/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2007-2015 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 2015-2023 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /* This source is a complement to specctra.cpp and implements the export to specctra dsn file format. The specification for the grammar of the specctra dsn file used to develop this code is given here: http://tech.groups.yahoo.com/group/kicad-users/files/ then file "specctra.pdf" Also see the comments at the top of the specctra.cpp file itself. */ #include #include // DisplayError() #include // EDA_FileSelector() #include #include #include // for KiROUND #include // std::set #include // std::map #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "specctra.h" using namespace DSN; // comment the line #define EXPORT_CUSTOM_PADS_CONVEX_HULL to export CUSTOM pads exact shapes. // Shapes can be non convex polygons with holes (linked to outline) that can create issues. // Especially Freerouter does not handle them very well: // - too complex shapes are not accepted, especially shapes with holes (dsn files are not loaded). // - and Freerouter actually uses something like a convex hull of the shape (that works poorly). // I am guessing non convex polygons with holes linked could create issues with any Router. #define EXPORT_CUSTOM_PADS_CONVEX_HULL // Add .1 mil to the requested clearances as a safety margin. There has been disagreement about // interpretation of clearance in the past between KiCad and Freerouter, so keep this safetyMargin // until the disagreement is resolved and stable. Freerouter seems to be moving (protected) // traces upon loading the DSN file, and even though it seems to sometimes add its own 0.1 to the // clearances, I believe this is happening after the load process (and moving traces) so I am of // the opinion this is still needed. static const double safetyMargin = 0.1; bool PCB_EDIT_FRAME::ExportSpecctraFile( const wxString& aFullFilename ) { BASE_SCREEN* screen = GetScreen(); bool wasModified = screen->IsContentModified(); wxString errorText; bool ok = true; try { ExportBoardToSpecctraFile( GetBoard(), aFullFilename ); } catch( const IO_ERROR& ioe ) { ok = false; // copy the error string to safe place, ioe is in this scope only. errorText = ioe.What(); } // The two calls to FOOTPRINT::Flip() in ExportBoardToSpecctraFile both set the modified flag, // yet their actions cancel each other out, so it should be ok to clear the flag. if( !wasModified ) screen->SetContentModified( false ); if( ok ) SetStatusText( wxString( _( "BOARD exported OK." ) ) ); else DisplayErrorMessage( this, _( "Unable to export, please fix and try again" ), errorText ); return ok; } void ExportBoardToSpecctraFile( BOARD* aBoard, const wxString& aFullFilename ) { SPECCTRA_DB db; db.SetPCB( SPECCTRA_DB::MakePCB() ); LOCALE_IO toggle; // Switch the locale to standard C // Build the board outlines *before* flipping footprints if( !db.BuiltBoardOutlines( aBoard ) ) wxLogWarning( _( "Board outline is malformed. Run DRC for a full analysis." ) ); // DSN Images (=KiCad FOOTPRINTs and PADs) must be presented from the top view. So we // temporarily flip any footprints which are on the back side of the board to the front, // and record this in the FOOTPRINT's flag field. db.FlipFOOTPRINTs( aBoard ); try { aBoard->SynchronizeNetsAndNetClasses( false ); db.FromBOARD( aBoard ); db.ExportPCB( aFullFilename, true ); db.RevertFOOTPRINTs( aBoard ); // if an exception is thrown by FromBOARD() or ExportPCB(), then ~SPECCTRA_DB() will // close the file. } catch( ... ) { db.RevertFOOTPRINTs( aBoard ); throw; } } namespace DSN { // "specctra reported units" are what we tell the external router that our exported lengths are in /** * Convert a distance from Pcbnew internal units to the reported Specctra DSN units in floating * point format. */ static inline double scale( int kicadDist ) { // nanometers to um return kicadDist / ( pcbIUScale.IU_PER_MM / 1000.0 ); } ///< Convert integer internal units to float um static inline double IU2um( int kicadDist ) { return kicadDist * ( 1000.0 / pcbIUScale.IU_PER_MM ); } static inline double mapX( int x ) { return scale( x ); } static inline double mapY( int y ) { return -scale( y ); // make y negative, since it is increasing going down. } /** * Convert a KiCad point into a DSN file point. * * Kicad's #BOARD coordinates are in nanometers (called Internal Units or IU) and we are * exporting in units of mils, so we have to scale them. */ static POINT mapPt( const VECTOR2I& pt ) { POINT ret; ret.x = mapX( pt.x ); ret.y = mapY( pt.y ); ret.FixNegativeZero(); return ret; } static POINT mapPt( const VECTOR2I& pt, FOOTPRINT* aFootprint ) { VECTOR2I fpRelative = pt - aFootprint->GetPosition(); RotatePoint( fpRelative, -aFootprint->GetOrientation() ); return mapPt( fpRelative ); } /** * Decide if the pad is a copper-less through hole which needs to be made into a round keepout. */ static bool isRoundKeepout( PAD* aPad ) { if( aPad->GetShape() == PAD_SHAPE::CIRCLE ) { if( aPad->GetDrillSize().x >= aPad->GetSize().x ) return true; if( !( aPad->GetLayerSet() & LSET::AllCuMask() ).any() ) return true; } return false; } /** * Create a PATH element with a single straight line, a pair of vertices. */ static PATH* makePath( const POINT& aStart, const POINT& aEnd, const std::string& aLayerName ) { PATH* path = new PATH( nullptr, T_path ); path->AppendPoint( aStart ); path->AppendPoint( aEnd ); path->SetLayerId( aLayerName.c_str() ); return path; } bool SPECCTRA_DB::BuiltBoardOutlines( BOARD* aBoard ) { return aBoard->GetBoardPolygonOutlines( m_brd_outlines ); } PADSTACK* SPECCTRA_DB::makePADSTACK( BOARD* aBoard, PAD* aPad ) { char name[256]; // padstack name builder std::string uniqifier; // caller must do these checks before calling here. wxASSERT( !isRoundKeepout( aPad ) ); PADSTACK* padstack = new PADSTACK(); int reportedLayers = 0; // how many in reported padstack const char* layerName[MAX_CU_LAYERS]; uniqifier = '['; static const LSET all_cu = LSET::AllCuMask(); bool onAllCopperLayers = ( (aPad->GetLayerSet() & all_cu) == all_cu ); if( onAllCopperLayers ) uniqifier += 'A'; // A for all layers const int copperCount = aBoard->GetCopperLayerCount(); for( int layer=0; layerIsOnLayer( kilayer ) ) { layerName[reportedLayers++] = m_layerIds[layer].c_str(); if( !onAllCopperLayers ) { if( layer == 0 ) uniqifier += 'T'; else if( layer == copperCount - 1 ) uniqifier += 'B'; else uniqifier += char('0' + layer); // layer index char } } } uniqifier += ']'; POINT dsnOffset; if( aPad->GetOffset().x || aPad->GetOffset().y ) { char offsetTxt[64]; VECTOR2I offset( aPad->GetOffset().x, aPad->GetOffset().y ); dsnOffset = mapPt( offset ); // using () would cause padstack name to be quoted, and {} locks freerouter, so use []. std::snprintf( offsetTxt, sizeof( offsetTxt ), "[%.6g,%.6g]", dsnOffset.x, dsnOffset.y ); uniqifier += offsetTxt; } switch( aPad->GetShape() ) { case PAD_SHAPE::CIRCLE: { double diameter = scale( aPad->GetSize().x ); for( int ndx = 0; ndx < reportedLayers; ++ndx ) { SHAPE* shape = new SHAPE( padstack ); padstack->Append( shape ); CIRCLE* circle = new CIRCLE( shape ); shape->SetShape( circle ); circle->SetLayerId( layerName[ndx] ); circle->SetDiameter( diameter ); circle->SetVertex( dsnOffset ); } snprintf( name, sizeof(name), "Round%sPad_%.6g_um", uniqifier.c_str(), IU2um( aPad->GetSize().x ) ); name[ sizeof(name) - 1 ] = 0; padstack->SetPadstackId( name ); break; } case PAD_SHAPE::RECT: { double dx = scale( aPad->GetSize().x ) / 2.0; double dy = scale( aPad->GetSize().y ) / 2.0; POINT lowerLeft( -dx, -dy ); POINT upperRight( dx, dy ); lowerLeft += dsnOffset; upperRight += dsnOffset; for( int ndx = 0; ndx < reportedLayers; ++ndx ) { SHAPE* shape = new SHAPE( padstack ); padstack->Append( shape ); RECTANGLE* rect = new RECTANGLE( shape ); shape->SetShape( rect ); rect->SetLayerId( layerName[ndx] ); rect->SetCorners( lowerLeft, upperRight ); } snprintf( name, sizeof( name ), "Rect%sPad_%.6gx%.6g_um", uniqifier.c_str(), IU2um( aPad->GetSize().x ), IU2um( aPad->GetSize().y ) ); name[sizeof( name ) - 1] = 0; padstack->SetPadstackId( name ); break; } case PAD_SHAPE::OVAL: { double dx = scale( aPad->GetSize().x ) / 2.0; double dy = scale( aPad->GetSize().y ) / 2.0; double dr = dx - dy; double radius; POINT pstart; POINT pstop; if( dr >= 0 ) // oval is horizontal { radius = dy; pstart = POINT( -dr, 0.0 ); pstop = POINT( dr, 0.0 ); } else // oval is vertical { radius = dx; dr = -dr; pstart = POINT( 0.0, -dr ); pstop = POINT( 0.0, dr ); } pstart += dsnOffset; pstop += dsnOffset; for( int ndx = 0; ndx < reportedLayers; ++ndx ) { SHAPE* shape; PATH* path; // see http://www.freerouting.net/usren/viewtopic.php?f=3&t=317#p408 shape = new SHAPE( padstack ); padstack->Append( shape ); path = makePath( pstart, pstop, layerName[ndx] ); shape->SetShape( path ); path->aperture_width = 2.0 * radius; } snprintf( name, sizeof( name ), "Oval%sPad_%.6gx%.6g_um", uniqifier.c_str(), IU2um( aPad->GetSize().x ), IU2um( aPad->GetSize().y ) ); name[sizeof( name ) - 1] = 0; padstack->SetPadstackId( name ); break; } case PAD_SHAPE::TRAPEZOID: { double dx = scale( aPad->GetSize().x ) / 2.0; double dy = scale( aPad->GetSize().y ) / 2.0; double ddx = scale( aPad->GetDelta().x ) / 2.0; double ddy = scale( aPad->GetDelta().y ) / 2.0; // see class_pad_draw_functions.cpp which draws the trapezoid pad POINT lowerLeft( -dx - ddy, -dy - ddx ); POINT upperLeft( -dx + ddy, +dy + ddx ); POINT upperRight( +dx - ddy, +dy - ddx ); POINT lowerRight( +dx + ddy, -dy + ddx ); lowerLeft += dsnOffset; upperLeft += dsnOffset; upperRight += dsnOffset; lowerRight += dsnOffset; for( int ndx = 0; ndx < reportedLayers; ++ndx ) { SHAPE* shape = new SHAPE( padstack ); padstack->Append( shape ); // a T_polygon exists as a PATH PATH* polygon = new PATH( shape, T_polygon ); shape->SetShape( polygon ); polygon->SetLayerId( layerName[ndx] ); polygon->AppendPoint( lowerLeft ); polygon->AppendPoint( upperLeft ); polygon->AppendPoint( upperRight ); polygon->AppendPoint( lowerRight ); } // this string _must_ be unique for a given physical shape snprintf( name, sizeof( name ), "Trapz%sPad_%.6gx%.6g_%c%.6gx%c%.6g_um", uniqifier.c_str(), IU2um( aPad->GetSize().x ), IU2um( aPad->GetSize().y ), aPad->GetDelta().x < 0 ? 'n' : 'p', std::abs( IU2um( aPad->GetDelta().x ) ), aPad->GetDelta().y < 0 ? 'n' : 'p', std::abs( IU2um( aPad->GetDelta().y ) ) ); name[sizeof( name ) - 1] = 0; padstack->SetPadstackId( name ); break; } case PAD_SHAPE::CHAMFERED_RECT: case PAD_SHAPE::ROUNDRECT: { // Export the shape as as polygon, round rect does not exist as primitive const int circleToSegmentsCount = 36; int rradius = aPad->GetRoundRectCornerRadius(); SHAPE_POLY_SET cornerBuffer; // Use a slightly bigger shape because the round corners are approximated by // segments, giving to the polygon a slightly smaller shape than the actual shape /* calculates the coeff to compensate radius reduction of holes clearance * due to the segment approx. * For a circle the min radius is radius * cos( 2PI / s_CircleToSegmentsCount / 2) * correctionFactor is cos( PI/s_CircleToSegmentsCount ) */ double correctionFactor = cos( M_PI / (double) circleToSegmentsCount ); int extra_clearance = KiROUND( rradius * ( 1.0 - correctionFactor ) ); VECTOR2I psize = aPad->GetSize(); psize.x += extra_clearance * 2; psize.y += extra_clearance * 2; rradius += extra_clearance; bool doChamfer = aPad->GetShape() == PAD_SHAPE::CHAMFERED_RECT; TransformRoundChamferedRectToPolygon( cornerBuffer, VECTOR2I( 0, 0 ), psize, ANGLE_0, rradius, aPad->GetChamferRectRatio(), doChamfer ? aPad->GetChamferPositions() : 0, 0, aBoard->GetDesignSettings().m_MaxError, ERROR_INSIDE ); SHAPE_LINE_CHAIN& polygonal_shape = cornerBuffer.Outline( 0 ); for( int ndx = 0; ndx < reportedLayers; ++ndx ) { SHAPE* shape = new SHAPE( padstack ); padstack->Append( shape ); // a T_polygon exists as a PATH PATH* polygon = new PATH( shape, T_polygon ); shape->SetShape( polygon ); polygon->SetLayerId( layerName[ndx] ); // append a closed polygon POINT first_corner; for( int idx = 0; idx < polygonal_shape.PointCount(); idx++ ) { POINT corner( scale( polygonal_shape.CPoint( idx ).x ), scale( -polygonal_shape.CPoint( idx ).y ) ); corner += dsnOffset; polygon->AppendPoint( corner ); if( idx == 0 ) first_corner = corner; } polygon->AppendPoint( first_corner ); // Close polygon } // this string _must_ be unique for a given physical shape snprintf( name, sizeof( name ), "RoundRect%sPad_%.6gx%.6g_%.6g_um_%f_%X", uniqifier.c_str(), IU2um( aPad->GetSize().x ), IU2um( aPad->GetSize().y ), IU2um( rradius ), doChamfer ? aPad->GetChamferRectRatio() : 0.0, doChamfer ? aPad->GetChamferPositions() : 0 ); name[sizeof( name ) - 1] = 0; padstack->SetPadstackId( name ); break; } case PAD_SHAPE::CUSTOM: { std::vector polygonal_shape; SHAPE_POLY_SET pad_shape; aPad->MergePrimitivesAsPolygon( &pad_shape ); #ifdef EXPORT_CUSTOM_PADS_CONVEX_HULL BuildConvexHull( polygonal_shape, pad_shape ); #else const SHAPE_LINE_CHAIN& p_outline = pad_shape.COutline( 0 ); for( int ii = 0; ii < p_outline.PointCount(); ++ii ) polygonal_shape.push_back( wxPoint( p_outline.CPoint( ii ) ) ); #endif // The polygon must be closed if( polygonal_shape.front() != polygonal_shape.back() ) polygonal_shape.push_back( polygonal_shape.front() ); for( int ndx = 0; ndx < reportedLayers; ++ndx ) { SHAPE* shape = new SHAPE( padstack ); padstack->Append( shape ); // a T_polygon exists as a PATH PATH* polygon = new PATH( shape, T_polygon ); shape->SetShape( polygon ); polygon->SetLayerId( layerName[ndx] ); for( unsigned idx = 0; idx < polygonal_shape.size(); idx++ ) { POINT corner( scale( polygonal_shape[idx].x ), scale( -polygonal_shape[idx].y ) ); corner += dsnOffset; polygon->AppendPoint( corner ); } } // this string _must_ be unique for a given physical shape, so try to make it unique MD5_HASH hash = pad_shape.GetHash(); BOX2I rect = aPad->GetBoundingBox(); snprintf( name, sizeof( name ), "Cust%sPad_%.6gx%.6g_%.6gx_%.6g_%d_um_%s", uniqifier.c_str(), IU2um( aPad->GetSize().x ), IU2um( aPad->GetSize().y ), IU2um( rect.GetWidth() ), IU2um( rect.GetHeight() ), (int) polygonal_shape.size(), hash.Format( true ).c_str() ); name[sizeof( name ) - 1] = 0; padstack->SetPadstackId( name ); break; } } return padstack; } /// data type used to ensure unique-ness of pin names, holding (wxString and int) typedef std::map PINMAP; IMAGE* SPECCTRA_DB::makeIMAGE( BOARD* aBoard, FOOTPRINT* aFootprint ) { PINMAP pinmap; wxString padNumber; PCB_TYPE_COLLECTOR fpItems; // get all the FOOTPRINT's pads. fpItems.Collect( aFootprint, { PCB_PAD_T } ); IMAGE* image = new IMAGE( nullptr ); image->m_image_id = aFootprint->GetFPID().Format().c_str(); // from the pads, and make an IMAGE using collated padstacks. for( int p = 0; p < fpItems.GetCount(); ++p ) { PAD* pad = (PAD*) fpItems[p]; // see if this pad is a through hole with no copper on its perimeter if( isRoundKeepout( pad ) ) { double diameter = scale( pad->GetDrillSize().x ); POINT vertex = mapPt( pad->GetFPRelativePosition() ); diameter += scale( aBoard->GetDesignSettings().m_HoleClearance * 2 ); int layerCount = aBoard->GetCopperLayerCount(); for( int layer=0; layerm_keepouts.push_back( keepout ); CIRCLE* circle = new CIRCLE( keepout ); keepout->SetShape( circle ); circle->SetDiameter( diameter ); circle->SetVertex( vertex ); circle->SetLayerId( m_layerIds[layer].c_str() ); } } else // else if() could there be a square keepout here? { // Pads not on copper layers (i.e. only on tech layers) are ignored // because they create invalid pads in .dsn file for freeroute LSET mask_copper_layers = pad->GetLayerSet() & LSET::AllCuMask(); if( !mask_copper_layers.any() ) continue; PADSTACK* padstack = makePADSTACK( aBoard, pad ); PADSTACKSET::iterator iter = m_padstackset.find( *padstack ); if( iter != m_padstackset.end() ) { // padstack is a duplicate, delete it and use the original delete padstack; padstack = (PADSTACK*) *iter.base(); // folklore, be careful here } else { m_padstackset.insert( padstack ); } PIN* pin = new PIN( image ); padNumber = pad->GetNumber(); pin->m_pin_id = TO_UTF8( padNumber ); if( padNumber != wxEmptyString && pinmap.find( padNumber ) == pinmap.end() ) { pinmap[ padNumber ] = 0; } else // pad name is a duplicate within this footprint { int duplicates = ++pinmap[ padNumber ]; pin->m_pin_id += "@" + std::to_string( duplicates ); // append "@1" or "@2", etc. to pin name } pin->m_kiNetCode = pad->GetNetCode(); image->m_pins.push_back( pin ); pin->m_padstack_id = padstack->m_padstack_id; EDA_ANGLE angle = pad->GetOrientation() - aFootprint->GetOrientation(); pin->SetRotation( angle.Normalize().AsDegrees() ); VECTOR2I pos( pad->GetFPRelativePosition() ); pin->SetVertex( mapPt( pos ) ); } } // get all the FOOTPRINT's SHAPEs and convert those to DSN outlines. fpItems.Collect( aFootprint, { PCB_SHAPE_T } ); for( int i = 0; i < fpItems.GetCount(); ++i ) { PCB_SHAPE* graphic = static_cast( fpItems[i] ); SHAPE* outline; PATH* path; switch( graphic->GetShape() ) { case SHAPE_T::SEGMENT: outline = new SHAPE( image, T_outline ); image->Append( outline ); path = new PATH( outline ); outline->SetShape( path ); path->SetAperture( scale( graphic->GetWidth() ) ); path->SetLayerId( "signal" ); path->AppendPoint( mapPt( graphic->GetStart(), aFootprint ) ); path->AppendPoint( mapPt( graphic->GetEnd(), aFootprint ) ); break; case SHAPE_T::CIRCLE: { // this is best done by 4 QARC's but freerouter does not yet support QARCs. // for now, support by using line segments. outline = new SHAPE( image, T_outline ); image->Append( outline ); path = new PATH( outline ); outline->SetShape( path ); path->SetAperture( scale( graphic->GetWidth() ) ); path->SetLayerId( "signal" ); double radius = graphic->GetRadius(); VECTOR2I circle_centre = graphic->GetStart(); SHAPE_LINE_CHAIN polyline; ConvertArcToPolyline( polyline, VECTOR2I( circle_centre ), radius, ANGLE_0, ANGLE_360, ARC_HIGH_DEF, ERROR_INSIDE ); for( int ii = 0; ii < polyline.PointCount(); ++ii ) { VECTOR2I corner( polyline.CPoint( ii ).x, polyline.CPoint( ii ).y ); path->AppendPoint( mapPt( corner, aFootprint ) ); } break; } case SHAPE_T::RECT: { outline = new SHAPE( image, T_outline ); image->Append( outline ); path = new PATH( outline ); outline->SetShape( path ); path->SetAperture( scale( graphic->GetWidth() ) ); path->SetLayerId( "signal" ); VECTOR2I corner = graphic->GetStart(); path->AppendPoint( mapPt( corner, aFootprint ) ); corner.x = graphic->GetEnd().x; path->AppendPoint( mapPt( corner, aFootprint ) ); corner.y = graphic->GetEnd().y; path->AppendPoint( mapPt( corner, aFootprint ) ); corner.x = graphic->GetStart().x; path->AppendPoint( mapPt( corner, aFootprint ) ); break; } case SHAPE_T::ARC: { // this is best done by QARC's but freerouter does not yet support QARCs. // for now, support by using line segments. // So we use a polygon (PATH) to create a approximate arc shape outline = new SHAPE( image, T_outline ); image->Append( outline ); path = new PATH( outline ); outline->SetShape( path ); path->SetAperture( 0 );//scale( graphic->GetWidth() ) ); path->SetLayerId( "signal" ); VECTOR2I arc_centre = graphic->GetCenter(); double radius = graphic->GetRadius() + graphic->GetWidth()/2; EDA_ANGLE arcAngle = graphic->GetArcAngle(); VECTOR2I startRadial = graphic->GetStart() - graphic->GetCenter(); EDA_ANGLE arcStart( startRadial ); arcStart.Normalize(); // For some obscure reason, FreeRouter does not show the same polygonal // shape for polygons CW and CCW. So used only the order of corners // giving the best look. if( arcAngle < ANGLE_0 ) { VECTOR2I endRadial = graphic->GetEnd() - graphic->GetCenter(); arcStart = EDA_ANGLE( endRadial ); arcStart.Normalize(); arcAngle = -arcAngle; } SHAPE_LINE_CHAIN polyline; ConvertArcToPolyline( polyline, VECTOR2I( arc_centre ), radius, arcStart, arcAngle, ARC_HIGH_DEF, ERROR_INSIDE ); SHAPE_POLY_SET polyBuffer; polyBuffer.AddOutline( polyline ); radius -= graphic->GetWidth(); if( radius > 0 ) { polyline.Clear(); ConvertArcToPolyline( polyline, VECTOR2I( arc_centre ), radius, arcStart, arcAngle, ARC_HIGH_DEF, ERROR_INSIDE ); // Add points in reverse order, to create a closed polygon for( int ii = polyline.PointCount() - 1; ii >= 0; --ii ) polyBuffer.Append( polyline.CPoint( ii ) ); } // ensure the polygon is closed polyBuffer.Append( polyBuffer.Outline( 0 ).CPoint( 0 ) ); VECTOR2I move = graphic->GetCenter() - arc_centre; TransformCircleToPolygon( polyBuffer, graphic->GetStart() - move, graphic->GetWidth() / 2, ARC_HIGH_DEF, ERROR_INSIDE ); TransformCircleToPolygon( polyBuffer, graphic->GetEnd() - move, graphic->GetWidth() / 2, ARC_HIGH_DEF, ERROR_INSIDE ); polyBuffer.Simplify( SHAPE_POLY_SET::PM_FAST ); SHAPE_LINE_CHAIN& poly = polyBuffer.Outline( 0 ); for( int ii = 0; ii < poly.PointCount(); ++ii ) { VECTOR2I corner( poly.CPoint( ii ).x, poly.CPoint( ii ).y ); path->AppendPoint( mapPt( corner, aFootprint ) ); } break; } default: continue; } } for( ZONE* zone : aFootprint->Zones() ) { if( !zone->GetIsRuleArea() ) continue; // IMAGE object coordinates are relative to the IMAGE not absolute board coordinates. ZONE untransformedZone( *zone ); EDA_ANGLE angle = -aFootprint->GetOrientation(); angle.Normalize(); untransformedZone.Rotate( aFootprint->GetPosition(), angle ); // keepout areas have a type. types are // T_place_keepout, T_via_keepout, T_wire_keepout, // T_bend_keepout, T_elongate_keepout, T_keepout. // Pcbnew knows only T_keepout, T_via_keepout and T_wire_keepout DSN_T keepout_type; if( zone->GetDoNotAllowVias() && zone->GetDoNotAllowTracks() ) keepout_type = T_keepout; else if( zone->GetDoNotAllowVias() ) keepout_type = T_via_keepout; else if( zone->GetDoNotAllowTracks() ) keepout_type = T_wire_keepout; else keepout_type = T_keepout; // Now, build keepout polygon on each copper layer where the zone // keepout is living (keepout zones can live on many copper layers) const int copperCount = aBoard->GetCopperLayerCount(); for( int layer = 0; layer < copperCount; layer++ ) { if( layer == copperCount-1 ) layer = B_Cu; if( !zone->IsOnLayer( PCB_LAYER_ID( layer ) ) ) continue; KEEPOUT* keepout = new KEEPOUT( m_pcb->m_structure, keepout_type ); image->m_keepouts.push_back( keepout ); PATH* mainPolygon = new PATH( keepout, T_polygon ); keepout->SetShape( mainPolygon ); mainPolygon->layer_id = m_layerIds[ m_kicadLayer2pcb[ layer ] ]; // Handle the main outlines SHAPE_POLY_SET::ITERATOR iterator; bool is_first_point = true; VECTOR2I startpoint; for( iterator = untransformedZone.IterateWithHoles(); iterator; iterator++ ) { VECTOR2I point( iterator->x, iterator->y ); point -= aFootprint->GetPosition(); if( is_first_point ) { startpoint = point; is_first_point = false; } mainPolygon->AppendPoint( mapPt( point ) ); // this was the end of the main polygon if( iterator.IsEndContour() ) { mainPolygon->AppendPoint( mapPt( startpoint ) ); break; } } WINDOW* window = nullptr; PATH* cutout = nullptr; bool isStartContour = true; // handle the cutouts for( iterator++; iterator; iterator++ ) { if( isStartContour ) { is_first_point = true; window = new WINDOW( keepout ); keepout->AddWindow( window ); cutout = new PATH( window, T_polygon ); window->SetShape( cutout ); cutout->layer_id = m_layerIds[ m_kicadLayer2pcb[ zone->GetLayer() ] ]; } isStartContour = iterator.IsEndContour(); wxASSERT( window ); wxASSERT( cutout ); VECTOR2I point( iterator->x, iterator->y ); point -= aFootprint->GetPosition(); if( is_first_point ) { startpoint = point; is_first_point = false; } cutout->AppendPoint( mapPt( point ) ); // Close the polygon if( iterator.IsEndContour() ) cutout->AppendPoint( mapPt( startpoint ) ); } } } return image; } PADSTACK* SPECCTRA_DB::makeVia( int aCopperDiameter, int aDrillDiameter, int aTopLayer, int aBotLayer ) { char name[48]; PADSTACK* padstack = new PADSTACK(); double dsnDiameter = scale( aCopperDiameter ); for( int layer=aTopLayer; layer<=aBotLayer; ++layer ) { SHAPE* shape = new SHAPE( padstack ); padstack->Append( shape ); CIRCLE* circle = new CIRCLE( shape ); shape->SetShape( circle ); circle->SetDiameter( dsnDiameter ); circle->SetLayerId( m_layerIds[layer].c_str() ); } snprintf( name, sizeof( name ), "Via[%d-%d]_%.6g:%.6g_um", aTopLayer, aBotLayer, dsnDiameter, // encode the drill value into the name for later import IU2um( aDrillDiameter ) ); name[ sizeof(name) - 1 ] = 0; padstack->SetPadstackId( name ); return padstack; } PADSTACK* SPECCTRA_DB::makeVia( const PCB_VIA* aVia ) { PCB_LAYER_ID topLayerNum; PCB_LAYER_ID botLayerNum; aVia->LayerPair( &topLayerNum, &botLayerNum ); int topLayer = m_kicadLayer2pcb[topLayerNum]; int botLayer = m_kicadLayer2pcb[botLayerNum]; if( topLayer > botLayer ) std::swap( topLayer, botLayer ); return makeVia( aVia->GetWidth(), aVia->GetDrillValue(), topLayer, botLayer ); } void SPECCTRA_DB::fillBOUNDARY( BOARD* aBoard, BOUNDARY* boundary ) { for( int cnt = 0; cnt < m_brd_outlines.OutlineCount(); cnt++ ) // Should be one outline { PATH* path = new PATH( boundary ); boundary->paths.push_back( path ); path->layer_id = "pcb"; SHAPE_LINE_CHAIN& outline = m_brd_outlines.Outline( cnt ); for( int ii = 0; ii < outline.PointCount(); ii++ ) { VECTOR2I pos( outline.CPoint( ii ).x, outline.CPoint( ii ).y ); path->AppendPoint( mapPt( pos ) ); } // Close polygon: VECTOR2I pos0( outline.CPoint( 0 ).x, outline.CPoint( 0 ).y ); path->AppendPoint( mapPt( pos0 ) ); // Generate holes as keepout: for( int ii = 0; ii < m_brd_outlines.HoleCount( cnt ); ii++ ) { // emit a signal layers keepout for every interior polygon left... KEEPOUT* keepout = new KEEPOUT( nullptr, T_keepout ); PATH* poly_ko = new PATH( nullptr, T_polygon ); keepout->SetShape( poly_ko ); poly_ko->SetLayerId( "signal" ); m_pcb->m_structure->m_keepouts.push_back( keepout ); SHAPE_LINE_CHAIN& hole = m_brd_outlines.Hole( cnt, ii ); for( int jj = 0; jj < hole.PointCount(); jj++ ) { VECTOR2I pos( hole.CPoint( jj ).x, hole.CPoint( jj ).y ); poly_ko->AppendPoint( mapPt( pos ) ); } // Close polygon: VECTOR2I pos( hole.CPoint( 0 ).x, hole.CPoint( 0 ).y ); poly_ko->AppendPoint( mapPt( pos ) ); } } } typedef std::set STRINGSET; typedef std::pair STRINGSET_PAIR; void SPECCTRA_DB::FromBOARD( BOARD* aBoard ) { std::shared_ptr& netSettings = aBoard->GetDesignSettings().m_NetSettings; // Not all boards are exportable. Check that all reference Ids are unique, or we won't be // able to import the session file which comes back to us later from the router. { STRINGSET refs; // holds footprint reference designators for( FOOTPRINT* footprint : aBoard->Footprints() ) { if( footprint->GetReference() == wxEmptyString ) { THROW_IO_ERROR( wxString::Format( _( "Footprint with value of '%s' has an empty " "reference designator." ), footprint->GetValue() ) ); } // if we cannot insert OK, that means the reference has been seen before. STRINGSET_PAIR refpair = refs.insert( TO_UTF8( footprint->GetReference() ) ); if( !refpair.second ) // insert failed { THROW_IO_ERROR( wxString::Format( _( "Multiple footprints have the reference " "designator '%s'." ), footprint->GetReference() ) ); } } } if( !m_pcb ) m_pcb = SPECCTRA_DB::MakePCB(); //---------------------------------------------------- { // Specctra wants top physical layer first, then going down to the bottom most physical // layer in physical sequence. buildLayerMaps( aBoard ); int layerCount = aBoard->GetCopperLayerCount(); for( int pcbNdx=0; pcbNdxm_structure ); m_pcb->m_structure->m_layers.push_back( layer ); layer->name = m_layerIds[pcbNdx]; DSN_T layerType; switch( aBoard->GetLayerType( m_pcbLayer2kicad[pcbNdx] ) ) { default: case LT_SIGNAL: layerType = T_signal; break; case LT_POWER: layerType = T_power; break; // Freerouter does not support type "mixed", only signal and power. // Remap "mixed" to "signal". case LT_MIXED: layerType = T_signal; break; case LT_JUMPER: layerType = T_jumper; break; } layer->layer_type = layerType; layer->properties.push_back( PROPERTY() ); PROPERTY* property = &layer->properties.back(); property->name = "index"; property->value = std::to_string( pcbNdx ); } } // a space in a quoted token is NOT a terminator, true establishes this. m_pcb->m_parser->space_in_quoted_tokens = true; //----- & -------------------- { // Tell freerouter to use "tenths of micrometers", which is 100 nm resolution. Possibly // more resolution is possible in freerouter, but it would need testing. m_pcb->m_unit->units = T_um; m_pcb->m_resolution->units = T_um; m_pcb->m_resolution->value = 10; // tenths of a um } //----------------------------------------------- { // Because fillBOUNDARY() can throw an exception, we link in an empty boundary so the // BOUNDARY does not get lost in the event of of an exception. BOUNDARY* boundary = new BOUNDARY( nullptr ); m_pcb->m_structure->SetBOUNDARY( boundary ); fillBOUNDARY( aBoard, boundary ); } //------------------------------------------------------------- { char rule[80]; int defaultTrackWidth = netSettings->m_DefaultNetClass->GetTrackWidth(); int defaultClearance = netSettings->m_DefaultNetClass->GetClearance(); double clearance = scale( defaultClearance ); STRINGS& rules = m_pcb->m_structure->m_rules->m_rules; std::snprintf( rule, sizeof( rule ), "(width %.6g)", scale( defaultTrackWidth ) ); rules.push_back( rule ); std::snprintf( rule, sizeof( rule ), "(clearance %.6g)", clearance + safetyMargin ); rules.push_back( rule ); // On a high density board (4 mil tracks, 4 mil spacing) a typical solder mask clearance // will be 2-3 mils. This exposes 2 to 3 mils of bare board around each pad, and would // leave only 1 to 2 mils of solder mask between the solder mask's boundary and the edge of // any trace within "clearance" of the pad. So we need at least 2 mils *extra* clearance // for traces which would come near a pad on a different net. So if the baseline trace to // trace clearance was 4 mils, then the SMD to trace clearance should be at least 6 mils. double default_smd = clearance + safetyMargin; if( default_smd <= 6.0 ) default_smd = 6.0; std::snprintf( rule, sizeof( rule ), "(clearance %.6g (type default_smd))", default_smd ); rules.push_back( rule ); // Pad to pad spacing on a single SMT part can be closer than our clearance. We don't want // freerouter complaining about that, so output a significantly smaller pad to pad // clearance to freerouter. clearance = scale( defaultClearance ) / 4; std::snprintf( rule, sizeof( rule ), "(clearance %.6g (type smd_smd))", clearance ); rules.push_back( rule ); } //------------------------------------- // Note: only zones are output here, keepout areas are created later. { int netlessZones = 0; for( ZONE* zone : aBoard->Zones() ) { if( zone->GetIsRuleArea() ) continue; // Currently, we export only copper layers if( ! zone->IsOnCopperLayer() ) continue; // Now, build zone polygon on each copper layer where the zone // is living (zones can live on many copper layers) const int copperCount = aBoard->GetCopperLayerCount(); for( int layer = 0; layer < copperCount; layer++ ) { if( layer == copperCount-1 ) layer = B_Cu; if( !zone->IsOnLayer( PCB_LAYER_ID( layer ) ) ) continue; COPPER_PLANE* plane = new COPPER_PLANE( m_pcb->m_structure ); m_pcb->m_structure->m_planes.push_back( plane ); PATH* mainPolygon = new PATH( plane, T_polygon ); plane->SetShape( mainPolygon ); plane->m_name = TO_UTF8( zone->GetNetname() ); if( plane->m_name.size() == 0 ) { // This is one of those no connection zones, netcode=0, and it has no name. // Create a unique, bogus netname. NET* no_net = new NET( m_pcb->m_network ); no_net->m_net_id = "@:no_net_" + std::to_string( netlessZones++ ); // add the bogus net name to network->nets. m_pcb->m_network->m_nets.push_back( no_net ); // use the bogus net name in the netless zone. plane->m_name = no_net->m_net_id; } mainPolygon->layer_id = m_layerIds[ m_kicadLayer2pcb[ layer ] ]; // Handle the main outlines SHAPE_POLY_SET::ITERATOR iterator; VECTOR2I startpoint; bool is_first_point = true; for( iterator = zone->IterateWithHoles(); iterator; iterator++ ) { VECTOR2I point( iterator->x, iterator->y ); if( is_first_point ) { startpoint = point; is_first_point = false; } mainPolygon->AppendPoint( mapPt( point ) ); // this was the end of the main polygon if( iterator.IsEndContour() ) { // Close polygon mainPolygon->AppendPoint( mapPt( startpoint ) ); break; } } WINDOW* window = nullptr; PATH* cutout = nullptr; bool isStartContour = true; // handle the cutouts for( iterator++; iterator; iterator++ ) { if( isStartContour ) { is_first_point = true; window = new WINDOW( plane ); plane->AddWindow( window ); cutout = new PATH( window, T_polygon ); window->SetShape( cutout ); cutout->layer_id = m_layerIds[ m_kicadLayer2pcb[ layer ] ]; } // If the point in this iteration is the last of the contour, the next iteration // will start with a new contour. isStartContour = iterator.IsEndContour(); wxASSERT( window ); wxASSERT( cutout ); VECTOR2I point( iterator->x, iterator->y ); if( is_first_point ) { startpoint = point; is_first_point = false; } cutout->AppendPoint( mapPt( point ) ); // Close the polygon if( iterator.IsEndContour() ) cutout->AppendPoint( mapPt( startpoint ) ); } } // end build zones by layer } } //------------------------------------- { for( ZONE* zone : aBoard->Zones() ) { if( !zone->GetIsRuleArea() ) continue; // Keepout areas have a type: T_place_keepout, T_via_keepout, T_wire_keepout, // T_bend_keepout, T_elongate_keepout, T_keepout. // Pcbnew knows only T_keepout, T_via_keepout and T_wire_keepout DSN_T keepout_type; if( zone->GetDoNotAllowVias() && zone->GetDoNotAllowTracks() ) keepout_type = T_keepout; else if( zone->GetDoNotAllowVias() ) keepout_type = T_via_keepout; else if( zone->GetDoNotAllowTracks() ) keepout_type = T_wire_keepout; else keepout_type = T_keepout; // Now, build keepout polygon on each copper layer where the zone // keepout is living (keepout zones can live on many copper layers) const int copperCount = aBoard->GetCopperLayerCount(); for( int layer = 0; layer < copperCount; layer++ ) { if( layer == copperCount - 1 ) layer = B_Cu; if( !zone->IsOnLayer( PCB_LAYER_ID( layer ) ) ) continue; KEEPOUT* keepout = new KEEPOUT( m_pcb->m_structure, keepout_type ); m_pcb->m_structure->m_keepouts.push_back( keepout ); PATH* mainPolygon = new PATH( keepout, T_polygon ); keepout->SetShape( mainPolygon ); mainPolygon->layer_id = m_layerIds[ m_kicadLayer2pcb[ layer ] ]; // Handle the main outlines SHAPE_POLY_SET::ITERATOR iterator; bool is_first_point = true; VECTOR2I startpoint; for( iterator = zone->IterateWithHoles(); iterator; iterator++ ) { VECTOR2I point( iterator->x, iterator->y ); if( is_first_point ) { startpoint = point; is_first_point = false; } mainPolygon->AppendPoint( mapPt( point ) ); // this was the end of the main polygon if( iterator.IsEndContour() ) { mainPolygon->AppendPoint( mapPt( startpoint ) ); break; } } WINDOW* window = nullptr; PATH* cutout = nullptr; bool isStartContour = true; // handle the cutouts for( iterator++; iterator; iterator++ ) { if( isStartContour ) { is_first_point = true; window = new WINDOW( keepout ); keepout->AddWindow( window ); cutout = new PATH( window, T_polygon ); window->SetShape( cutout ); cutout->layer_id = m_layerIds[ m_kicadLayer2pcb[ layer ] ]; } isStartContour = iterator.IsEndContour(); wxASSERT( window ); wxASSERT( cutout ); VECTOR2I point( iterator->x, iterator->y ); if( is_first_point ) { startpoint = point; is_first_point = false; } cutout->AppendPoint( mapPt(point) ); // Close the polygon if( iterator.IsEndContour() ) cutout->AppendPoint( mapPt( startpoint ) ); } } } } //---------------------------- { PIN_REF empty( m_pcb->m_network ); std::string componentId; int highestNetCode = 0; NETINFO_LIST& netInfo = aBoard->GetNetInfo(); // find the highest numbered netCode within the board. for( NETINFO_LIST::iterator i = netInfo.begin(); i != netInfo.end(); ++i ) highestNetCode = std::max( highestNetCode, i->GetNetCode() ); deleteNETs(); // expand the net vector to highestNetCode+1, setting empty to NULL m_nets.resize( highestNetCode + 1, nullptr ); for( unsigned i = 1 /* skip "No Net" at [0] */; i < m_nets.size(); ++i ) m_nets[i] = new NET( m_pcb->m_network ); for( NETINFO_LIST::iterator i = netInfo.begin(); i != netInfo.end(); ++i ) { if( i->GetNetCode() > 0 ) m_nets[i->GetNetCode()]->m_net_id = TO_UTF8( i->GetNetname() ); } m_padstackset.clear(); for( FOOTPRINT* footprint : aBoard->Footprints() ) { IMAGE* image = makeIMAGE( aBoard, footprint ); componentId = TO_UTF8( footprint->GetReference() ); // Create a net list entry for all the actual pins in the current footprint. // Location of this code is critical because we fabricated some pin names to ensure // unique-ness within a footprint, and the life of this 'IMAGE* image' is not // necessarily long. The exported netlist will have some fabricated pin names in it. // If you don't like fabricated pin names, then make sure all pads within your // FOOTPRINTs are uniquely named! for( unsigned p = 0; p < image->m_pins.size(); ++p ) { PIN* pin = &image->m_pins[p]; int netcode = pin->m_kiNetCode; if( netcode > 0 ) { NET* net = m_nets[netcode]; net->m_pins.push_back( empty ); PIN_REF& pin_ref = net->m_pins.back(); pin_ref.component_id = componentId; pin_ref.pin_id = pin->m_pin_id; } } IMAGE* registered = m_pcb->m_library->LookupIMAGE( image ); if( registered != image ) { // If our new 'image' is not a unique IMAGE, delete it. // and use the registered one, known as 'image' after this. delete image; image = registered; } COMPONENT* comp = m_pcb->m_placement->LookupCOMPONENT( image->GetImageId() ); PLACE* place = new PLACE( comp ); comp->m_places.push_back( place ); place->SetRotation( footprint->GetOrientationDegrees() ); place->SetVertex( mapPt( footprint->GetPosition() ) ); place->m_component_id = componentId; place->m_part_number = TO_UTF8( footprint->GetValue() ); // footprint is flipped from bottom side, set side to T_back if( footprint->GetFlag() ) { EDA_ANGLE angle = ANGLE_180 - footprint->GetOrientation(); place->SetRotation( angle.Normalize().AsDegrees() ); place->m_side = T_back; } } // copy the SPECCTRA_DB::padstackset to the LIBRARY. Since we are // removing, do not increment the iterator for( PADSTACKSET::iterator i = m_padstackset.begin(); i != m_padstackset.end(); i = m_padstackset.begin() ) { PADSTACKSET::auto_type ps = m_padstackset.release( i ); PADSTACK* padstack = ps.release(); m_pcb->m_library->AddPadstack( padstack ); } // copy our SPECCTRA_DB::nets to the pcb->network for( unsigned n = 1; n < m_nets.size(); ++n ) { NET* net = m_nets[n]; if( net->m_pins.size() ) { // give ownership to pcb->network m_pcb->m_network->m_nets.push_back( net ); m_nets[n] = nullptr; } } } //-----< output vias used in netclasses >----------------------------------- { // Assume the netclass vias are all the same kind of thru, blind, or buried vias. // This is in lieu of either having each netclass via have its own layer pair in // the netclass dialog, or such control in the specctra export dialog. m_top_via_layer = 0; // first specctra cu layer is number zero. m_bot_via_layer = aBoard->GetCopperLayerCount()-1; // Add the via from the Default netclass first. The via container // in pcb->library preserves the sequence of addition. PADSTACK* via = makeVia( netSettings->m_DefaultNetClass->GetViaDiameter(), netSettings->m_DefaultNetClass->GetViaDrill(), m_top_via_layer, m_bot_via_layer ); // we AppendVia() this first one, there is no way it can be a duplicate, // the pcb->library via container is empty at this point. After this, // we'll have to use LookupVia(). wxASSERT( m_pcb->m_library->m_vias.size() == 0 ); m_pcb->m_library->AppendVia( via ); // set the "spare via" index at the start of the // pcb->library->spareViaIndex = pcb->library->vias.size(); // output the non-Default netclass vias for( const auto& [ name, netclass ] : netSettings->m_NetClasses ) { via = makeVia( netclass->GetViaDiameter(), netclass->GetViaDrill(), m_top_via_layer, m_bot_via_layer ); // maybe add 'via' to the library, but only if unique. PADSTACK* registered = m_pcb->m_library->LookupVia( via ); if( registered != via ) delete via; } } //---------------------------------------- { // export all of them for now, later we'll decide what controls we need on this. std::string netname; WIRING* wiring = m_pcb->m_wiring; PATH* path = nullptr; int old_netcode = -1; int old_width = -1; int old_layer = UNDEFINED_LAYER; for( PCB_TRACK* track : aBoard->Tracks() ) { if( !track->IsType( { PCB_TRACE_T, PCB_ARC_T } ) ) continue; int netcode = track->GetNetCode(); if( netcode == 0 ) continue; if( old_netcode != netcode || old_width != track->GetWidth() || old_layer != track->GetLayer() || ( path && path->points.back() != mapPt( track->GetStart() ) ) ) { old_width = track->GetWidth(); old_layer = track->GetLayer(); if( old_netcode != netcode ) { old_netcode = netcode; NETINFO_ITEM* net = aBoard->FindNet( netcode ); wxASSERT( net ); netname = TO_UTF8( net->GetNetname() ); } WIRE* wire = new WIRE( wiring ); wiring->wires.push_back( wire ); wire->m_net_id = netname; if( track->IsLocked() ) wire->m_wire_type = T_fix; // tracks with fix property are not returned in .ses files else wire->m_wire_type = T_route; // could be T_protect int kiLayer = track->GetLayer(); int pcbLayer = m_kicadLayer2pcb[kiLayer]; path = new PATH( wire ); wire->SetShape( path ); path->layer_id = m_layerIds[pcbLayer]; path->aperture_width = scale( old_width ); path->AppendPoint( mapPt( track->GetStart() ) ); } if( path ) // Should not occur path->AppendPoint( mapPt( track->GetEnd() ) ); } } //---------------------- { // Export all vias, once per unique size and drill diameter combo. for( PCB_TRACK* track : aBoard->Tracks() ) { if( track->Type() != PCB_VIA_T ) continue; PCB_VIA* via = static_cast( track ); int netcode = via->GetNetCode(); if( netcode == 0 ) continue; PADSTACK* padstack = makeVia( via ); PADSTACK* registered = m_pcb->m_library->LookupVia( padstack ); // if the one looked up is not our padstack, then delete our padstack // since it was a duplicate of one already registered. if( padstack != registered ) delete padstack; WIRE_VIA* dsnVia = new WIRE_VIA( m_pcb->m_wiring ); m_pcb->m_wiring->wire_vias.push_back( dsnVia ); dsnVia->m_padstack_id = registered->m_padstack_id; dsnVia->m_vertexes.push_back( mapPt( via->GetPosition() ) ); NETINFO_ITEM* net = aBoard->FindNet( netcode ); wxASSERT( net ); dsnVia->m_net_id = TO_UTF8( net->GetNetname() ); if( via->IsLocked() ) dsnVia->m_via_type = T_fix; // vias with fix property are not returned in .ses files else dsnVia->m_via_type = T_route; // could be T_protect } } //------------------------------------------------------ { // The pcb->library will output which is a combined list of part // padstacks and via padstacks. specctra dsn uses the to say which of // those padstacks are vias. // Output the vias in the padstack list here, by name only. This must be done after // exporting existing vias as WIRE_VIAs. VIA* vias = m_pcb->m_structure->m_via; for( unsigned viaNdx = 0; viaNdx < m_pcb->m_library->m_vias.size(); ++viaNdx ) vias->AppendVia( m_pcb->m_library->m_vias[viaNdx].m_padstack_id.c_str() ); } //--------------------------------------------------------- exportNETCLASS( netSettings->m_DefaultNetClass, aBoard ); for( const auto& [ name, netclass ] : netSettings->m_NetClasses ) exportNETCLASS( netclass, aBoard ); } void SPECCTRA_DB::exportNETCLASS( const std::shared_ptr& aNetClass, BOARD* aBoard ) { /* From page 11 of specctra spec: * * Routing and Placement Rule Hierarchies * * Routing and placement rules can be defined at multiple levels of design * specification. When a routing or placement rule is defined for an object at * multiple levels, a predefined routing or placement precedence order * automatically determines which rule to apply to the object. The routing rule * precedence order is * * pcb < layer < class < class layer < group_set < group_set layer < net < * net layer < group < group layer < fromto < fromto layer < class_class < * class_class layer < padstack < region < class region < net region < * class_class region * * A pcb rule (global rule for the PCB design) has the lowest precedence in the * hierarchy. A class-to-class region rule has the highest precedence. Rules * set at one level of the hierarchy override conflicting rules set at lower * levels. The placement rule precedence order is * * pcb < image_set < image < component < super cluster < room < * room_image_set < family_family < image_image * * A pcb rule (global rule for the PCB design) has the lowest precedence in the * hierarchy. An image-to-image rule has the highest precedence. Rules set at * one level of the hierarchy override conflicting rules set at lower levels. */ char text[256]; CLASS* clazz = new CLASS( m_pcb->m_network ); m_pcb->m_network->m_classes.push_back( clazz ); // Freerouter creates a class named 'default' anyway, and if we try to use that we end up // with two 'default' via rules so use something else as the name of our default class. clazz->m_class_id = TO_UTF8( aNetClass->GetName() ); for( NETINFO_ITEM* net : aBoard->GetNetInfo() ) { if( net->GetNetClass()->GetName() == clazz->m_class_id ) clazz->m_net_ids.push_back( TO_UTF8( net->GetNetname() ) ); } clazz->m_rules = new RULE( clazz, T_rule ); // output the track width. int trackWidth = aNetClass->GetTrackWidth(); std::snprintf( text, sizeof( text ), "(width %.6g)", scale( trackWidth ) ); clazz->m_rules->m_rules.push_back( text ); // output the clearance. int clearance = aNetClass->GetClearance(); std::snprintf( text, sizeof( text ), "(clearance %.6g)", scale( clearance ) + safetyMargin ); clazz->m_rules->m_rules.push_back( text ); if( aNetClass->GetName() == NETCLASS::Default ) clazz->m_class_id = "kicad_default"; // The easiest way to get the via name is to create a temporary via (which generates the // name internal to the PADSTACK), and then grab the name and delete the via. There are not // that many netclasses so this should never become a performance issue. PADSTACK* via = makeVia( aNetClass->GetViaDiameter(), aNetClass->GetViaDrill(), m_top_via_layer, m_bot_via_layer ); snprintf( text, sizeof(text), "(use_via %s)", via->GetPadstackId().c_str() ); clazz->m_circuit.push_back( text ); delete via; } void SPECCTRA_DB::FlipFOOTPRINTs( BOARD* aBoard ) { // DSN Images (=KiCad FOOTPRINTs and PADs) must be presented from the top view. // Note: to export footprints, the footprints must be flipped around the X axis, otherwise // the rotation angle is not good. for( FOOTPRINT* footprint : aBoard->Footprints() ) { footprint->SetFlag( 0 ); if( footprint->GetLayer() == B_Cu ) { footprint->Flip( footprint->GetPosition(), false ); footprint->SetFlag( 1 ); } } m_footprintsAreFlipped = true; } void SPECCTRA_DB::RevertFOOTPRINTs( BOARD* aBoard ) { if( !m_footprintsAreFlipped ) return; // DSN Images (=KiCad FOOTPRINTs and PADs) must be presented from the // top view. Restore those that were flipped. // Note: to export footprints, the footprints were flipped around the X axis, for( FOOTPRINT* footprint : aBoard->Footprints() ) { if( footprint->GetFlag() ) { footprint->Flip( footprint->GetPosition(), false ); footprint->SetFlag( 0 ); } } m_footprintsAreFlipped = false; } } // namespace DSN