instance) mutable bool m_shapesDirty; mutable std::mutex m_shapesBuildingLock; mutable BOX2I m_effectiveBoundingBox; mutable std::shared_ptr m_effectiveShape; mutable std::shared_ptr m_effectiveHoleShape; mutable bool m_polyDirty; mutable std::mutex m_polyBuildingLock; mutable std::shared_ptr m_effectivePolygon; mutable int m_effectiveBoundingRadius; /* * How to build the custom shape in zone, to create the clearance area: * CUST_PAD_SHAPE_IN_ZONE_OUTLINE = use pad shape * CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL = use the convex hull of the pad shape */ CUST_PAD_SHAPE_IN_ZONE m_customShapeClearanceArea; int m_subRatsnest; // Variable used to handle subnet (block) number in // ratsnest computations VECTOR2I m_drill; // Drill diameter (x == y) or slot dimensions (x != y) VECTOR2I m_size; // X and Y size (relative to orient 0) PAD_DRILL_SHAPE_T m_drillShape; // PAD_DRILL_SHAPE_CIRCLE, PAD_DRILL_SHAPE_OBLONG double m_roundedCornerScale; // Scaling factor of min(width, height) to corner // radius, default 0.25 double m_chamferScale; // Scaling factor of min(width, height) to chamfer // size, default 0.25 int m_chamferPositions; // The positions of the chamfers (at orient 0) PAD_SHAPE m_anchorPadShape; // For custom shaped pads: shape of pad anchor, // PAD_SHAPE::RECT, PAD_SHAPE::CIRCLE /* * Most of the time the hole is the center of the shape (m_Offset = 0). But some designers * use oblong/rect pads with a hole moved to one of the oblong/rect pad shape ends. * In all cases the hole is at the pad position. This offset is from the hole to the center * of the pad shape (ie: the copper area around the hole). * ShapePos() returns the board shape position according to the offset and the pad rotation. */ VECTOR2I m_offset; LSET m_layerMask; // Bitwise layer: 1 = copper layer, 15 = cmp, // 2..14 = internal layers, 16..31 = technical layers VECTOR2I m_deltaSize; // Delta for PAD_SHAPE::TRAPEZOID; half the delta squeezes // one end and half expands the other. It is only valid // to have a single axis be non-0. PAD_ATTRIB m_attribute; // PAD_ATTRIB_NORMAL, PAD_ATTRIB::SMD, PAD_ATTRIB::CONN, // PAD_ATTRIB::NPTH PAD_PROP m_property; // Property in fab files (BGA, FIDUCIAL, TESTPOINT, etc.) EDA_ANGLE m_orient; int m_lengthPadToDie; // Length net from pad to die, inside the package ///< If true, the pad copper is removed for layers that are not connected. bool m_removeUnconnectedLayer; ///< When removing unconnected pads, keep the top and bottom pads. bool m_keepTopBottomLayer; /* * Pad clearances, margins, etc. exist in a hierarchy. If a given level is specified then * the remaining levels are NOT consulted. * * LEVEL 1: (highest priority) local overrides (pad, footprint, etc.) * LEVEL 2: Rules * LEVEL 3: Accumulated local settings, netclass settings, & board design settings * * These are the LEVEL 1 settings for a pad. */ int m_localClearance; int m_localSolderMaskMargin; // Local solder mask margin int m_localSolderPasteMargin; // Local solder paste margin absolute value double m_localSolderPasteMarginRatio; // Local solder mask margin ratio of pad size // The final margin is the sum of these 2 values ZONE_CONNECTION m_zoneConnection; // No connection, thermal relief, etc. int m_thermalSpokeWidth; // Thermal spoke width. EDA_ANGLE m_thermalSpokeAngle; // Rotation of the spokes. 45° will produce an X, // while 90° will produce a +. int m_thermalGap; std::mutex m_zoneLayerOverridesMutex; std::array m_zoneLayerOverrides; }; #endif // PAD_H