/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 1992-2017 * Copyright (C) 1992-2022 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include // for KiROUND #include #include GERBER_DRAW_ITEM::GERBER_DRAW_ITEM( GERBER_FILE_IMAGE* aGerberImageFile ) : EDA_ITEM( nullptr, GERBER_DRAW_ITEM_T ) { m_GerberImageFile = aGerberImageFile; m_Shape = GBR_SEGMENT; m_Flashed = false; m_DCode = 0; m_UnitsMetric = false; m_LayerNegative = false; m_swapAxis = false; m_mirrorA = false; m_mirrorB = false; m_drawScale.x = m_drawScale.y = 1.0; m_lyrRotation = 0; if( m_GerberImageFile ) SetLayerParameters(); } GERBER_DRAW_ITEM::~GERBER_DRAW_ITEM() { } void GERBER_DRAW_ITEM::SetNetAttributes( const GBR_NETLIST_METADATA& aNetAttributes ) { m_netAttributes = aNetAttributes; if( ( m_netAttributes.m_NetAttribType & GBR_NETLIST_METADATA::GBR_NETINFO_CMP ) || ( m_netAttributes.m_NetAttribType & GBR_NETLIST_METADATA::GBR_NETINFO_PAD ) ) { m_GerberImageFile->m_ComponentsList.insert( std::make_pair( m_netAttributes.m_Cmpref, 0 ) ); } if( ( m_netAttributes.m_NetAttribType & GBR_NETLIST_METADATA::GBR_NETINFO_NET ) ) m_GerberImageFile->m_NetnamesList.insert( std::make_pair( m_netAttributes.m_Netname, 0 ) ); } int GERBER_DRAW_ITEM::GetLayer() const { // Return the layer this item is on, or 0 if the m_GerberImageFile is null. return m_GerberImageFile ? m_GerberImageFile->m_GraphicLayer : 0; } bool GERBER_DRAW_ITEM::GetTextD_CodePrms( int& aSize, VECTOR2I& aPos, EDA_ANGLE& aOrientation ) { // calculate the best size and orientation of the D_Code text if( m_DCode <= 0 ) return false; // No D_Code for this item if( m_Flashed || m_Shape == GBR_ARC ) aPos = m_Start; else // it is a line: aPos = ( m_Start + m_End) / 2; aPos = GetABPosition( aPos ); int size; // the best size for the text if( GetDcodeDescr() ) size = GetDcodeDescr()->GetShapeDim( this ); else size = std::min( m_Size.x, m_Size.y ); aOrientation = ANGLE_HORIZONTAL; if( m_Flashed ) { // A reasonable size for text is min_dim/3 because most of time this text has 3 chars. aSize = size / 3; } else // this item is a line { VECTOR2I delta = m_Start - m_End; EDA_ANGLE angle( delta ); aOrientation = angle.Normalize90(); // A reasonable size for text is size/2 because text needs margin below and above it. // a margin = size/4 seems good, expecting the line len is large enough to show 3 chars, // that is the case most of time. aSize = size / 2; } return true; } VECTOR2I GERBER_DRAW_ITEM::GetABPosition( const VECTOR2I& aXYPosition ) const { /* Note: RS274Xrevd_e is obscure about the order of transforms: * For instance: Rotation must be made after or before mirroring ? * Note: if something is changed here, GetYXPosition must reflect changes */ VECTOR2I abPos = aXYPosition + m_GerberImageFile->m_ImageJustifyOffset; if( m_swapAxis ) std::swap( abPos.x, abPos.y ); abPos += m_layerOffset + m_GerberImageFile->m_ImageOffset; abPos.x = KiROUND( abPos.x * m_drawScale.x ); abPos.y = KiROUND( abPos.y * m_drawScale.y ); EDA_ANGLE rotation( m_lyrRotation + m_GerberImageFile->m_ImageRotation, DEGREES_T ); if( !rotation.IsZero() ) RotatePoint( abPos, -rotation ); // Negate A axis if mirrored if( m_mirrorA ) abPos.x = -abPos.x; // abPos.y must be negated when no mirror, because draw axis is top to bottom if( !m_mirrorB ) abPos.y = -abPos.y; return abPos; } VECTOR2I GERBER_DRAW_ITEM::GetXYPosition( const VECTOR2I& aABPosition ) const { // do the inverse transform made by GetABPosition VECTOR2I xyPos = aABPosition; if( m_mirrorA ) xyPos.x = -xyPos.x; if( !m_mirrorB ) xyPos.y = -xyPos.y; EDA_ANGLE rotation( m_lyrRotation + m_GerberImageFile->m_ImageRotation, DEGREES_T ); if( !rotation.IsZero() ) RotatePoint( xyPos, rotation ); xyPos.x = KiROUND( xyPos.x / m_drawScale.x ); xyPos.y = KiROUND( xyPos.y / m_drawScale.y ); xyPos -= m_layerOffset + m_GerberImageFile->m_ImageOffset; if( m_swapAxis ) std::swap( xyPos.x, xyPos.y ); return xyPos - m_GerberImageFile->m_ImageJustifyOffset; } void GERBER_DRAW_ITEM::SetLayerParameters() { m_UnitsMetric = m_GerberImageFile->m_GerbMetric; m_swapAxis = m_GerberImageFile->m_SwapAxis; // false if A = X, B = Y; // true if A =Y, B = Y m_mirrorA = m_GerberImageFile->m_MirrorA; // true: mirror / axe A m_mirrorB = m_GerberImageFile->m_MirrorB; // true: mirror / axe B m_drawScale = m_GerberImageFile->m_Scale; // A and B scaling factor m_layerOffset = m_GerberImageFile->m_Offset; // Offset from OF command // Rotation from RO command: m_lyrRotation = m_GerberImageFile->m_LocalRotation; m_LayerNegative = m_GerberImageFile->GetLayerParams().m_LayerNegative; } wxString GERBER_DRAW_ITEM::ShowGBRShape() const { switch( m_Shape ) { case GBR_SEGMENT: return _( "Line" ); case GBR_ARC: return _( "Arc" ); case GBR_CIRCLE: return _( "Circle" ); case GBR_SPOT_OVAL: return wxT( "spot_oval" ); case GBR_SPOT_CIRCLE: return wxT( "spot_circle" ); case GBR_SPOT_RECT: return wxT( "spot_rect" ); case GBR_SPOT_POLY: return wxT( "spot_poly" ); case GBR_POLYGON: return wxT( "polygon" ); case GBR_SPOT_MACRO: { wxString name = wxT( "apt_macro" ); D_CODE* dcode = GetDcodeDescr(); if( dcode && dcode->GetMacro() ) name << wxT(" ") << dcode->GetMacro()->name; return name; } default: return wxT( "??" ); } } D_CODE* GERBER_DRAW_ITEM::GetDcodeDescr() const { if( ( m_DCode < FIRST_DCODE ) || ( m_DCode > LAST_DCODE ) ) return nullptr; if( m_GerberImageFile == nullptr ) return nullptr; return m_GerberImageFile->GetDCODE( m_DCode ); } const BOX2I GERBER_DRAW_ITEM::GetBoundingBox() const { // return a rectangle which is (pos,dim) in nature. therefore the +1 BOX2I bbox( m_Start, VECTOR2I( 1, 1 ) ); D_CODE* code = GetDcodeDescr(); // TODO(JE) GERBER_DRAW_ITEM maybe should actually be a number of subclasses. // Until/unless that is changed, we need to do different things depending on // what is actually being represented by this GERBER_DRAW_ITEM. switch( m_Shape ) { case GBR_POLYGON: { BOX2I bb = m_Polygon.BBox(); bbox.Inflate( bb.GetWidth() / 2, bb.GetHeight() / 2 ); bbox.SetOrigin( bb.GetOrigin() ); break; } case GBR_CIRCLE: { double radius = GetLineLength( m_Start, m_End ); bbox.Inflate( radius, radius ); break; } case GBR_ARC: { EDA_ANGLE angle( atan2( double( m_End.y - m_ArcCentre.y ), double( m_End.x - m_ArcCentre.x ) ) - atan2( double( m_Start.y - m_ArcCentre.y ), double( m_Start.x - m_ArcCentre.x ) ), RADIANS_T ); if( m_End == m_Start ) // Arc with the end point = start point is expected to be a circle. angle = ANGLE_360; else angle.Normalize(); SHAPE_ARC arc( m_ArcCentre, m_Start, angle ); bbox = arc.BBox( m_Size.x / 2 ); // m_Size.x is the line thickness break; } case GBR_SPOT_CIRCLE: { if( code ) { int radius = code->m_Size.x >> 1; bbox.Inflate( radius, radius ); } break; } case GBR_SPOT_RECT: { if( code ) bbox.Inflate( code->m_Size.x / 2, code->m_Size.y / 2 ); break; } case GBR_SPOT_OVAL: { if( code ) bbox.Inflate( code->m_Size.x /2, code->m_Size.y / 2 ); break; } case GBR_SPOT_POLY: { if( code ) { if( code->m_Polygon.OutlineCount() == 0 ) code->ConvertShapeToPolygon( this ); bbox.Inflate( code->m_Polygon.BBox().GetWidth() / 2, code->m_Polygon.BBox().GetHeight() / 2 ); } break; } case GBR_SPOT_MACRO: { if( code ) { // Update the shape drawings and the bounding box coordinates: code->GetMacro()->GetApertureMacroShape( this, m_Start ); // now the bounding box is valid: bbox = code->GetMacro()->GetBoundingBox(); } break; } case GBR_SEGMENT: { if( code && code->m_Shape == APT_RECT ) { if( m_Polygon.OutlineCount() == 0 ) { // We cannot initialize m_Polygon, because we are in a const function. // So use a temporary polygon SHAPE_POLY_SET poly_shape; ConvertSegmentToPolygon( &poly_shape ); bbox = poly_shape.BBox(); } else { bbox = m_Polygon.BBox(); } } else { int radius = ( m_Size.x + 1 ) / 2; int ymax = std::max( m_Start.y, m_End.y ) + radius; int xmax = std::max( m_Start.x, m_End.x ) + radius; int ymin = std::min( m_Start.y, m_End.y ) - radius; int xmin = std::min( m_Start.x, m_End.x ) - radius; bbox = BOX2I( VECTOR2I( xmin, ymin ), VECTOR2I( xmax - xmin + 1, ymax - ymin + 1 ) ); } break; } default: wxASSERT_MSG( false, wxT( "GERBER_DRAW_ITEM shape is unknown!" ) ); break; } // calculate the corners coordinates in current Gerber axis orientations VECTOR2I org = GetABPosition( bbox.GetOrigin() ); VECTOR2I end = GetABPosition( bbox.GetEnd() ); // Set the corners position: bbox.SetOrigin( org ); bbox.SetEnd( end ); bbox.Normalize(); return bbox; } void GERBER_DRAW_ITEM::MoveXY( const VECTOR2I& aMoveVector ) { m_Start += aMoveVector; m_End += aMoveVector; m_ArcCentre += aMoveVector; m_Polygon.Move( aMoveVector ); } bool GERBER_DRAW_ITEM::HasNegativeItems() { bool isClear = m_LayerNegative ^ m_GerberImageFile->m_ImageNegative; // if isClear is true, this item has negative shape return isClear; } void GERBER_DRAW_ITEM::Print( wxDC* aDC, const VECTOR2I& aOffset, GBR_DISPLAY_OPTIONS* aOptions ) { // used when a D_CODE is not found. default D_CODE to draw a flashed item static D_CODE dummyD_CODE( 0 ); bool isFilled; int radius; int halfPenWidth; static bool show_err; D_CODE* d_codeDescr = GetDcodeDescr(); if( d_codeDescr == nullptr ) d_codeDescr = &dummyD_CODE; COLOR4D color = m_GerberImageFile->GetPositiveDrawColor(); /* isDark is true if flash is positive and should use a drawing * color other than the background color, else use the background color * when drawing so that an erasure happens. */ bool isDark = !(m_LayerNegative ^ m_GerberImageFile->m_ImageNegative); if( !isDark ) { // draw in background color ("negative" color) color = aOptions->m_NegativeDrawColor; } isFilled = aOptions->m_DisplayLinesFill; switch( m_Shape ) { case GBR_POLYGON: isFilled = aOptions->m_DisplayPolygonsFill; if( !isDark ) isFilled = true; PrintGerberPoly( aDC, color, aOffset, isFilled ); break; case GBR_CIRCLE: radius = KiROUND( GetLineLength( m_Start, m_End ) ); halfPenWidth = m_Size.x >> 1; if( !isFilled ) { // draw the border of the pen's path using two circles, each as narrow as possible GRCircle( aDC, GetABPosition( m_Start ), radius - halfPenWidth, 0, color ); GRCircle( aDC, GetABPosition( m_Start ), radius + halfPenWidth, 0, color ); } else // Filled mode { GRCircle( aDC, GetABPosition( m_Start ), radius, m_Size.x, color ); } break; case GBR_ARC: // Currently, arcs plotted with a rectangular aperture are not supported. // a round pen only is expected. if( !isFilled ) { GRArc( aDC, GetABPosition( m_Start ), GetABPosition( m_End ), GetABPosition( m_ArcCentre ), 0, color ); } else { GRArc( aDC, GetABPosition( m_Start ), GetABPosition( m_End ), GetABPosition( m_ArcCentre ), m_Size.x, color ); } break; case GBR_SPOT_CIRCLE: case GBR_SPOT_RECT: case GBR_SPOT_OVAL: case GBR_SPOT_POLY: case GBR_SPOT_MACRO: isFilled = aOptions->m_DisplayFlashedItemsFill; d_codeDescr->DrawFlashedShape( this, aDC, color, m_Start, isFilled ); break; case GBR_SEGMENT: /* Plot a line from m_Start to m_End. * Usually, a round pen is used, but some Gerber files use a rectangular pen * In fact, any aperture can be used to plot a line. * currently: only a square pen is handled (I believe using a polygon gives a strange plot). */ if( d_codeDescr->m_Shape == APT_RECT ) { if( m_Polygon.OutlineCount() == 0 ) ConvertSegmentToPolygon(); PrintGerberPoly( aDC, color, aOffset, isFilled ); } else if( !isFilled ) { GRCSegm( aDC, GetABPosition( m_Start ), GetABPosition( m_End ), m_Size.x, color ); } else { GRFilledSegment( aDC, GetABPosition( m_Start ), GetABPosition( m_End ), m_Size.x, color ); } break; default: if( !show_err ) { wxMessageBox( wxT( "Trace_Segment() type error" ) ); show_err = true; } break; } } void GERBER_DRAW_ITEM::ConvertSegmentToPolygon( SHAPE_POLY_SET* aPolygon ) const { aPolygon->RemoveAllContours(); aPolygon->NewOutline(); VECTOR2I start = m_Start; VECTOR2I end = m_End; // make calculations more easy if ensure start.x < end.x // (only 2 quadrants to consider) if( start.x > end.x ) std::swap( start, end ); // calculate values relative to start point: VECTOR2I delta = end - start; // calculate corners for the first quadrant only (delta.x and delta.y > 0 ) // currently, delta.x already is > 0. // make delta.y > 0 bool change = delta.y < 0; if( change ) delta.y = -delta.y; // Now create the full polygon. // Due to previous changes, the shape is always something like // 3 4 // 2 5 // 1 6 VECTOR2I corner; corner.x -= m_Size.x/2; corner.y -= m_Size.y/2; VECTOR2I close = corner; aPolygon->Append( VECTOR2I( corner ) ); // Lower left corner, start point (1) corner.y += m_Size.y; aPolygon->Append( VECTOR2I( corner ) ); // upper left corner, start point (2) if( delta.x || delta.y ) { corner += delta; aPolygon->Append( VECTOR2I( corner ) ); // upper left corner, end point (3) } corner.x += m_Size.x; aPolygon->Append( VECTOR2I( corner ) ); // upper right corner, end point (4) corner.y -= m_Size.y; aPolygon->Append( VECTOR2I( corner ) ); // lower right corner, end point (5) if( delta.x || delta.y ) { corner -= delta; aPolygon->Append( VECTOR2I( corner ) ); // lower left corner, start point (6) } aPolygon->Append( VECTOR2I( close ) ); // close the shape // Create final polygon: if( change ) aPolygon->Mirror( false, true ); aPolygon->Move( VECTOR2I( start ) ); } void GERBER_DRAW_ITEM::ConvertSegmentToPolygon() { ConvertSegmentToPolygon( &m_Polygon ); } void GERBER_DRAW_ITEM::PrintGerberPoly( wxDC* aDC, const COLOR4D& aColor, const VECTOR2I& aOffset, bool aFilledShape ) { std::vector points; SHAPE_LINE_CHAIN& poly = m_Polygon.Outline( 0 ); int pointCount = poly.PointCount() - 1; points.reserve( pointCount ); for( int ii = 0; ii < pointCount; ii++ ) { VECTOR2I p( poly.CPoint( ii ).x, poly.CPoint( ii ).y ); points[ii] = p + aOffset; points[ii] = GetABPosition( points[ii] ); } GRClosedPoly( aDC, pointCount, &points[0], aFilledShape, aColor ); } void GERBER_DRAW_ITEM::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) { wxString msg; wxString text; msg = ShowGBRShape(); aList.emplace_back( _( "Type" ), msg ); // Display D_Code value with its attributes for items using a DCode: if( m_Shape == GBR_POLYGON ) // Has no DCode, but can have an attribute { msg = _( "Attribute" ); if( m_AperFunction.IsEmpty() ) text = _( "No attribute" ); else text = m_AperFunction; } else { msg.Printf( _( "D Code %d" ), m_DCode ); D_CODE* apertDescr = GetDcodeDescr(); if( !apertDescr || apertDescr->m_AperFunction.IsEmpty() ) text = _( "No attribute" ); else text = apertDescr->m_AperFunction; } aList.emplace_back( msg, text ); // Display graphic layer name msg = GERBER_FILE_IMAGE_LIST::GetImagesList().GetDisplayName( GetLayer(), true ); aList.emplace_back( _( "Graphic Layer" ), msg ); // Display item position auto xStart = EDA_UNIT_UTILS::UI::ToUserUnit( gerbIUScale, aFrame->GetUserUnits(), m_Start.x ); auto yStart = EDA_UNIT_UTILS::UI::ToUserUnit( gerbIUScale, aFrame->GetUserUnits(), m_Start.y ); auto xEnd = EDA_UNIT_UTILS::UI::ToUserUnit( gerbIUScale, aFrame->GetUserUnits(), m_End.x ); auto yEnd = EDA_UNIT_UTILS::UI::ToUserUnit( gerbIUScale, aFrame->GetUserUnits(), m_End.y ); if( m_Flashed ) { msg.Printf( wxT( "(%.4f, %.4f)" ), xStart, yStart ); aList.emplace_back( _( "Position" ), msg ); } else { msg.Printf( wxT( "(%.4f, %.4f)" ), xStart, yStart ); aList.emplace_back( _( "Start" ), msg ); msg.Printf( wxT( "(%.4f, %.4f)" ), xEnd, yEnd ); aList.emplace_back( _( "End" ), msg ); } // Display item rotation // The full rotation is Image rotation + m_lyrRotation // but m_lyrRotation is specific to this object // so we display only this parameter msg.Printf( wxT( "%f" ), m_lyrRotation ); aList.emplace_back( _( "Rotation" ), msg ); // Display item polarity (item specific) msg = m_LayerNegative ? _("Clear") : _("Dark"); aList.emplace_back( _( "Polarity" ), msg ); // Display mirroring (item specific) msg.Printf( wxT( "A:%s B:%s" ), m_mirrorA ? _( "Yes" ) : _( "No" ), m_mirrorB ? _( "Yes" ) : _( "No" ) ); aList.emplace_back( _( "Mirror" ), msg ); // Display AB axis swap (item specific) msg = m_swapAxis ? wxT( "A=Y B=X" ) : wxT( "A=X B=Y" ); aList.emplace_back( _( "AB axis" ), msg ); // Display net info, if exists if( m_netAttributes.m_NetAttribType == GBR_NETLIST_METADATA::GBR_NETINFO_UNSPECIFIED ) return; // Build full net info: wxString net_msg; wxString cmp_pad_msg; if( ( m_netAttributes.m_NetAttribType & GBR_NETLIST_METADATA::GBR_NETINFO_NET ) ) { net_msg = _( "Net:" ); net_msg << wxS( " " ); if( m_netAttributes.m_Netname.IsEmpty() ) net_msg << _( "" ); else net_msg << UnescapeString( m_netAttributes.m_Netname ); } if( ( m_netAttributes.m_NetAttribType & GBR_NETLIST_METADATA::GBR_NETINFO_PAD ) ) { if( m_netAttributes.m_PadPinFunction.IsEmpty() ) { cmp_pad_msg.Printf( _( "Cmp: %s Pad: %s" ), m_netAttributes.m_Cmpref, m_netAttributes.m_Padname.GetValue() ); } else { cmp_pad_msg.Printf( _( "Cmp: %s Pad: %s Fct %s" ), m_netAttributes.m_Cmpref, m_netAttributes.m_Padname.GetValue(), m_netAttributes.m_PadPinFunction.GetValue() ); } } else if( ( m_netAttributes.m_NetAttribType & GBR_NETLIST_METADATA::GBR_NETINFO_CMP ) ) { cmp_pad_msg = _( "Cmp:" ); cmp_pad_msg << wxS( " " ) << m_netAttributes.m_Cmpref; } aList.emplace_back( net_msg, cmp_pad_msg ); } BITMAPS GERBER_DRAW_ITEM::GetMenuImage() const { if( m_Flashed ) return BITMAPS::pad; switch( m_Shape ) { case GBR_SEGMENT: case GBR_ARC: case GBR_CIRCLE: return BITMAPS::add_line; case GBR_SPOT_OVAL: case GBR_SPOT_CIRCLE: case GBR_SPOT_RECT: case GBR_SPOT_POLY: case GBR_SPOT_MACRO: // should be handles by m_Flashed == true return BITMAPS::pad; case GBR_POLYGON: return BITMAPS::add_graphical_polygon; } return BITMAPS::info; } bool GERBER_DRAW_ITEM::HitTest( const VECTOR2I& aRefPos, int aAccuracy ) const { // In case the item has a very tiny width defined, allow it to be selected const int MIN_HIT_TEST_RADIUS = gerbIUScale.mmToIU( 0.01 ); // calculate aRefPos in XY Gerber axis: VECTOR2I ref_pos = GetXYPosition( aRefPos ); SHAPE_POLY_SET poly; switch( m_Shape ) { case GBR_POLYGON: poly = m_Polygon; return poly.Contains( VECTOR2I( ref_pos ), 0, aAccuracy ); case GBR_SPOT_POLY: poly = GetDcodeDescr()->m_Polygon; poly.Move( VECTOR2I( m_Start ) ); return poly.Contains( VECTOR2I( ref_pos ), 0, aAccuracy ); case GBR_SPOT_RECT: return GetBoundingBox().Contains( aRefPos ); case GBR_SPOT_OVAL: { BOX2I bbox = GetBoundingBox(); if( ! bbox.Contains( aRefPos ) ) return false; // This is similar to a segment with thickness = min( m_Size.x, m_Size.y ) int radius = std::min( m_Size.x, m_Size.y )/2; VECTOR2I start, end; if( m_Size.x > m_Size.y ) // Horizontal oval { int len = m_Size.y - m_Size.x; start.x = -len/2; end.x = len/2; } else // Vertical oval { int len = m_Size.x - m_Size.y; start.y = -len/2; end.y = len/2; } start += bbox.Centre(); end += bbox.Centre(); if( radius < MIN_HIT_TEST_RADIUS ) radius = MIN_HIT_TEST_RADIUS; return TestSegmentHit( aRefPos, start, end, radius ); } case GBR_ARC: { double radius = GetLineLength( m_Start, m_ArcCentre ); VECTOR2D test_radius = VECTOR2D( ref_pos ) - VECTOR2D( m_ArcCentre ); int size = ( ( m_Size.x < MIN_HIT_TEST_RADIUS ) ? MIN_HIT_TEST_RADIUS : m_Size.x ); // Are we close enough to the radius? bool radius_hit = ( std::fabs( test_radius.EuclideanNorm() - radius) < size ); if( radius_hit ) { // Now check that we are within the arc angle VECTOR2D start = VECTOR2D( m_Start ) - VECTOR2D( m_ArcCentre ); VECTOR2D end = VECTOR2D( m_End ) - VECTOR2D( m_ArcCentre ); EDA_ANGLE start_angle( start ); EDA_ANGLE end_angle( end ); start_angle.Normalize(); end_angle.Normalize(); if( m_Start == m_End ) { start_angle = ANGLE_0; end_angle = ANGLE_360; } else if( end_angle < start_angle ) { end_angle += ANGLE_360; } EDA_ANGLE test_angle( test_radius ); test_angle.Normalize(); return ( test_angle > start_angle && test_angle < end_angle ); } return false; } case GBR_SPOT_MACRO: // Aperture macro polygons are already in absolute coordinates auto p = GetDcodeDescr()->GetMacro()->GetApertureMacroShape( this, m_Start ); return p->Contains( VECTOR2I( aRefPos ), -1, aAccuracy ); } // TODO: a better analyze of the shape (perhaps create a D_CODE::HitTest for flashed items) int radius = std::min( m_Size.x, m_Size.y ) >> 1; if( radius < MIN_HIT_TEST_RADIUS ) radius = MIN_HIT_TEST_RADIUS; if( m_Flashed ) return HitTestPoints( m_Start, ref_pos, radius ); else return TestSegmentHit( ref_pos, m_Start, m_End, radius ); } bool GERBER_DRAW_ITEM::HitTest( const BOX2I& aRefArea, bool aContained, int aAccuracy ) const { VECTOR2I pos = GetABPosition( m_Start ); if( aRefArea.Contains( pos ) ) return true; pos = GetABPosition( m_End ); if( aRefArea.Contains( pos ) ) return true; return false; } #if defined(DEBUG) void GERBER_DRAW_ITEM::Show( int nestLevel, std::ostream& os ) const { NestedSpace( nestLevel, os ) << '<' << GetClass().Lower().mb_str() << " shape=\"" << m_Shape << '"' << " addr=\"" << std::hex << this << std::dec << '"' << " layer=\"" << GetLayer() << '"' << " size=\"" << m_Size << '"' << " flags=\"" << m_flags << '"' << " status=\"" << GetStatus() << '"' << "" << ""; os << "\n"; } #endif void GERBER_DRAW_ITEM::ViewGetLayers( int aLayers[], int& aCount ) const { aCount = 2; aLayers[0] = GERBER_DRAW_LAYER( GetLayer() ); aLayers[1] = GERBER_DCODE_LAYER( aLayers[0] ); } const BOX2I GERBER_DRAW_ITEM::ViewBBox() const { return GetBoundingBox(); } double GERBER_DRAW_ITEM::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const { // DCodes will be shown only if zoom is appropriate: // Returns the level of detail of the item. // A level of detail (LOD) is the minimal VIEW scale that // is sufficient for an item to be shown on a given layer. if( IsDCodeLayer( aLayer ) ) { int size = 0; switch( m_Shape ) { case GBR_SPOT_MACRO: size = GetDcodeDescr()->GetMacro()->GetBoundingBox().GetWidth(); break; case GBR_ARC: size = GetLineLength( m_Start, m_ArcCentre ); break; default: size = m_Size.x; } // the level of details is chosen experimentally, to show // only a readable text: double level = (double) gerbIUScale.mmToIU( 3 ); return level / ( size + 1 ); } // Other layers are shown without any conditions return 0.0; } INSPECT_RESULT GERBER_DRAW_ITEM::Visit( INSPECTOR inspector, void* testData, const std::vector& aScanTypes ) { for( KICAD_T scanType : aScanTypes ) { if( scanType == Type() ) { if( INSPECT_RESULT::QUIT == inspector( this, testData ) ) return INSPECT_RESULT::QUIT; } } return INSPECT_RESULT::CONTINUE; } wxString GERBER_DRAW_ITEM::GetItemDescription( UNITS_PROVIDER* aUnitsProvider ) const { wxString layerName = GERBER_FILE_IMAGE_LIST::GetImagesList().GetDisplayName( GetLayer(), true ); return wxString::Format( _( "%s (D%d) on layer %d: %s" ), ShowGBRShape(), m_DCode, GetLayer() + 1, layerName ); }