/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2016 CERN * Copyright (C) 2016-2020 KiCad Developers, see AUTHORS.txt for contributors. * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tools/pcb_tool_base.h" #include "pns_kicad_iface.h" #include "pns_arc.h" #include "pns_routing_settings.h" #include "pns_sizes_settings.h" #include "pns_item.h" #include "pns_solid.h" #include "pns_segment.h" #include "pns_node.h" #include "pns_router.h" #include "pns_debug_decorator.h" #include "router_preview_item.h" typedef VECTOR2I::extended_type ecoord; class PNS_PCBNEW_RULE_RESOLVER : public PNS::RULE_RESOLVER { public: PNS_PCBNEW_RULE_RESOLVER( BOARD* aBoard, PNS::ROUTER_IFACE* aRouterIface ); virtual ~PNS_PCBNEW_RULE_RESOLVER(); virtual bool CollideHoles( const PNS::ITEM* aA, const PNS::ITEM* aB, bool aNeedMTV, VECTOR2I* aMTV ) const override; virtual int Clearance( const PNS::ITEM* aA, const PNS::ITEM* aB ) override; //virtual int Clearance( int aNetCode ) const override; virtual int DpCoupledNet( int aNet ) override; virtual int DpNetPolarity( int aNet ) override; virtual bool DpNetPair( const PNS::ITEM* aItem, int& aNetP, int& aNetN ) override; virtual bool IsDiffPair( const PNS::ITEM* aA, const PNS::ITEM* aB ) override; virtual bool QueryConstraint( PNS::CONSTRAINT_TYPE aType, const PNS::ITEM* aItemA, const PNS::ITEM* aItemB, int aLayer, PNS::CONSTRAINT* aConstraint ) override; virtual wxString NetName( int aNet ) override; private: struct CLEARANCE_ENT { int coupledNet; int dpClearance; int clearance; }; int holeRadius( const PNS::ITEM* aItem ) const; int matchDpSuffix( const wxString& aNetName, wxString& aComplementNet, wxString& aBaseDpName ); PNS::ROUTER_IFACE* m_routerIface; BOARD* m_board; }; PNS_PCBNEW_RULE_RESOLVER::PNS_PCBNEW_RULE_RESOLVER( BOARD* aBoard, PNS::ROUTER_IFACE* aRouterIface ) : m_routerIface( aRouterIface ), m_board( aBoard ) { } PNS_PCBNEW_RULE_RESOLVER::~PNS_PCBNEW_RULE_RESOLVER() { } int PNS_PCBNEW_RULE_RESOLVER::holeRadius( const PNS::ITEM* aItem ) const { if( aItem->Kind() == PNS::ITEM::SOLID_T ) { const D_PAD* pad = dynamic_cast( aItem->Parent() ); if( pad && pad->GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE ) return pad->GetDrillSize().x / 2; } else if( aItem->Kind() == PNS::ITEM::VIA_T ) { const ::VIA* via = dynamic_cast( aItem->Parent() ); if( via ) return via->GetDrillValue() / 2; } return 0; } bool PNS_PCBNEW_RULE_RESOLVER::CollideHoles( const PNS::ITEM* aA, const PNS::ITEM* aB, bool aNeedMTV, VECTOR2I* aMTV ) const { VECTOR2I pos_a = aA->Shape()->Centre(); VECTOR2I pos_b = aB->Shape()->Centre(); // Holes with identical locations are allowable if( pos_a == pos_b ) return false; int radius_a = holeRadius( aA ); int radius_b = holeRadius( aB ); // Do both objects have holes? if( radius_a > 0 && radius_b > 0 ) { int holeToHoleMin = m_board->GetDesignSettings().m_HoleToHoleMin; ecoord min_dist = holeToHoleMin + radius_a + radius_b; ecoord min_dist_sq = min_dist * min_dist; const VECTOR2I delta = pos_b - pos_a; ecoord dist_sq = delta.SquaredEuclideanNorm(); if( dist_sq == 0 || dist_sq < min_dist_sq ) { if( aNeedMTV ) *aMTV = delta.Resize( min_dist - sqrt( dist_sq ) + 3 ); // fixme: apparent rounding error return true; } } return false; } bool PNS_PCBNEW_RULE_RESOLVER::IsDiffPair( const PNS::ITEM* aA, const PNS::ITEM* aB ) { int net_p, net_n; if( !DpNetPair( aA, net_p, net_n ) ) return false; if( aA->Net() == net_p && aB->Net() == net_n ) return true; if( aB->Net() == net_p && aA->Net() == net_n ) return true; return false; } bool PNS_PCBNEW_RULE_RESOLVER::QueryConstraint( PNS::CONSTRAINT_TYPE aType, const PNS::ITEM* aItemA, const PNS::ITEM* aItemB, int aLayer, PNS::CONSTRAINT* aConstraint ) { std::shared_ptr drcEngine = m_board->GetDesignSettings().m_DRCEngine; if( !drcEngine ) return false; DRC_CONSTRAINT_TYPE_T hostRuleType; switch ( aType ) { case PNS::CONSTRAINT_TYPE::CT_CLEARANCE: hostRuleType = DRC_CONSTRAINT_TYPE_CLEARANCE; break; case PNS::CONSTRAINT_TYPE::CT_WIDTH: hostRuleType = DRC_CONSTRAINT_TYPE_TRACK_WIDTH; break; case PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP: hostRuleType = DRC_CONSTRAINT_TYPE_DIFF_PAIR_GAP; break; case PNS::CONSTRAINT_TYPE::CT_LENGTH: hostRuleType = DRC_CONSTRAINT_TYPE_LENGTH; break; case PNS::CONSTRAINT_TYPE::CT_VIA_DIAMETER: hostRuleType = DRC_CONSTRAINT_TYPE_VIA_DIAMETER; break; case PNS::CONSTRAINT_TYPE::CT_VIA_HOLE: hostRuleType = DRC_CONSTRAINT_TYPE_HOLE_SIZE; break; default: return false; // should not happen } // A track being routed may not have a BOARD_ITEM associated yet. static TRACK dummyTrack( m_board ); static ARC dummyArc( m_board ); static VIA dummyVia( m_board ); const BOARD_ITEM* parentA = aItemA ? aItemA->Parent() : nullptr; const BOARD_ITEM* parentB = aItemB ? aItemB->Parent() : nullptr; DRC_CONSTRAINT hostConstraint; if( !parentA ) { switch( aItemA->Kind() ) { case PNS::ITEM::ARC_T: dummyArc.SetLayer( (PCB_LAYER_ID) aLayer ); parentA = &dummyArc; break; case PNS::ITEM::VIA_T: dummyVia.SetLayer( (PCB_LAYER_ID) aLayer ); parentA = &dummyVia; break; default: dummyTrack.SetLayer( (PCB_LAYER_ID) aLayer ); parentA = &dummyTrack; break; } } if( parentA ) { hostConstraint = drcEngine->EvalRulesForItems( hostRuleType, parentA, parentB, (PCB_LAYER_ID) aLayer ); } if( hostConstraint.IsNull() ) return false; switch ( aType ) { case PNS::CONSTRAINT_TYPE::CT_CLEARANCE: case PNS::CONSTRAINT_TYPE::CT_WIDTH: case PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP: case PNS::CONSTRAINT_TYPE::CT_VIA_DIAMETER: case PNS::CONSTRAINT_TYPE::CT_VIA_HOLE: aConstraint->m_Value = hostConstraint.GetValue(); aConstraint->m_RuleName = hostConstraint.GetName(); aConstraint->m_Type = aType; return true; default: return false; } } int PNS_PCBNEW_RULE_RESOLVER::Clearance( const PNS::ITEM* aA, const PNS::ITEM* aB ) { PNS::CONSTRAINT constraint; bool ok = false; int rv = 0; if( IsDiffPair( aA, aB ) ) { // for diff pairs, we use the gap value for shoving/dragging ok = QueryConstraint( PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP, aA, aB, aA->Layer(), &constraint ); rv = constraint.m_Value.Opt(); } if( !ok ) { ok = QueryConstraint( PNS::CONSTRAINT_TYPE::CT_CLEARANCE, aA, aB, aA->Layer(), &constraint ); rv = constraint.m_Value.Min(); } // still no valid clearance rule? fall back to global minimum. if( !ok ) { rv = m_board->GetDesignSettings().m_MinClearance; } return rv; } int PNS_KICAD_IFACE_BASE::inheritTrackWidth( PNS::ITEM* aItem ) { VECTOR2I p; assert( aItem->Owner() != NULL ); switch( aItem->Kind() ) { case PNS::ITEM::VIA_T: p = static_cast( aItem )->Pos(); break; case PNS::ITEM::SOLID_T: p = static_cast( aItem )->Pos(); break; case PNS::ITEM::SEGMENT_T: return static_cast( aItem )->Width(); default: return 0; } PNS::JOINT* jt = static_cast( aItem->Owner() )->FindJoint( p, aItem ); assert( jt != NULL ); int mval = INT_MAX; PNS::ITEM_SET linkedSegs = jt->Links(); linkedSegs.ExcludeItem( aItem ).FilterKinds( PNS::ITEM::SEGMENT_T ); for( PNS::ITEM* item : linkedSegs.Items() ) { int w = static_cast( item )->Width(); mval = std::min( w, mval ); } return ( mval == INT_MAX ? 0 : mval ); } bool PNS_KICAD_IFACE_BASE::ImportSizes( PNS::SIZES_SETTINGS& aSizes, PNS::ITEM* aStartItem, int aNet ) { BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); PNS::CONSTRAINT constraint; int trackWidth = bds.m_TrackMinWidth; if( bds.m_UseConnectedTrackWidth && aStartItem != nullptr ) { trackWidth = inheritTrackWidth( aStartItem ); } else if( bds.UseNetClassTrack() && aStartItem ) // netclass value { if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_WIDTH, aStartItem, nullptr, aStartItem->Layer(), &constraint ) ) { trackWidth = constraint.m_Value.OptThenMin(); } } else { trackWidth = bds.GetCurrentTrackWidth(); } aSizes.SetTrackWidth( trackWidth ); int viaDiameter = bds.m_ViasMinSize; int viaDrill = bds.m_MinThroughDrill; if( bds.UseNetClassVia() && aStartItem ) // netclass value { if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_VIA_DIAMETER, aStartItem, nullptr, aStartItem->Layer(), &constraint ) ) { viaDiameter = constraint.m_Value.OptThenMin(); } if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_VIA_HOLE, aStartItem, nullptr, aStartItem->Layer(), &constraint ) ) { viaDrill = constraint.m_Value.OptThenMin(); } } else { viaDiameter = bds.GetCurrentViaSize(); viaDrill = bds.GetCurrentViaDrill(); } aSizes.SetViaDiameter( viaDiameter ); aSizes.SetViaDrill( viaDrill ); int diffPairWidth = bds.m_TrackMinWidth; int diffPairGap = bds.m_MinClearance; int diffPairViaGap = bds.m_MinClearance; if( bds.UseNetClassDiffPair() && aStartItem ) { if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_WIDTH, aStartItem, nullptr, aStartItem->Layer(), &constraint ) ) { diffPairWidth = constraint.m_Value.OptThenMin(); } if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP, aStartItem, nullptr, aStartItem->Layer(), &constraint ) ) { diffPairGap = constraint.m_Value.OptThenMin(); diffPairViaGap = constraint.m_Value.OptThenMin(); } } else if( bds.UseCustomDiffPairDimensions() ) { diffPairWidth = bds.GetCustomDiffPairWidth(); diffPairGap = bds.GetCustomDiffPairGap(); diffPairViaGap = bds.GetCustomDiffPairViaGap(); } //printf( "DPWidth: %d gap %d\n", diffPairWidth, diffPairGap ); aSizes.SetDiffPairWidth( diffPairWidth ); aSizes.SetDiffPairGap( diffPairGap ); aSizes.SetDiffPairViaGap( diffPairViaGap ); aSizes.ClearLayerPairs(); return true; } int PNS_PCBNEW_RULE_RESOLVER::matchDpSuffix( const wxString& aNetName, wxString& aComplementNet, wxString& aBaseDpName ) { int rv = 0; if( aNetName.EndsWith( "+" ) ) { aComplementNet = "-"; rv = 1; } else if( aNetName.EndsWith( "P" ) ) { aComplementNet = "N"; rv = 1; } else if( aNetName.EndsWith( "-" ) ) { aComplementNet = "+"; rv = -1; } else if( aNetName.EndsWith( "N" ) ) { aComplementNet = "P"; rv = -1; } // Match P followed by 2 digits else if( aNetName.Right( 2 ).IsNumber() && aNetName.Right( 3 ).Left( 1 ) == "P" ) { aComplementNet = "N" + aNetName.Right( 2 ); rv = 1; } // Match P followed by 1 digit else if( aNetName.Right( 1 ).IsNumber() && aNetName.Right( 2 ).Left( 1 ) == "P" ) { aComplementNet = "N" + aNetName.Right( 1 ); rv = 1; } // Match N followed by 2 digits else if( aNetName.Right( 2 ).IsNumber() && aNetName.Right( 3 ).Left( 1 ) == "N" ) { aComplementNet = "P" + aNetName.Right( 2 ); rv = -1; } // Match N followed by 1 digit else if( aNetName.Right( 1 ).IsNumber() && aNetName.Right( 2 ).Left( 1 ) == "N" ) { aComplementNet = "P" + aNetName.Right( 1 ); rv = -1; } if( rv != 0 ) { aBaseDpName = aNetName.Left( aNetName.Length() - aComplementNet.Length() ); aComplementNet = aBaseDpName + aComplementNet; } return rv; } int PNS_PCBNEW_RULE_RESOLVER::DpCoupledNet( int aNet ) { wxString refName = m_board->FindNet( aNet )->GetNetname(); wxString dummy, coupledNetName; if( matchDpSuffix( refName, coupledNetName, dummy ) ) { NETINFO_ITEM* net = m_board->FindNet( coupledNetName ); if( !net ) return -1; return net->GetNet(); } return -1; } wxString PNS_PCBNEW_RULE_RESOLVER::NetName( int aNet ) { return m_board->FindNet( aNet )->GetNetname(); } int PNS_PCBNEW_RULE_RESOLVER::DpNetPolarity( int aNet ) { wxString refName = m_board->FindNet( aNet )->GetNetname(); wxString dummy1, dummy2; return matchDpSuffix( refName, dummy1, dummy2 ); } bool PNS_PCBNEW_RULE_RESOLVER::DpNetPair( const PNS::ITEM* aItem, int& aNetP, int& aNetN ) { if( !aItem || !aItem->Parent() || !aItem->Parent()->GetNet() ) return false; wxString netNameP = aItem->Parent()->GetNet()->GetNetname(); wxString netNameN, netNameCoupled, netNameBase; int r = matchDpSuffix( netNameP, netNameCoupled, netNameBase ); if( r == 0 ) return false; else if( r == 1 ) { netNameN = netNameCoupled; } else { netNameN = netNameP; netNameP = netNameCoupled; } // wxLogTrace( "PNS","p %s n %s base %s\n", (const char *)netNameP.c_str(), (const char *)netNameN.c_str(), (const char *)netNameBase.c_str() ); NETINFO_ITEM* netInfoP = m_board->FindNet( netNameP ); NETINFO_ITEM* netInfoN = m_board->FindNet( netNameN ); //wxLogTrace( "PNS","ip %p in %p\n", netInfoP, netInfoN); if( !netInfoP || !netInfoN ) return false; aNetP = netInfoP->GetNet(); aNetN = netInfoN->GetNet(); return true; } class PNS_PCBNEW_DEBUG_DECORATOR: public PNS::DEBUG_DECORATOR { public: PNS_PCBNEW_DEBUG_DECORATOR( KIGFX::VIEW* aView = NULL ): PNS::DEBUG_DECORATOR(), m_view( NULL ), m_items( NULL ) { SetView( aView ); } ~PNS_PCBNEW_DEBUG_DECORATOR() { Clear(); delete m_items; } void SetView( KIGFX::VIEW* aView ) { Clear(); delete m_items; m_items = NULL; m_view = aView; if( m_view == NULL ) return; m_items = new KIGFX::VIEW_GROUP( m_view ); m_items->SetLayer( LAYER_SELECT_OVERLAY ) ; m_view->Add( m_items ); } void AddPoint( VECTOR2I aP, int aColor, const std::string aName = "") override { SHAPE_LINE_CHAIN l; l.Append( aP - VECTOR2I( -50000, -50000 ) ); l.Append( aP + VECTOR2I( -50000, -50000 ) ); AddLine( l, aColor, 10000 ); l.Clear(); l.Append( aP - VECTOR2I( 50000, -50000 ) ); l.Append( aP + VECTOR2I( 50000, -50000 ) ); AddLine( l, aColor, 10000 ); } void AddBox( BOX2I aB, int aColor, const std::string aName = "" ) override { SHAPE_LINE_CHAIN l; VECTOR2I o = aB.GetOrigin(); VECTOR2I s = aB.GetSize(); l.Append( o ); l.Append( o.x + s.x, o.y ); l.Append( o.x + s.x, o.y + s.y ); l.Append( o.x, o.y + s.y ); l.Append( o ); AddLine( l, aColor, 10000 ); } void AddSegment( SEG aS, int aColor, const std::string aName = "") override { SHAPE_LINE_CHAIN l; l.Append( aS.A ); l.Append( aS.B ); AddLine( l, aColor, 10000 ); } void AddDirections( VECTOR2D aP, int aMask, int aColor, const std::string aName = "") override { BOX2I b( aP - VECTOR2I( 10000, 10000 ), VECTOR2I( 20000, 20000 ) ); AddBox( b, aColor ); for( int i = 0; i < 8; i++ ) { if( ( 1 << i ) & aMask ) { VECTOR2I v = DIRECTION_45( ( DIRECTION_45::Directions ) i ).ToVector() * 100000; AddSegment( SEG( aP, aP + v ), aColor ); } } } void AddLine( const SHAPE_LINE_CHAIN& aLine, int aType, int aWidth, const std::string aName = "" ) override { if( !m_view ) return; ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( NULL, m_view ); pitem->Line( aLine, aWidth, aType ); m_items->Add( pitem ); // Should not be needed, as m_items has been passed as a parent group in alloc; m_view->Update( m_items ); } void Clear() override { if( m_view && m_items ) { m_items->FreeItems(); m_view->Update( m_items ); } } private: KIGFX::VIEW* m_view; KIGFX::VIEW_GROUP* m_items; }; PNS::DEBUG_DECORATOR* PNS_KICAD_IFACE_BASE::GetDebugDecorator() { return m_debugDecorator; } PNS_KICAD_IFACE_BASE::PNS_KICAD_IFACE_BASE() { m_ruleResolver = nullptr; m_board = nullptr; m_world = nullptr; m_debugDecorator = nullptr; } PNS_KICAD_IFACE::PNS_KICAD_IFACE() { m_tool = nullptr; m_view = nullptr; m_previewItems = nullptr; m_dispOptions = nullptr; } PNS_KICAD_IFACE_BASE::~PNS_KICAD_IFACE_BASE() { } PNS_KICAD_IFACE::~PNS_KICAD_IFACE() { delete m_ruleResolver; delete m_debugDecorator; if( m_previewItems ) { m_previewItems->FreeItems(); delete m_previewItems; } } std::unique_ptr PNS_KICAD_IFACE_BASE::syncPad( D_PAD* aPad ) { LAYER_RANGE layers( 0, MAX_CU_LAYERS - 1 ); // ignore non-copper pads except for those with holes if( ( aPad->GetLayerSet() & LSET::AllCuMask() ).none() && aPad->GetDrillSize().x == 0 ) return NULL; switch( aPad->GetAttribute() ) { case PAD_ATTRIB_PTH: case PAD_ATTRIB_NPTH: break; case PAD_ATTRIB_CONN: case PAD_ATTRIB_SMD: { LSET lmsk = aPad->GetLayerSet(); bool is_copper = false; for( int i = 0; i < MAX_CU_LAYERS; i++ ) { if( lmsk[i] ) { is_copper = true; if( aPad->GetAttribute() != PAD_ATTRIB_NPTH ) layers = LAYER_RANGE( i ); break; } } if( !is_copper ) return NULL; } break; default: wxLogTrace( "PNS", "unsupported pad type 0x%x", aPad->GetAttribute() ); return NULL; } std::unique_ptr< PNS::SOLID > solid( new PNS::SOLID ); if( aPad->GetDrillSize().x > 0 ) { SHAPE_SEGMENT* slot = (SHAPE_SEGMENT*) aPad->GetEffectiveHoleShape()->Clone(); if( aPad->GetAttribute() != PAD_ATTRIB_NPTH ) { BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); slot->SetWidth( slot->GetWidth() + bds.GetHolePlatingThickness() * 2 ); } solid->SetAlternateShape( slot ); } if( aPad->GetAttribute() == PAD_ATTRIB_NPTH ) solid->SetRoutable( false ); solid->SetLayers( layers ); solid->SetNet( aPad->GetNetCode() ); solid->SetParent( aPad ); solid->SetPadToDie( aPad->GetPadToDieLength() ); wxPoint wx_c = aPad->ShapePos(); wxPoint offset = aPad->GetOffset(); VECTOR2I c( wx_c.x, wx_c.y ); RotatePoint( &offset, aPad->GetOrientation() ); solid->SetPos( VECTOR2I( c.x - offset.x, c.y - offset.y ) ); solid->SetOffset( VECTOR2I( offset.x, offset.y ) ); auto shapes = std::dynamic_pointer_cast( aPad->GetEffectiveShape() ); if( shapes && shapes->Size() == 1 ) { solid->SetShape( shapes->Clone() ); } else { // Fixme (but not urgent). For complex pad shapes, we pass a single simple polygon to the // router, otherwise it won't know how to correctly build walkaround 'hulls' for the pad // primitives - it can recognize only simple shapes, but not COMPOUNDs made of multiple shapes. // The proper way to fix this would be to implement SHAPE_COMPOUND::ConvertToSimplePolygon(), // but the complexity of pad polygonization code (see D_PAD::GetEffectivePolygon), including approximation // error handling makes me slightly scared to do it right now. const std::shared_ptr& outline = aPad->GetEffectivePolygon(); SHAPE_SIMPLE* shape = new SHAPE_SIMPLE(); for( auto iter = outline->CIterate( 0 ); iter; iter++ ) shape->Append( *iter ); solid->SetShape( shape ); } return solid; } std::unique_ptr PNS_KICAD_IFACE_BASE::syncTrack( TRACK* aTrack ) { std::unique_ptr< PNS::SEGMENT > segment( new PNS::SEGMENT( SEG( aTrack->GetStart(), aTrack->GetEnd() ), aTrack->GetNetCode() ) ); segment->SetWidth( aTrack->GetWidth() ); segment->SetLayers( LAYER_RANGE( aTrack->GetLayer() ) ); segment->SetParent( aTrack ); if( aTrack->IsLocked() ) segment->Mark( PNS::MK_LOCKED ); return segment; } std::unique_ptr PNS_KICAD_IFACE_BASE::syncArc( ARC* aArc ) { std::unique_ptr< PNS::ARC > arc( new PNS::ARC( SHAPE_ARC( aArc->GetStart(), aArc->GetMid(), aArc->GetEnd(), aArc->GetWidth() ), aArc->GetNetCode() ) ); arc->SetLayers( LAYER_RANGE( aArc->GetLayer() ) ); arc->SetParent( aArc ); if( aArc->IsLocked() ) arc->Mark( PNS::MK_LOCKED ); return arc; } std::unique_ptr PNS_KICAD_IFACE_BASE::syncVia( VIA* aVia ) { std::vector> retval; PCB_LAYER_ID top, bottom; aVia->LayerPair( &top, &bottom ); std::unique_ptr via( new PNS::VIA( aVia->GetPosition(), LAYER_RANGE( aVia->TopLayer(), aVia->BottomLayer() ), aVia->GetWidth(), aVia->GetDrillValue(), aVia->GetNetCode(), aVia->GetViaType() ) ); via->SetParent( aVia ); if( aVia->IsLocked() ) via->Mark( PNS::MK_LOCKED ); return std::move( via ); } bool PNS_KICAD_IFACE_BASE::syncZone( PNS::NODE* aWorld, ZONE_CONTAINER* aZone, SHAPE_POLY_SET* aBoardOutline ) { SHAPE_POLY_SET poly; // TODO handle no-via restriction if( !aZone->GetIsRuleArea() || !aZone->GetDoNotAllowTracks() ) return false; LSET layers = aZone->GetLayerSet(); for( int layer = F_Cu; layer <= B_Cu; layer++ ) { if( ! layers[ layer ] ) continue; aZone->BuildSmoothedPoly( poly, ToLAYER_ID( layer ), aBoardOutline ); poly.CacheTriangulation(); if( !poly.IsTriangulationUpToDate() ) { KIDIALOG dlg( nullptr, wxString::Format( _( "Malformed keep-out zone at (%d, %d)" ), aZone->GetPosition().x, aZone->GetPosition().y ), KIDIALOG::KD_WARNING ); dlg.ShowDetailedText( wxString::Format( _( "%s\nThis zone cannot be handled by the track layout tool.\n" "Please verify it is not a self-intersecting polygon." ), aZone->GetSelectMenuText( EDA_UNITS::MILLIMETRES ) ) ); dlg.DoNotShowCheckbox( __FILE__, __LINE__ ); dlg.ShowModal(); return false; } for( int outline = 0; outline < poly.OutlineCount(); outline++ ) { auto tri = poly.TriangulatedPolygon( outline ); for( size_t i = 0; i < tri->GetTriangleCount(); i++) { VECTOR2I a, b, c; tri->GetTriangle( i, a, b, c ); auto triShape = new SHAPE_SIMPLE; triShape->Append( a ); triShape->Append( b ); triShape->Append( c ); std::unique_ptr< PNS::SOLID > solid( new PNS::SOLID ); solid->SetLayer( layer ); solid->SetNet( -1 ); solid->SetParent( aZone ); solid->SetShape( triShape ); solid->SetRoutable( false ); aWorld->Add( std::move( solid ) ); } } } return true; } bool PNS_KICAD_IFACE_BASE::syncTextItem( PNS::NODE* aWorld, EDA_TEXT* aText, PCB_LAYER_ID aLayer ) { if( !IsCopperLayer( aLayer ) ) return false; int textWidth = aText->GetEffectiveTextPenWidth(); std::vector textShape; aText->TransformTextShapeToSegmentList( textShape ); if( textShape.size() < 2 ) return false; for( size_t jj = 0; jj < textShape.size(); jj += 2 ) { VECTOR2I start( textShape[jj] ); VECTOR2I end( textShape[jj+1] ); std::unique_ptr< PNS::SOLID > solid( new PNS::SOLID ); solid->SetLayer( aLayer ); solid->SetNet( -1 ); solid->SetParent( nullptr ); solid->SetShape( new SHAPE_SEGMENT( start, end, textWidth ) ); solid->SetRoutable( false ); aWorld->Add( std::move( solid ) ); } return true; /* A coarser (but faster) method: * SHAPE_POLY_SET outline; SHAPE_SIMPLE* shape = new SHAPE_SIMPLE(); aText->TransformBoundingBoxWithClearanceToPolygon( &outline, 0 ); for( auto iter = outline.CIterate( 0 ); iter; iter++ ) shape->Append( *iter ); solid->SetShape( shape ); solid->SetLayer( aLayer ); solid->SetNet( -1 ); solid->SetParent( nullptr ); solid->SetRoutable( false ); aWorld->Add( std::move( solid ) ); return true; */ } bool PNS_KICAD_IFACE_BASE::syncGraphicalItem( PNS::NODE* aWorld, PCB_SHAPE* aItem ) { if( aItem->GetLayer() != Edge_Cuts && !IsCopperLayer( aItem->GetLayer() ) ) return false; // TODO: where do we handle filled polygons on copper layers? if( aItem->GetShape() == S_POLYGON && aItem->IsPolygonFilled() ) return false; for( SHAPE* shape : aItem->MakeEffectiveShapes() ) { std::unique_ptr< PNS::SOLID > solid( new PNS::SOLID ); if( aItem->GetLayer() == Edge_Cuts ) solid->SetLayers( LAYER_RANGE( F_Cu, B_Cu ) ); else solid->SetLayer( aItem->GetLayer() ); solid->SetNet( -1 ); solid->SetParent( nullptr ); solid->SetShape( shape ); solid->SetRoutable( false ); aWorld->Add( std::move( solid ) ); } return true; } void PNS_KICAD_IFACE_BASE::SetBoard( BOARD* aBoard ) { m_board = aBoard; wxLogTrace( "PNS", "m_board = %p", m_board ); } bool PNS_KICAD_IFACE::IsAnyLayerVisible( const LAYER_RANGE& aLayer ) const { if( !m_view ) return false; for( int i = aLayer.Start(); i <= aLayer.End(); i++ ) if( m_view->IsLayerVisible( i ) ) return true; return false; } bool PNS_KICAD_IFACE::IsOnLayer( const PNS::ITEM* aItem, int aLayer ) const { /// Default is all layers if( aLayer < 0 ) return true; if( !aItem->Parent() ) return aItem->Layers().Overlaps( aLayer ); switch( aItem->Parent()->Type() ) { case PCB_VIA_T: { const VIA* via = static_cast( aItem->Parent() ); return via->FlashLayer( static_cast( aLayer )); } case PCB_PAD_T: { const D_PAD* pad = static_cast( aItem->Parent() ); return pad->FlashLayer( static_cast( aLayer )); } default: break; } return aItem->Layers().Overlaps( aLayer ); } bool PNS_KICAD_IFACE::IsItemVisible( const PNS::ITEM* aItem ) const { // by default, all items are visible (new ones created by the router have parent == NULL as they have not been // committed yet to the BOARD) if( !m_view || !aItem->Parent() ) return true; auto item = aItem->Parent(); bool isOnVisibleLayer = true; if( m_view->GetPainter()->GetSettings()->GetHighContrast() ) { int layers[KIGFX::VIEW::VIEW_MAX_LAYERS]; int layers_count; auto activeLayers = m_view->GetPainter()->GetSettings()->GetHighContrastLayers(); isOnVisibleLayer = false; item->ViewGetLayers( layers, layers_count ); for( int i = 0; i < layers_count; ++i ) { // Item is on at least one of the active layers if( activeLayers.count( layers[i] ) > 0 ) { isOnVisibleLayer = true; break; } } } if( m_view->IsVisible( item ) && isOnVisibleLayer && item->ViewGetLOD( item->GetLayer(), m_view ) < m_view->GetScale() ) return true; // Items hidden in the router are not hidden on the board if( m_hiddenItems.find( item ) != m_hiddenItems.end() ) return true; return false; } void PNS_KICAD_IFACE_BASE::SyncWorld( PNS::NODE *aWorld ) { int worstPadClearance = 0; m_world = aWorld; if( !m_board ) { wxLogTrace( "PNS", "No board attached, aborting sync." ); return; } for( BOARD_ITEM* gitem : m_board->Drawings() ) { if ( gitem->Type() == PCB_SHAPE_T ) { syncGraphicalItem( aWorld, static_cast( gitem ) ); } else if( gitem->Type() == PCB_TEXT_T ) { syncTextItem( aWorld, static_cast( gitem ), gitem->GetLayer() ); } } SHAPE_POLY_SET buffer; SHAPE_POLY_SET* boardOutline = nullptr; if( m_board->GetBoardPolygonOutlines( buffer ) ) boardOutline = &buffer; for( ZONE_CONTAINER* zone : m_board->Zones() ) { syncZone( aWorld, zone, boardOutline ); } for( MODULE* module : m_board->Modules() ) { for( D_PAD* pad : module->Pads() ) { if( std::unique_ptr solid = syncPad( pad ) ) aWorld->Add( std::move( solid ) ); worstPadClearance = std::max( worstPadClearance, pad->GetLocalClearance() ); } syncTextItem( aWorld, &module->Reference(), module->Reference().GetLayer() ); syncTextItem( aWorld, &module->Value(), module->Value().GetLayer() ); for( MODULE_ZONE_CONTAINER* zone : module->Zones() ) syncZone( aWorld, zone, boardOutline ); if( module->IsNetTie() ) continue; for( BOARD_ITEM* mgitem : module->GraphicalItems() ) { if( mgitem->Type() == PCB_FP_SHAPE_T ) { syncGraphicalItem( aWorld, static_cast( mgitem ) ); } else if( mgitem->Type() == PCB_FP_TEXT_T ) { syncTextItem( aWorld, static_cast( mgitem ), mgitem->GetLayer() ); } } } for( TRACK* t : m_board->Tracks() ) { KICAD_T type = t->Type(); if( type == PCB_TRACE_T ) { if( auto segment = syncTrack( t ) ) aWorld->Add( std::move( segment ) ); } else if( type == PCB_ARC_T ) { if( auto arc = syncArc( static_cast( t ) ) ) aWorld->Add( std::move( arc ) ); } else if( type == PCB_VIA_T ) { if( auto via = syncVia( static_cast( t ) ) ) aWorld->Add( std::move( via ) ); } } int worstRuleClearance = m_board->GetDesignSettings().GetBiggestClearanceValue(); delete m_ruleResolver; m_ruleResolver = new PNS_PCBNEW_RULE_RESOLVER( m_board, this ); aWorld->SetRuleResolver( m_ruleResolver ); aWorld->SetMaxClearance( 4 * std::max(worstPadClearance, worstRuleClearance ) ); } void PNS_KICAD_IFACE::EraseView() { for( auto item : m_hiddenItems ) m_view->SetVisible( item, true ); m_hiddenItems.clear(); if( m_previewItems ) { m_previewItems->FreeItems(); m_view->Update( m_previewItems ); } if( m_debugDecorator ) m_debugDecorator->Clear(); } void PNS_KICAD_IFACE_BASE::SetDebugDecorator( PNS::DEBUG_DECORATOR *aDec ) { m_debugDecorator = aDec; } void PNS_KICAD_IFACE::DisplayItem( const PNS::ITEM* aItem, int aColor, int aClearance, bool aEdit ) { wxLogTrace( "PNS", "DisplayItem %p", aItem ); ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( aItem, m_view ); if( aColor >= 0 ) pitem->SetColor( KIGFX::COLOR4D( aColor ) ); if( aClearance >= 0 ) { pitem->SetClearance( aClearance ); switch( m_dispOptions->m_ShowTrackClearanceMode ) { case PCB_DISPLAY_OPTIONS::DO_NOT_SHOW_CLEARANCE: pitem->ShowTrackClearance( false ); pitem->ShowViaClearance( false ); break; case PCB_DISPLAY_OPTIONS::SHOW_CLEARANCE_ALWAYS: case PCB_DISPLAY_OPTIONS::SHOW_CLEARANCE_NEW_AND_EDITED_TRACKS_AND_VIA_AREAS: pitem->ShowTrackClearance( true ); pitem->ShowViaClearance( true ); break; case PCB_DISPLAY_OPTIONS::SHOW_CLEARANCE_NEW_TRACKS_AND_VIA_AREAS: pitem->ShowTrackClearance( !aEdit ); pitem->ShowViaClearance( !aEdit ); break; case PCB_DISPLAY_OPTIONS::SHOW_CLEARANCE_NEW_TRACKS: pitem->ShowTrackClearance( !aEdit ); pitem->ShowViaClearance( false ); break; } } m_previewItems->Add( pitem ); m_view->Update( m_previewItems ); } void PNS_KICAD_IFACE::DisplayRatline( const SHAPE_LINE_CHAIN& aRatline, int aColor ) { ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( nullptr, m_view ); pitem->Line( aRatline, 10000, aColor ); m_previewItems->Add( pitem ); m_view->Update( m_previewItems ); } void PNS_KICAD_IFACE::HideItem( PNS::ITEM* aItem ) { BOARD_CONNECTED_ITEM* parent = aItem->Parent(); if( parent ) { if( m_view->IsVisible( parent ) ) m_hiddenItems.insert( parent ); m_view->SetVisible( parent, false ); m_view->Update( parent, KIGFX::APPEARANCE ); } } void PNS_KICAD_IFACE_BASE::RemoveItem( PNS::ITEM* aItem ) { } void PNS_KICAD_IFACE::RemoveItem( PNS::ITEM* aItem ) { BOARD_CONNECTED_ITEM* parent = aItem->Parent(); if ( aItem->OfKind(PNS::ITEM::SOLID_T) ) { auto pad = static_cast( parent ); auto pos = static_cast( aItem )->Pos(); m_moduleOffsets[ pad ].p_old = pos; return; } if( parent ) { m_commit->Remove( parent ); } } void PNS_KICAD_IFACE_BASE::AddItem( PNS::ITEM* aItem ) { } void PNS_KICAD_IFACE::AddItem( PNS::ITEM* aItem ) { BOARD_CONNECTED_ITEM* newBI = NULL; switch( aItem->Kind() ) { case PNS::ITEM::ARC_T: { auto arc = static_cast( aItem ); ARC* new_arc = new ARC( m_board, static_cast( arc->Shape() ) ); new_arc->SetWidth( arc->Width() ); new_arc->SetLayer( ToLAYER_ID( arc->Layers().Start() ) ); new_arc->SetNetCode( std::max( 0, arc->Net() ) ); newBI = new_arc; break; } case PNS::ITEM::SEGMENT_T: { PNS::SEGMENT* seg = static_cast( aItem ); TRACK* track = new TRACK( m_board ); const SEG& s = seg->Seg(); track->SetStart( wxPoint( s.A.x, s.A.y ) ); track->SetEnd( wxPoint( s.B.x, s.B.y ) ); track->SetWidth( seg->Width() ); track->SetLayer( ToLAYER_ID( seg->Layers().Start() ) ); track->SetNetCode( seg->Net() > 0 ? seg->Net() : 0 ); newBI = track; break; } case PNS::ITEM::VIA_T: { VIA* via_board = new VIA( m_board ); PNS::VIA* via = static_cast( aItem ); via_board->SetPosition( wxPoint( via->Pos().x, via->Pos().y ) ); via_board->SetWidth( via->Diameter() ); via_board->SetDrill( via->Drill() ); via_board->SetNetCode( via->Net() > 0 ? via->Net() : 0 ); via_board->SetViaType( via->ViaType() ); // MUST be before SetLayerPair() via_board->SetLayerPair( ToLAYER_ID( via->Layers().Start() ), ToLAYER_ID( via->Layers().End() ) ); newBI = via_board; break; } case PNS::ITEM::SOLID_T: { auto pad = static_cast( aItem->Parent() ); auto pos = static_cast( aItem )->Pos(); m_moduleOffsets[ pad ].p_new = pos; return; } default: break; } if( newBI ) { //newBI->SetLocalRatsnestVisible( m_dispOptions->m_ShowGlobalRatsnest ); aItem->SetParent( newBI ); newBI->ClearFlags(); m_commit->Add( newBI ); } } void PNS_KICAD_IFACE::Commit() { std::set processedMods; EraseView(); for( auto mo : m_moduleOffsets ) { auto offset = mo.second.p_new - mo.second.p_old; auto mod = mo.first->GetParent(); VECTOR2I p_orig = mod->GetPosition(); VECTOR2I p_new = p_orig + offset; if( processedMods.find( mod ) != processedMods.end() ) continue; processedMods.insert( mod ); m_commit->Modify( mod ); mod->SetPosition( wxPoint( p_new.x, p_new.y )); } m_moduleOffsets.clear(); m_commit->Push( _( "Interactive Router" ) ); m_commit = std::make_unique( m_tool ); } void PNS_KICAD_IFACE::SetView( KIGFX::VIEW* aView ) { wxLogTrace( "PNS", "SetView %p", aView ); if( m_previewItems ) { m_previewItems->FreeItems(); delete m_previewItems; } m_view = aView; m_previewItems = new KIGFX::VIEW_GROUP( m_view ); m_previewItems->SetLayer( LAYER_SELECT_OVERLAY ) ; if(m_view) m_view->Add( m_previewItems ); delete m_debugDecorator; auto dec = new PNS_PCBNEW_DEBUG_DECORATOR(); m_debugDecorator = dec; if( ADVANCED_CFG::GetCfg().m_ShowRouterDebugGraphics ) dec->SetView( m_view ); } void PNS_KICAD_IFACE::UpdateNet( int aNetCode ) { wxLogTrace( "PNS", "Update-net %d", aNetCode ); } PNS::RULE_RESOLVER* PNS_KICAD_IFACE_BASE::GetRuleResolver() { return m_ruleResolver; } void PNS_KICAD_IFACE::SetHostTool( PCB_TOOL_BASE* aTool ) { m_tool = aTool; m_commit = std::make_unique( m_tool ); } void PNS_KICAD_IFACE::SetDisplayOptions( const PCB_DISPLAY_OPTIONS* aDispOptions ) { m_dispOptions = aDispOptions; }