/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015-2016 Mario Luzeiro * Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file ring_2d.cpp */ #include "ring_2d.h" #include "../../../3d_fastmath.h" #include "../ray.h" #include RING_2D::RING_2D( const SFVEC2F& aCenter, float aInnerRadius, float aOuterRadius, const BOARD_ITEM& aBoardItem ) : OBJECT_2D( OBJECT_2D_TYPE::RING, aBoardItem ) { wxASSERT( aInnerRadius < aOuterRadius ); m_center = aCenter; m_inner_radius = aInnerRadius; m_outer_radius = aOuterRadius; m_inner_radius_squared = aInnerRadius * aInnerRadius; m_outer_radius_squared = aOuterRadius * aOuterRadius; m_bbox.Reset(); m_bbox.Set( m_center - SFVEC2F( aOuterRadius, aOuterRadius ), m_center + SFVEC2F( aOuterRadius, aOuterRadius ) ); m_bbox.ScaleNextUp(); m_centroid = m_bbox.GetCenter(); wxASSERT( m_bbox.IsInitialized() ); } bool RING_2D::Overlaps( const BBOX_2D& aBBox ) const { // NOT IMPLEMENTED, why? return false; } bool RING_2D::Intersects( const BBOX_2D& aBBox ) const { // !TODO: check the inside for a great improvement return aBBox.Intersects( m_center, m_outer_radius_squared ); } bool RING_2D::Intersect( const RAYSEG2D& aSegRay, float* aOutT, SFVEC2F* aNormalOut ) const { // This code used directly from Steve Marschner's CS667 framework // http://cs665pd.googlecode.com/svn/trunk/photon/sphere.cpp // Compute some factors used in computation const float qx = ( aSegRay.m_Start.x - m_center.x ); const float qy = ( aSegRay.m_Start.y - m_center.y ); const float qd = qx * aSegRay.m_Dir.x + qy * aSegRay.m_Dir.y; const float qq = qx * qx + qy * qy; // solving the quadratic equation for t at the pts of intersection // dd*t^2 + (2*qd)*t + (qq-r^2) = 0 const float discriminantsqr = qd * qd - qq; const float discriminantsqr_outer = discriminantsqr + m_outer_radius_squared; // If the discriminant is less than zero, there is no intersection if( discriminantsqr_outer < FLT_EPSILON ) return false; // Otherwise check and make sure that the intersections occur on the ray (t // > 0) and return the closer one const float discriminant = sqrt( discriminantsqr_outer ); float t = ( -qd - discriminant ); if( ( t > FLT_EPSILON ) && ( t < aSegRay.m_Length ) ) { if( aNormalOut ) { SFVEC2F hitPoint = aSegRay.at( t ); *aNormalOut = (hitPoint - m_center) / m_outer_radius; } } else { const float discriminantsqr_inter = discriminantsqr + m_inner_radius_squared; if( discriminantsqr_inter > FLT_EPSILON ) { const float discriminant_inner = sqrt( discriminantsqr_inter ); const float t2_inner = ( -qd + discriminant_inner ); if( ( t2_inner > FLT_EPSILON ) && ( t2_inner < aSegRay.m_Length ) ) { t = t2_inner; if( aNormalOut ) { const SFVEC2F hitPoint = aSegRay.at( t2_inner ); *aNormalOut = ( m_center - hitPoint ) / m_inner_radius; } } else { return false; } } else { return false; } } wxASSERT( (t > 0.0f) && (t <= aSegRay.m_Length) ); // Convert the intersection to a normalized 0.0 .. 1.0 if( aOutT ) *aOutT = t / aSegRay.m_Length; return true; } INTERSECTION_RESULT RING_2D::IsBBoxInside( const BBOX_2D& aBBox ) const { return INTERSECTION_RESULT::MISSES; } bool RING_2D::IsPointInside( const SFVEC2F& aPoint ) const { const SFVEC2F v = m_center - aPoint; const float dot = glm::dot( v, v ); if( ( dot <= m_outer_radius_squared ) && ( dot >= m_inner_radius_squared ) ) return true; return false; }