/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015-2020 Mario Luzeiro <mrluzeiro@ua.pt> * Copyright (C) 2015-2021 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file render_3d_raytrace.cpp */ #include <gal/opengl/kiglew.h> // Must be included first #include <algorithm> #include <atomic> #include <chrono> #include <climits> #include <thread> #include "render_3d_raytrace.h" #include "mortoncodes.h" #include "../color_rgb.h" #include "3d_fastmath.h" #include "3d_math.h" #include "../common_ogl/ogl_utils.h" #include <profile.h> // To use GetRunningMicroSecs or another profiling utility #include <wx/log.h> RENDER_3D_RAYTRACE::RENDER_3D_RAYTRACE( BOARD_ADAPTER& aAdapter, CAMERA& aCamera ) : RENDER_3D_BASE( aAdapter, aCamera ), m_postShaderSsao( aCamera ) { wxLogTrace( m_logTrace, wxT( "RENDER_3D_RAYTRACE::RENDER_3D_RAYTRACE" ) ); m_openglSupportsVertexBufferObjects = false; m_pboId = GL_NONE; m_pboDataSize = 0; m_accelerator = nullptr; m_convertedDummyBlockCount = 0; m_converted2dRoundSegmentCount = 0; m_oldWindowsSize.x = 0; m_oldWindowsSize.y = 0; m_outlineBoard2dObjects = nullptr; m_antioutlineBoard2dObjects = nullptr; m_firstHitinfo = nullptr; m_shaderBuffer = nullptr; m_cameraLight = nullptr; m_xoffset = 0; m_yoffset = 0; m_isPreview = false; m_renderState = RT_RENDER_STATE_MAX; // Set to an initial invalid state m_renderStartTime = 0; m_blockRenderProgressCount = 0; } RENDER_3D_RAYTRACE::~RENDER_3D_RAYTRACE() { wxLogTrace( m_logTrace, wxT( "RENDER_3D_RAYTRACE::~RENDER_3D_RAYTRACE" ) ); delete m_accelerator; m_accelerator = nullptr; delete m_outlineBoard2dObjects; m_outlineBoard2dObjects = nullptr; delete m_antioutlineBoard2dObjects; m_antioutlineBoard2dObjects = nullptr; delete[] m_shaderBuffer; m_shaderBuffer = nullptr; deletePbo(); } int RENDER_3D_RAYTRACE::GetWaitForEditingTimeOut() { return 1000; // ms } void RENDER_3D_RAYTRACE::deletePbo() { // Delete PBO if it was created if( m_openglSupportsVertexBufferObjects ) { if( glIsBufferARB( m_pboId ) ) glDeleteBuffers( 1, &m_pboId ); m_pboId = GL_NONE; } } void RENDER_3D_RAYTRACE::SetCurWindowSize( const wxSize& aSize ) { if( m_windowSize != aSize ) { m_windowSize = aSize; glViewport( 0, 0, m_windowSize.x, m_windowSize.y ); initializeNewWindowSize(); } } void RENDER_3D_RAYTRACE::restartRenderState() { m_renderStartTime = GetRunningMicroSecs(); m_renderState = RT_RENDER_STATE_TRACING; m_blockRenderProgressCount = 0; m_postShaderSsao.InitFrame(); m_blockPositionsWasProcessed.resize( m_blockPositions.size() ); // Mark the blocks not processed yet std::fill( m_blockPositionsWasProcessed.begin(), m_blockPositionsWasProcessed.end(), 0 ); } static inline void SetPixel( GLubyte* p, const COLOR_RGB& v ) { p[0] = v.c[0]; p[1] = v.c[1]; p[2] = v.c[2]; p[3] = 255; } bool RENDER_3D_RAYTRACE::Redraw( bool aIsMoving, REPORTER* aStatusReporter, REPORTER* aWarningReporter ) { bool requestRedraw = false; // Initialize openGL if need if( !m_is_opengl_initialized ) { if( !initializeOpenGL() ) return false; //aIsMoving = true; requestRedraw = true; // It will assign the first time the windows size, so it will now // revert to preview mode the first time the Redraw is called m_oldWindowsSize = m_windowSize; initializeBlockPositions(); } std::unique_ptr<BUSY_INDICATOR> busy = CreateBusyIndicator(); // Reload board if it was requested if( m_reloadRequested ) { if( aStatusReporter ) aStatusReporter->Report( _( "Loading..." ) ); //aIsMoving = true; requestRedraw = true; Reload( aStatusReporter, aWarningReporter, false ); } // Recalculate constants if windows size was changed if( m_windowSize != m_oldWindowsSize ) { m_oldWindowsSize = m_windowSize; aIsMoving = true; requestRedraw = true; initializeBlockPositions(); } // Clear buffers glClearColor( 0.0f, 0.0f, 0.0f, 1.0f ); glClearDepth( 1.0f ); glClearStencil( 0x00 ); glClear( GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT ); // 4-byte pixel alignment glPixelStorei( GL_UNPACK_ALIGNMENT, 4 ); glDisable( GL_STENCIL_TEST ); glDisable( GL_LIGHTING ); glDisable( GL_COLOR_MATERIAL ); glDisable( GL_DEPTH_TEST ); glDisable( GL_TEXTURE_2D ); glDisable( GL_BLEND ); glDisable( GL_MULTISAMPLE ); const bool was_camera_changed = m_camera.ParametersChanged(); if( requestRedraw || aIsMoving || was_camera_changed ) m_renderState = RT_RENDER_STATE_MAX; // Set to an invalid state, // so it will restart again latter // This will only render if need, otherwise it will redraw the PBO on the screen again if( aIsMoving || was_camera_changed ) { // Set head light (camera view light) with the opposite direction of the camera if( m_cameraLight ) m_cameraLight->SetDirection( -m_camera.GetDir() ); OglDrawBackground( SFVEC3F( m_boardAdapter.m_BgColorTop), SFVEC3F( m_boardAdapter.m_BgColorBot) ); // Bind PBO glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, m_pboId ); // Get the PBO pixel pointer to write the data GLubyte* ptrPBO = (GLubyte *)glMapBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, GL_WRITE_ONLY_ARB ); if( ptrPBO ) { renderPreview( ptrPBO ); // release pointer to mapping buffer, this initialize the coping to PBO glUnmapBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB ); } glWindowPos2i( m_xoffset, m_yoffset ); } else { // Bind PBO glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, m_pboId ); if( m_renderState != RT_RENDER_STATE_FINISH ) { // Get the PBO pixel pointer to write the data GLubyte* ptrPBO = (GLubyte *)glMapBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, GL_WRITE_ONLY_ARB ); if( ptrPBO ) { render( ptrPBO, aStatusReporter ); if( m_renderState != RT_RENDER_STATE_FINISH ) requestRedraw = true; // release pointer to mapping buffer, this initialize the coping to PBO glUnmapBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB ); } } if( m_renderState == RT_RENDER_STATE_FINISH ) { glClear( GL_COLOR_BUFFER_BIT ); } glWindowPos2i( m_xoffset, m_yoffset ); } // This way it will blend the progress rendering with the last buffer. eg: // if it was called after a openGL. glEnable( GL_BLEND ); glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA ); glEnable( GL_ALPHA_TEST ); glDrawPixels( m_realBufferSize.x, m_realBufferSize.y, GL_RGBA, GL_UNSIGNED_BYTE, 0 ); glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, 0 ); return requestRedraw; } void RENDER_3D_RAYTRACE::render( GLubyte* ptrPBO, REPORTER* aStatusReporter ) { if( ( m_renderState == RT_RENDER_STATE_FINISH ) || ( m_renderState >= RT_RENDER_STATE_MAX ) ) { restartRenderState(); if( m_cameraLight ) m_cameraLight->SetDirection( -m_camera.GetDir() ); if( m_boardAdapter.GetRenderEngine() == RENDER_ENGINE::OPENGL_LEGACY ) { // Set all pixels of PBO transparent (Alpha to 0) // This way it will draw the full buffer but only shows the updated ( // already calculated) squares unsigned int nPixels = m_realBufferSize.x * m_realBufferSize.y; GLubyte* tmp_ptrPBO = ptrPBO + 3; // PBO is RGBA for( unsigned int i = 0; i < nPixels; ++i ) { *tmp_ptrPBO = 0; tmp_ptrPBO += 4; // PBO is RGBA } } m_backgroundColorTop = ConvertSRGBToLinear( (SFVEC3F)m_boardAdapter.m_BgColorTop ); m_backgroundColorBottom = ConvertSRGBToLinear( (SFVEC3F)m_boardAdapter.m_BgColorBot ); } switch( m_renderState ) { case RT_RENDER_STATE_TRACING: renderTracing( ptrPBO, aStatusReporter ); break; case RT_RENDER_STATE_POST_PROCESS_SHADE: postProcessShading( ptrPBO, aStatusReporter ); break; case RT_RENDER_STATE_POST_PROCESS_BLUR_AND_FINISH: postProcessBlurFinish( ptrPBO, aStatusReporter ); break; default: wxASSERT_MSG( false, "Invalid state on m_renderState"); restartRenderState(); break; } if( aStatusReporter && ( m_renderState == RT_RENDER_STATE_FINISH ) ) { // Calculation time in seconds const double elapsed_time = (double)( GetRunningMicroSecs() - m_renderStartTime ) / 1e6; aStatusReporter->Report( wxString::Format( _( "Rendering time %.3f s" ), elapsed_time ) ); } } void RENDER_3D_RAYTRACE::renderTracing( GLubyte* ptrPBO, REPORTER* aStatusReporter ) { m_isPreview = false; auto startTime = std::chrono::steady_clock::now(); bool breakLoop = false; std::atomic<size_t> numBlocksRendered( 0 ); std::atomic<size_t> currentBlock( 0 ); std::atomic<size_t> threadsFinished( 0 ); size_t parallelThreadCount = std::min<size_t>( std::max<size_t>( std::thread::hardware_concurrency(), 2 ), m_blockPositions.size() ); for( size_t ii = 0; ii < parallelThreadCount; ++ii ) { std::thread t = std::thread( [&]() { for( size_t iBlock = currentBlock.fetch_add( 1 ); iBlock < m_blockPositions.size() && !breakLoop; iBlock = currentBlock.fetch_add( 1 ) ) { if( !m_blockPositionsWasProcessed[iBlock] ) { renderBlockTracing( ptrPBO, iBlock ); numBlocksRendered++; m_blockPositionsWasProcessed[iBlock] = 1; // Check if it spend already some time render and request to exit // to display the progress if( std::chrono::duration_cast<std::chrono::milliseconds>( std::chrono::steady_clock::now() - startTime ).count() > 150 ) breakLoop = true; } } threadsFinished++; } ); t.detach(); } while( threadsFinished < parallelThreadCount ) std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) ); m_blockRenderProgressCount += numBlocksRendered; if( aStatusReporter ) aStatusReporter->Report( wxString::Format( _( "Rendering: %.0f %%" ), (float) ( m_blockRenderProgressCount * 100 ) / (float) m_blockPositions.size() ) ); // Check if it finish the rendering and if should continue to a post processing // or mark it as finished if( m_blockRenderProgressCount >= m_blockPositions.size() ) { if( m_boardAdapter.GetFlag( FL_RENDER_RAYTRACING_POST_PROCESSING ) ) m_renderState = RT_RENDER_STATE_POST_PROCESS_SHADE; else m_renderState = RT_RENDER_STATE_FINISH; } } #ifdef USE_SRGB_SPACE /// @todo This should be removed in future when KiCad supports a greater version of glm lib. #define SRGB_GAMA 2.4f // This function implements the conversion from linear RGB to sRGB // https://github.com/g-truc/glm/blob/master/glm/gtc/color_space.inl#L12 static SFVEC3F convertLinearToSRGB( const SFVEC3F& aRGBcolor ) { const float gammaCorrection = 1.0f / SRGB_GAMA; const SFVEC3F clampedColor = glm::clamp( aRGBcolor, SFVEC3F( 0.0f ), SFVEC3F( 1.0f ) ); return glm::mix( glm::pow( clampedColor, SFVEC3F(gammaCorrection) ) * 1.055f - 0.055f, clampedColor * 12.92f, glm::lessThan( clampedColor, SFVEC3F(0.0031308f) ) ); } // This function implements the conversion from sRGB to linear RGB // https://github.com/g-truc/glm/blob/master/glm/gtc/color_space.inl#L35 SFVEC3F ConvertSRGBToLinear( const SFVEC3F& aSRGBcolor ) { const float gammaCorrection = SRGB_GAMA; return glm::mix( glm::pow( ( aSRGBcolor + SFVEC3F( 0.055f ) ) * SFVEC3F( 0.94786729857819905213270142180095f ), SFVEC3F( gammaCorrection ) ), aSRGBcolor * SFVEC3F( 0.07739938080495356037151702786378f ), glm::lessThanEqual( aSRGBcolor, SFVEC3F( 0.04045f ) ) ); } #endif void RENDER_3D_RAYTRACE::renderFinalColor( GLubyte* ptrPBO, const SFVEC3F& rgbColor, bool applyColorSpaceConversion ) { SFVEC3F color = rgbColor; #ifdef USE_SRGB_SPACE /// @note This should be used in future when the KiCad support a greater version of glm lib. // if( applyColorSpaceConversion ) // rgbColor = glm::convertLinearToSRGB( rgbColor ); if( applyColorSpaceConversion ) color = convertLinearToSRGB( rgbColor ); #endif ptrPBO[0] = (unsigned int) glm::clamp( (int) ( color.r * 255 ), 0, 255 ); ptrPBO[1] = (unsigned int) glm::clamp( (int) ( color.g * 255 ), 0, 255 ); ptrPBO[2] = (unsigned int) glm::clamp( (int) ( color.b * 255 ), 0, 255 ); ptrPBO[3] = 255; } static void HITINFO_PACKET_init( HITINFO_PACKET* aHitPacket ) { // Initialize hitPacket with a "not hit" information for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i ) { aHitPacket[i].m_HitInfo.m_tHit = std::numeric_limits<float>::infinity(); aHitPacket[i].m_HitInfo.m_acc_node_info = 0; aHitPacket[i].m_hitresult = false; aHitPacket[i].m_HitInfo.m_HitNormal = SFVEC3F( 0.0f ); aHitPacket[i].m_HitInfo.m_ShadowFactor = 1.0f; } } void RENDER_3D_RAYTRACE::renderRayPackets( const SFVEC3F* bgColorY, const RAY* aRayPkt, HITINFO_PACKET* aHitPacket, bool is_testShadow, SFVEC3F* aOutHitColor ) { for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y ) { for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i ) { if( aHitPacket[i].m_hitresult == true ) { aOutHitColor[i] = shadeHit( bgColorY[y], aRayPkt[i], aHitPacket[i].m_HitInfo, false, 0, is_testShadow ); } else { aOutHitColor[i] = bgColorY[y]; } } } } void RENDER_3D_RAYTRACE::renderAntiAliasPackets( const SFVEC3F* aBgColorY, const HITINFO_PACKET* aHitPck_X0Y0, const HITINFO_PACKET* aHitPck_AA_X1Y1, const RAY* aRayPck, SFVEC3F* aOutHitColor ) { const bool is_testShadow = m_boardAdapter.GetFlag( FL_RENDER_RAYTRACING_SHADOWS ); for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y ) { for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i ) { const RAY& rayAA = aRayPck[i]; HITINFO hitAA; hitAA.m_tHit = std::numeric_limits<float>::infinity(); hitAA.m_acc_node_info = 0; bool hitted = false; const unsigned int idx0y1 = ( x + 0 ) + RAYPACKET_DIM * ( y + 1 ); const unsigned int idx1y1 = ( x + 1 ) + RAYPACKET_DIM * ( y + 1 ); // Gets the node info from the hit. const unsigned int nodex0y0 = aHitPck_X0Y0[ i ].m_HitInfo.m_acc_node_info; const unsigned int node_AA_x0y0 = aHitPck_AA_X1Y1[ i ].m_HitInfo.m_acc_node_info; unsigned int nodex1y0 = 0; if( x < (RAYPACKET_DIM - 1) ) nodex1y0 = aHitPck_X0Y0[ i + 1 ].m_HitInfo.m_acc_node_info; unsigned int nodex0y1 = 0; if( y < ( RAYPACKET_DIM - 1 ) && idx0y1 < RAYPACKET_RAYS_PER_PACKET ) nodex0y1 = aHitPck_X0Y0[idx0y1].m_HitInfo.m_acc_node_info; unsigned int nodex1y1 = 0; if( ( x < ( RAYPACKET_DIM - 1 ) ) && ( y < ( RAYPACKET_DIM - 1 ) ) && idx1y1 < RAYPACKET_RAYS_PER_PACKET ) nodex1y1 = aHitPck_X0Y0[idx1y1].m_HitInfo.m_acc_node_info; // If all notes are equal we assume there was no change on the object hits. if( ( ( nodex0y0 == nodex1y0 ) || ( nodex1y0 == 0 ) ) && ( ( nodex0y0 == nodex0y1 ) || ( nodex0y1 == 0 ) ) && ( ( nodex0y0 == nodex1y1 ) || ( nodex1y1 == 0 ) ) && ( nodex0y0 == node_AA_x0y0 ) ) { /// @todo Either get rid of the if statement above or do something with the /// commented out code below. // Option 1 // This option will give a very good quality on reflections (slow) /* if( m_accelerator->Intersect( rayAA, hitAA, nodex0y0 ) ) { aOutHitColor[i] += shadeHit( aBgColorY[y], rayAA, hitAA, false, 0 ); } else { if( m_accelerator->Intersect( rayAA, hitAA ) ) aOutHitColor[i] += shadeHit( aBgColorY[y], rayAA, hitAA, false, 0 ); else aOutHitColor[i] += hitColor[i]; } */ // Option 2 // Trace again with the same node, // then if miss just give the same color as before //if( m_accelerator->Intersect( rayAA, hitAA, nodex0y0 ) ) // aOutHitColor[i] += shadeHit( aBgColorY[y], rayAA, hitAA, false, 0 ); // Option 3 // Use same color } else { // Try to intersect the different nodes // It tests the possible combination of hitted or not hitted points // This will try to get the best hit for this ray if( nodex0y0 != 0 ) hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex0y0 ); if( ( nodex1y0 != 0 ) && ( nodex0y0 != nodex1y0 ) ) hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex1y0 ); if( ( nodex0y1 != 0 ) && ( nodex0y0 != nodex0y1 ) && ( nodex1y0 != nodex0y1 ) ) hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex0y1 ); if( ( nodex1y1 != 0 ) && ( nodex0y0 != nodex1y1 ) && ( nodex0y1 != nodex1y1 ) && ( nodex1y0 != nodex1y1 ) ) hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex1y1 ); if( (node_AA_x0y0 != 0 ) && ( nodex0y0 != node_AA_x0y0 ) && ( nodex0y1 != node_AA_x0y0 ) && ( nodex1y0 != node_AA_x0y0 ) && ( nodex1y1 != node_AA_x0y0 ) ) hitted |= m_accelerator->Intersect( rayAA, hitAA, node_AA_x0y0 ); if( hitted ) { // If we got any result, shade it aOutHitColor[i] = shadeHit( aBgColorY[y], rayAA, hitAA, false, 0, is_testShadow ); } else { // Note: There are very few cases that will end on this situation // so it is not so expensive to trace a single ray from the beginning // It was missed the 'last nodes' so, trace a ray from the beginning if( m_accelerator->Intersect( rayAA, hitAA ) ) aOutHitColor[i] = shadeHit( aBgColorY[y], rayAA, hitAA, false, 0, is_testShadow ); } } } } } #define DISP_FACTOR 0.075f void RENDER_3D_RAYTRACE::renderBlockTracing( GLubyte* ptrPBO, signed int iBlock ) { // Initialize ray packets const SFVEC2UI& blockPos = m_blockPositions[iBlock]; const SFVEC2I blockPosI = SFVEC2I( blockPos.x + m_xoffset, blockPos.y + m_yoffset ); RAYPACKET blockPacket( m_camera, (SFVEC2F) blockPosI + SFVEC2F( DISP_FACTOR, DISP_FACTOR ), SFVEC2F( DISP_FACTOR, DISP_FACTOR ) /* Displacement random factor */ ); HITINFO_PACKET hitPacket_X0Y0[RAYPACKET_RAYS_PER_PACKET]; HITINFO_PACKET_init( hitPacket_X0Y0 ); // Calculate background gradient color SFVEC3F bgColor[RAYPACKET_DIM];// Store a vertical gradient color for( unsigned int y = 0; y < RAYPACKET_DIM; ++y ) { const float posYfactor = (float) ( blockPosI.y + y ) / (float) m_windowSize.y; bgColor[y] = m_backgroundColorTop * SFVEC3F(posYfactor) + m_backgroundColorBottom * ( SFVEC3F(1.0f) - SFVEC3F(posYfactor) ); } // Intersect ray packets (calculate the intersection with rays and objects) if( !m_accelerator->Intersect( blockPacket, hitPacket_X0Y0 ) ) { // If block is empty then set shades and continue if( m_boardAdapter.GetFlag( FL_RENDER_RAYTRACING_POST_PROCESSING ) ) { for( unsigned int y = 0; y < RAYPACKET_DIM; ++y ) { const SFVEC3F& outColor = bgColor[y]; const unsigned int yBlockPos = blockPos.y + y; for( unsigned int x = 0; x < RAYPACKET_DIM; ++x ) { m_postShaderSsao.SetPixelData( blockPos.x + x, yBlockPos, SFVEC3F( 0.0f ), outColor, SFVEC3F( 0.0f ), 0, 1.0f ); } } } // This will set the output color to be displayed // If post processing is enabled, it will not reflect the final result // (as the final color will be computed on post processing) // but it is used for report progress const bool isFinalColor = !m_boardAdapter.GetFlag( FL_RENDER_RAYTRACING_POST_PROCESSING ); for( unsigned int y = 0; y < RAYPACKET_DIM; ++y ) { const SFVEC3F& outColor = bgColor[y]; const unsigned int yConst = blockPos.x + ( ( y + blockPos.y ) * m_realBufferSize.x ); for( unsigned int x = 0; x < RAYPACKET_DIM; ++x ) { GLubyte* ptr = &ptrPBO[( yConst + x ) * 4]; renderFinalColor( ptr, outColor, isFinalColor ); } } // There is nothing more here to do.. there are no hits .. // just background so continue return; } SFVEC3F hitColor_X0Y0[RAYPACKET_RAYS_PER_PACKET]; // Shade original (0, 0) hits ("paint" the intersected objects) renderRayPackets( bgColor, blockPacket.m_ray, hitPacket_X0Y0, m_boardAdapter.GetFlag( FL_RENDER_RAYTRACING_SHADOWS ), hitColor_X0Y0 ); if( m_boardAdapter.GetFlag( FL_RENDER_RAYTRACING_ANTI_ALIASING ) ) { SFVEC3F hitColor_AA_X1Y1[RAYPACKET_RAYS_PER_PACKET]; // Intersect one blockPosI + (0.5, 0.5) used for anti aliasing calculation HITINFO_PACKET hitPacket_AA_X1Y1[RAYPACKET_RAYS_PER_PACKET]; HITINFO_PACKET_init( hitPacket_AA_X1Y1 ); RAYPACKET blockPacket_AA_X1Y1( m_camera, (SFVEC2F) blockPosI + SFVEC2F( 0.5f, 0.5f ), SFVEC2F( DISP_FACTOR, DISP_FACTOR ) ); if( !m_accelerator->Intersect( blockPacket_AA_X1Y1, hitPacket_AA_X1Y1 ) ) { // Missed all the package for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y ) { const SFVEC3F& outColor = bgColor[y]; for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i ) { hitColor_AA_X1Y1[i] = outColor; } } } else { renderRayPackets( bgColor, blockPacket_AA_X1Y1.m_ray, hitPacket_AA_X1Y1, m_boardAdapter.GetFlag( FL_RENDER_RAYTRACING_SHADOWS ), hitColor_AA_X1Y1 ); } SFVEC3F hitColor_AA_X1Y0[RAYPACKET_RAYS_PER_PACKET]; SFVEC3F hitColor_AA_X0Y1[RAYPACKET_RAYS_PER_PACKET]; SFVEC3F hitColor_AA_X0Y1_half[RAYPACKET_RAYS_PER_PACKET]; for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i ) { const SFVEC3F color_average = ( hitColor_X0Y0[i] + hitColor_AA_X1Y1[i] ) * SFVEC3F( 0.5f ); hitColor_AA_X1Y0[i] = color_average; hitColor_AA_X0Y1[i] = color_average; hitColor_AA_X0Y1_half[i] = color_average; } RAY blockRayPck_AA_X1Y0[RAYPACKET_RAYS_PER_PACKET]; RAY blockRayPck_AA_X0Y1[RAYPACKET_RAYS_PER_PACKET]; RAY blockRayPck_AA_X1Y1_half[RAYPACKET_RAYS_PER_PACKET]; RAYPACKET_InitRays_with2DDisplacement( m_camera, (SFVEC2F) blockPosI + SFVEC2F( 0.5f - DISP_FACTOR, DISP_FACTOR ), SFVEC2F( DISP_FACTOR, DISP_FACTOR ), blockRayPck_AA_X1Y0 ); RAYPACKET_InitRays_with2DDisplacement( m_camera, (SFVEC2F) blockPosI + SFVEC2F( DISP_FACTOR, 0.5f - DISP_FACTOR ), SFVEC2F( DISP_FACTOR, DISP_FACTOR ), blockRayPck_AA_X0Y1 ); RAYPACKET_InitRays_with2DDisplacement( m_camera, (SFVEC2F) blockPosI + SFVEC2F( 0.25f - DISP_FACTOR, 0.25f - DISP_FACTOR ), SFVEC2F( DISP_FACTOR, DISP_FACTOR ), blockRayPck_AA_X1Y1_half ); renderAntiAliasPackets( bgColor, hitPacket_X0Y0, hitPacket_AA_X1Y1, blockRayPck_AA_X1Y0, hitColor_AA_X1Y0 ); renderAntiAliasPackets( bgColor, hitPacket_X0Y0, hitPacket_AA_X1Y1, blockRayPck_AA_X0Y1, hitColor_AA_X0Y1 ); renderAntiAliasPackets( bgColor, hitPacket_X0Y0, hitPacket_AA_X1Y1, blockRayPck_AA_X1Y1_half, hitColor_AA_X0Y1_half ); // Average the result for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i ) { hitColor_X0Y0[i] = ( hitColor_X0Y0[i] + hitColor_AA_X1Y1[i] + hitColor_AA_X1Y0[i] + hitColor_AA_X0Y1[i] + hitColor_AA_X0Y1_half[i] ) * SFVEC3F( 1.0f / 5.0f ); } } // Copy results to the next stage GLubyte* ptr = &ptrPBO[( blockPos.x + ( blockPos.y * m_realBufferSize.x ) ) * 4]; const uint32_t ptrInc = ( m_realBufferSize.x - RAYPACKET_DIM ) * 4; if( m_boardAdapter.GetFlag( FL_RENDER_RAYTRACING_POST_PROCESSING ) ) { SFVEC2I bPos; bPos.y = blockPos.y; for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y ) { bPos.x = blockPos.x; for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i ) { const SFVEC3F& hColor = hitColor_X0Y0[i]; if( hitPacket_X0Y0[i].m_hitresult == true ) m_postShaderSsao.SetPixelData( bPos.x, bPos.y, hitPacket_X0Y0[i].m_HitInfo.m_HitNormal, hColor, blockPacket.m_ray[i].at( hitPacket_X0Y0[i].m_HitInfo.m_tHit ), hitPacket_X0Y0[i].m_HitInfo.m_tHit, hitPacket_X0Y0[i].m_HitInfo.m_ShadowFactor ); else m_postShaderSsao.SetPixelData( bPos.x, bPos.y, SFVEC3F( 0.0f ), hColor, SFVEC3F( 0.0f ), 0, 1.0f ); renderFinalColor( ptr, hColor, false ); bPos.x++; ptr += 4; } ptr += ptrInc; bPos.y++; } } else { for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y ) { for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i ) { renderFinalColor( ptr, hitColor_X0Y0[i], true ); ptr += 4; } ptr += ptrInc; } } } void RENDER_3D_RAYTRACE::postProcessShading( GLubyte* ptrPBO, REPORTER* aStatusReporter ) { (void)ptrPBO; // unused if( m_boardAdapter.GetFlag( FL_RENDER_RAYTRACING_POST_PROCESSING ) ) { if( aStatusReporter ) aStatusReporter->Report( _( "Rendering: Post processing shader" ) ); m_postShaderSsao.SetShadowsEnabled( m_boardAdapter.GetFlag( FL_RENDER_RAYTRACING_SHADOWS ) ); std::atomic<size_t> nextBlock( 0 ); std::atomic<size_t> threadsFinished( 0 ); size_t parallelThreadCount = std::max<size_t>( std::thread::hardware_concurrency(), 2 ); for( size_t ii = 0; ii < parallelThreadCount; ++ii ) { std::thread t = std::thread( [&]() { for( size_t y = nextBlock.fetch_add( 1 ); y < m_realBufferSize.y; y = nextBlock.fetch_add( 1 ) ) { SFVEC3F* ptr = &m_shaderBuffer[ y * m_realBufferSize.x ]; for( signed int x = 0; x < (int)m_realBufferSize.x; ++x ) { *ptr = m_postShaderSsao.Shade( SFVEC2I( x, y ) ); ptr++; } } threadsFinished++; } ); t.detach(); } while( threadsFinished < parallelThreadCount ) std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) ); m_postShaderSsao.SetShadedBuffer( m_shaderBuffer ); // Set next state m_renderState = RT_RENDER_STATE_POST_PROCESS_BLUR_AND_FINISH; } else { // As this was an invalid state, set to finish m_renderState = RT_RENDER_STATE_FINISH; } } void RENDER_3D_RAYTRACE::postProcessBlurFinish( GLubyte* ptrPBO, REPORTER* aStatusReporter ) { (void) aStatusReporter; //unused if( m_boardAdapter.GetFlag( FL_RENDER_RAYTRACING_POST_PROCESSING ) ) { // Now blurs the shader result and compute the final color std::atomic<size_t> nextBlock( 0 ); std::atomic<size_t> threadsFinished( 0 ); size_t parallelThreadCount = std::max<size_t>( std::thread::hardware_concurrency(), 2 ); for( size_t ii = 0; ii < parallelThreadCount; ++ii ) { std::thread t = std::thread( [&]() { for( size_t y = nextBlock.fetch_add( 1 ); y < m_realBufferSize.y; y = nextBlock.fetch_add( 1 ) ) { GLubyte* ptr = &ptrPBO[ y * m_realBufferSize.x * 4 ]; for( signed int x = 0; x < (int)m_realBufferSize.x; ++x ) { const SFVEC3F bluredShadeColor = m_postShaderSsao.Blur( SFVEC2I( x, y ) ); #ifdef USE_SRGB_SPACE const SFVEC3F originColor = convertLinearToSRGB( m_postShaderSsao.GetColorAtNotProtected( SFVEC2I( x, y ) ) ); #else const SFVEC3F originColor = m_postShaderSsao.GetColorAtNotProtected( SFVEC2I( x, y ) ); #endif const SFVEC3F shadedColor = m_postShaderSsao.ApplyShadeColor( SFVEC2I( x, y ), originColor, bluredShadeColor ); renderFinalColor( ptr, shadedColor, false ); ptr += 4; } } threadsFinished++; } ); t.detach(); } while( threadsFinished < parallelThreadCount ) std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) ); // Debug code //m_postShaderSsao.DebugBuffersOutputAsImages(); } // End rendering m_renderState = RT_RENDER_STATE_FINISH; } void RENDER_3D_RAYTRACE::renderPreview( GLubyte* ptrPBO ) { m_isPreview = true; std::atomic<size_t> nextBlock( 0 ); std::atomic<size_t> threadsFinished( 0 ); size_t parallelThreadCount = std::min<size_t>( std::max<size_t>( std::thread::hardware_concurrency(), 2 ), m_blockPositions.size() ); for( size_t ii = 0; ii < parallelThreadCount; ++ii ) { std::thread t = std::thread( [&]() { for( size_t iBlock = nextBlock.fetch_add( 1 ); iBlock < m_blockPositionsFast.size(); iBlock = nextBlock.fetch_add( 1 ) ) { const SFVEC2UI& windowPosUI = m_blockPositionsFast[ iBlock ]; const SFVEC2I windowsPos = SFVEC2I( windowPosUI.x + m_xoffset, windowPosUI.y + m_yoffset ); RAYPACKET blockPacket( m_camera, windowsPos, 4 ); HITINFO_PACKET hitPacket[RAYPACKET_RAYS_PER_PACKET]; // Initialize hitPacket with a "not hit" information for( HITINFO_PACKET& packet : hitPacket ) { packet.m_HitInfo.m_tHit = std::numeric_limits<float>::infinity(); packet.m_HitInfo.m_acc_node_info = 0; packet.m_hitresult = false; } // Intersect packet block m_accelerator->Intersect( blockPacket, hitPacket ); // Calculate background gradient color SFVEC3F bgColor[RAYPACKET_DIM]; for( unsigned int y = 0; y < RAYPACKET_DIM; ++y ) { const float posYfactor = (float) ( windowsPos.y + y * 4.0f ) / (float) m_windowSize.y; bgColor[y] = (SFVEC3F) m_boardAdapter.m_BgColorTop * SFVEC3F( posYfactor ) + (SFVEC3F) m_boardAdapter.m_BgColorBot * ( SFVEC3F( 1.0f ) - SFVEC3F( posYfactor ) ); } COLOR_RGB hitColorShading[RAYPACKET_RAYS_PER_PACKET]; for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i ) { const SFVEC3F bhColorY = bgColor[i / RAYPACKET_DIM]; if( hitPacket[i].m_hitresult == true ) { const SFVEC3F hitColor = shadeHit( bhColorY, blockPacket.m_ray[i], hitPacket[i].m_HitInfo, false, 0, false ); hitColorShading[i] = COLOR_RGB( hitColor ); } else hitColorShading[i] = bhColorY; } COLOR_RGB cLRB_old[(RAYPACKET_DIM - 1)]; for( unsigned int y = 0; y < (RAYPACKET_DIM - 1); ++y ) { const SFVEC3F bgColorY = bgColor[y]; const COLOR_RGB bgColorYRGB = COLOR_RGB( bgColorY ); // This stores cRTB from the last block to be reused next time in a cLTB pixel COLOR_RGB cRTB_old; //RAY cRTB_ray; //HITINFO cRTB_hitInfo; for( unsigned int x = 0; x < ( RAYPACKET_DIM - 1 ); ++x ) { // pxl 0 pxl 1 pxl 2 pxl 3 pxl 4 // x0 x1 ... // .---------------------------. // y0 | cLT | cxxx | cLRT | cxxx | cRT | // | cxxx | cLTC | cxxx | cRTC | cxxx | // | cLTB | cxxx | cC | cxxx | cRTB | // | cxxx | cLBC | cxxx | cRBC | cxxx | // '---------------------------' // y1 | cLB | cxxx | cLRB | cxxx | cRB | const unsigned int iLT = ( ( x + 0 ) + RAYPACKET_DIM * ( y + 0 ) ); const unsigned int iRT = ( ( x + 1 ) + RAYPACKET_DIM * ( y + 0 ) ); const unsigned int iLB = ( ( x + 0 ) + RAYPACKET_DIM * ( y + 1 ) ); const unsigned int iRB = ( ( x + 1 ) + RAYPACKET_DIM * ( y + 1 ) ); // !TODO: skip when there are no hits const COLOR_RGB& cLT = hitColorShading[ iLT ]; const COLOR_RGB& cRT = hitColorShading[ iRT ]; const COLOR_RGB& cLB = hitColorShading[ iLB ]; const COLOR_RGB& cRB = hitColorShading[ iRB ]; // Trace and shade cC COLOR_RGB cC = bgColorYRGB; const SFVEC3F& oriLT = blockPacket.m_ray[ iLT ].m_Origin; const SFVEC3F& oriRB = blockPacket.m_ray[ iRB ].m_Origin; const SFVEC3F& dirLT = blockPacket.m_ray[ iLT ].m_Dir; const SFVEC3F& dirRB = blockPacket.m_ray[ iRB ].m_Dir; SFVEC3F oriC; SFVEC3F dirC; HITINFO centerHitInfo; centerHitInfo.m_tHit = std::numeric_limits<float>::infinity(); bool hittedC = false; if( ( hitPacket[iLT].m_hitresult == true ) || ( hitPacket[iRT].m_hitresult == true ) || ( hitPacket[iLB].m_hitresult == true ) || ( hitPacket[iRB].m_hitresult == true ) ) { oriC = ( oriLT + oriRB ) * 0.5f; dirC = glm::normalize( ( dirLT + dirRB ) * 0.5f ); // Trace the center ray RAY centerRay; centerRay.Init( oriC, dirC ); const unsigned int nodeLT = hitPacket[ iLT ].m_HitInfo.m_acc_node_info; const unsigned int nodeRT = hitPacket[ iRT ].m_HitInfo.m_acc_node_info; const unsigned int nodeLB = hitPacket[ iLB ].m_HitInfo.m_acc_node_info; const unsigned int nodeRB = hitPacket[ iRB ].m_HitInfo.m_acc_node_info; if( nodeLT != 0 ) hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo, nodeLT ); if( ( nodeRT != 0 ) && ( nodeRT != nodeLT ) ) hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo, nodeRT ); if( ( nodeLB != 0 ) && ( nodeLB != nodeLT ) && ( nodeLB != nodeRT ) ) hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo, nodeLB ); if( ( nodeRB != 0 ) && ( nodeRB != nodeLB ) && ( nodeRB != nodeLT ) && ( nodeRB != nodeRT ) ) hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo, nodeRB ); if( hittedC ) { cC = COLOR_RGB( shadeHit( bgColorY, centerRay, centerHitInfo, false, 0, false ) ); } else { centerHitInfo.m_tHit = std::numeric_limits<float>::infinity(); hittedC = m_accelerator->Intersect( centerRay, centerHitInfo ); if( hittedC ) cC = COLOR_RGB( shadeHit( bgColorY, centerRay, centerHitInfo, false, 0, false ) ); } } // Trace and shade cLRT COLOR_RGB cLRT = bgColorYRGB; const SFVEC3F& oriRT = blockPacket.m_ray[ iRT ].m_Origin; const SFVEC3F& dirRT = blockPacket.m_ray[ iRT ].m_Dir; if( y == 0 ) { // Trace the center ray RAY rayLRT; rayLRT.Init( ( oriLT + oriRT ) * 0.5f, glm::normalize( ( dirLT + dirRT ) * 0.5f ) ); HITINFO hitInfoLRT; hitInfoLRT.m_tHit = std::numeric_limits<float>::infinity(); if( hitPacket[iLT].m_hitresult && hitPacket[iRT].m_hitresult && ( hitPacket[iLT].m_HitInfo.pHitObject == hitPacket[iRT].m_HitInfo.pHitObject ) ) { hitInfoLRT.pHitObject = hitPacket[ iLT ].m_HitInfo.pHitObject; hitInfoLRT.m_tHit = ( hitPacket[ iLT ].m_HitInfo.m_tHit + hitPacket[ iRT ].m_HitInfo.m_tHit ) * 0.5f; hitInfoLRT.m_HitNormal = glm::normalize( ( hitPacket[ iLT ].m_HitInfo.m_HitNormal + hitPacket[ iRT ].m_HitInfo.m_HitNormal ) * 0.5f ); cLRT = COLOR_RGB( shadeHit( bgColorY, rayLRT, hitInfoLRT, false, 0, false ) ); cLRT = BlendColor( cLRT, BlendColor( cLT, cRT ) ); } else { // If any hits if( hitPacket[ iLT ].m_hitresult || hitPacket[ iRT ].m_hitresult ) { const unsigned int nodeLT = hitPacket[ iLT ].m_HitInfo.m_acc_node_info; const unsigned int nodeRT = hitPacket[ iRT ].m_HitInfo.m_acc_node_info; bool hittedLRT = false; if( nodeLT != 0 ) hittedLRT |= m_accelerator->Intersect( rayLRT, hitInfoLRT, nodeLT ); if( ( nodeRT != 0 ) && ( nodeRT != nodeLT ) ) hittedLRT |= m_accelerator->Intersect( rayLRT, hitInfoLRT, nodeRT ); if( hittedLRT ) cLRT = COLOR_RGB( shadeHit( bgColorY, rayLRT, hitInfoLRT, false, 0, false ) ); else { hitInfoLRT.m_tHit = std::numeric_limits<float>::infinity(); if( m_accelerator->Intersect( rayLRT,hitInfoLRT ) ) cLRT = COLOR_RGB( shadeHit( bgColorY, rayLRT, hitInfoLRT, false, 0, false ) ); } } } } else { cLRT = cLRB_old[x]; } // Trace and shade cLTB COLOR_RGB cLTB = bgColorYRGB; if( x == 0 ) { const SFVEC3F &oriLB = blockPacket.m_ray[ iLB ].m_Origin; const SFVEC3F& dirLB = blockPacket.m_ray[ iLB ].m_Dir; // Trace the center ray RAY rayLTB; rayLTB.Init( ( oriLT + oriLB ) * 0.5f, glm::normalize( ( dirLT + dirLB ) * 0.5f ) ); HITINFO hitInfoLTB; hitInfoLTB.m_tHit = std::numeric_limits<float>::infinity(); if( hitPacket[ iLT ].m_hitresult && hitPacket[ iLB ].m_hitresult && ( hitPacket[ iLT ].m_HitInfo.pHitObject == hitPacket[ iLB ].m_HitInfo.pHitObject ) ) { hitInfoLTB.pHitObject = hitPacket[ iLT ].m_HitInfo.pHitObject; hitInfoLTB.m_tHit = ( hitPacket[ iLT ].m_HitInfo.m_tHit + hitPacket[ iLB ].m_HitInfo.m_tHit ) * 0.5f; hitInfoLTB.m_HitNormal = glm::normalize( ( hitPacket[ iLT ].m_HitInfo.m_HitNormal + hitPacket[ iLB ].m_HitInfo.m_HitNormal ) * 0.5f ); cLTB = COLOR_RGB( shadeHit( bgColorY, rayLTB, hitInfoLTB, false, 0, false ) ); cLTB = BlendColor( cLTB, BlendColor( cLT, cLB) ); } else { // If any hits if( hitPacket[ iLT ].m_hitresult || hitPacket[ iLB ].m_hitresult ) { const unsigned int nodeLT = hitPacket[ iLT ].m_HitInfo.m_acc_node_info; const unsigned int nodeLB = hitPacket[ iLB ].m_HitInfo.m_acc_node_info; bool hittedLTB = false; if( nodeLT != 0 ) hittedLTB |= m_accelerator->Intersect( rayLTB, hitInfoLTB, nodeLT ); if( ( nodeLB != 0 ) && ( nodeLB != nodeLT ) ) hittedLTB |= m_accelerator->Intersect( rayLTB, hitInfoLTB, nodeLB ); if( hittedLTB ) cLTB = COLOR_RGB( shadeHit( bgColorY, rayLTB, hitInfoLTB, false, 0, false ) ); else { hitInfoLTB.m_tHit = std::numeric_limits<float>::infinity(); if( m_accelerator->Intersect( rayLTB, hitInfoLTB ) ) cLTB = COLOR_RGB( shadeHit( bgColorY, rayLTB, hitInfoLTB, false, 0, false ) ); } } } } else { cLTB = cRTB_old; } // Trace and shade cRTB COLOR_RGB cRTB = bgColorYRGB; // Trace the center ray RAY rayRTB; rayRTB.Init( ( oriRT + oriRB ) * 0.5f, glm::normalize( ( dirRT + dirRB ) * 0.5f ) ); HITINFO hitInfoRTB; hitInfoRTB.m_tHit = std::numeric_limits<float>::infinity(); if( hitPacket[ iRT ].m_hitresult && hitPacket[ iRB ].m_hitresult && ( hitPacket[ iRT ].m_HitInfo.pHitObject == hitPacket[ iRB ].m_HitInfo.pHitObject ) ) { hitInfoRTB.pHitObject = hitPacket[ iRT ].m_HitInfo.pHitObject; hitInfoRTB.m_tHit = ( hitPacket[ iRT ].m_HitInfo.m_tHit + hitPacket[ iRB ].m_HitInfo.m_tHit ) * 0.5f; hitInfoRTB.m_HitNormal = glm::normalize( ( hitPacket[ iRT ].m_HitInfo.m_HitNormal + hitPacket[ iRB ].m_HitInfo.m_HitNormal ) * 0.5f ); cRTB = COLOR_RGB( shadeHit( bgColorY, rayRTB, hitInfoRTB, false, 0, false ) ); cRTB = BlendColor( cRTB, BlendColor( cRT, cRB ) ); } else { // If any hits if( hitPacket[ iRT ].m_hitresult || hitPacket[ iRB ].m_hitresult ) { const unsigned int nodeRT = hitPacket[ iRT ].m_HitInfo.m_acc_node_info; const unsigned int nodeRB = hitPacket[ iRB ].m_HitInfo.m_acc_node_info; bool hittedRTB = false; if( nodeRT != 0 ) hittedRTB |= m_accelerator->Intersect( rayRTB, hitInfoRTB, nodeRT ); if( ( nodeRB != 0 ) && ( nodeRB != nodeRT ) ) hittedRTB |= m_accelerator->Intersect( rayRTB, hitInfoRTB, nodeRB ); if( hittedRTB ) { cRTB = COLOR_RGB( shadeHit( bgColorY, rayRTB, hitInfoRTB, false, 0, false) ); } else { hitInfoRTB.m_tHit = std::numeric_limits<float>::infinity(); if( m_accelerator->Intersect( rayRTB, hitInfoRTB ) ) cRTB = COLOR_RGB( shadeHit( bgColorY, rayRTB, hitInfoRTB, false, 0, false ) ); } } } cRTB_old = cRTB; // Trace and shade cLRB COLOR_RGB cLRB = bgColorYRGB; const SFVEC3F& oriLB = blockPacket.m_ray[ iLB ].m_Origin; const SFVEC3F& dirLB = blockPacket.m_ray[ iLB ].m_Dir; // Trace the center ray RAY rayLRB; rayLRB.Init( ( oriLB + oriRB ) * 0.5f, glm::normalize( ( dirLB + dirRB ) * 0.5f ) ); HITINFO hitInfoLRB; hitInfoLRB.m_tHit = std::numeric_limits<float>::infinity(); if( hitPacket[iLB].m_hitresult && hitPacket[iRB].m_hitresult && ( hitPacket[iLB].m_HitInfo.pHitObject == hitPacket[iRB].m_HitInfo.pHitObject ) ) { hitInfoLRB.pHitObject = hitPacket[ iLB ].m_HitInfo.pHitObject; hitInfoLRB.m_tHit = ( hitPacket[ iLB ].m_HitInfo.m_tHit + hitPacket[ iRB ].m_HitInfo.m_tHit ) * 0.5f; hitInfoLRB.m_HitNormal = glm::normalize( ( hitPacket[ iLB ].m_HitInfo.m_HitNormal + hitPacket[ iRB ].m_HitInfo.m_HitNormal ) * 0.5f ); cLRB = COLOR_RGB( shadeHit( bgColorY, rayLRB, hitInfoLRB, false, 0, false ) ); cLRB = BlendColor( cLRB, BlendColor( cLB, cRB ) ); } else { // If any hits if( hitPacket[ iLB ].m_hitresult || hitPacket[ iRB ].m_hitresult ) { const unsigned int nodeLB = hitPacket[ iLB ].m_HitInfo.m_acc_node_info; const unsigned int nodeRB = hitPacket[ iRB ].m_HitInfo.m_acc_node_info; bool hittedLRB = false; if( nodeLB != 0 ) hittedLRB |= m_accelerator->Intersect( rayLRB, hitInfoLRB, nodeLB ); if( ( nodeRB != 0 ) && ( nodeRB != nodeLB ) ) hittedLRB |= m_accelerator->Intersect( rayLRB, hitInfoLRB, nodeRB ); if( hittedLRB ) { cLRB = COLOR_RGB( shadeHit( bgColorY, rayLRB, hitInfoLRB, false, 0, false ) ); } else { hitInfoLRB.m_tHit = std::numeric_limits<float>::infinity(); if( m_accelerator->Intersect( rayLRB, hitInfoLRB ) ) cLRB = COLOR_RGB( shadeHit( bgColorY, rayLRB, hitInfoLRB, false, 0, false ) ); } } } cLRB_old[x] = cLRB; // Trace and shade cLTC COLOR_RGB cLTC = BlendColor( cLT , cC ); if( hitPacket[ iLT ].m_hitresult || hittedC ) { // Trace the center ray RAY rayLTC; rayLTC.Init( ( oriLT + oriC ) * 0.5f, glm::normalize( ( dirLT + dirC ) * 0.5f ) ); HITINFO hitInfoLTC; hitInfoLTC.m_tHit = std::numeric_limits<float>::infinity(); bool hitted = false; if( hittedC ) hitted = centerHitInfo.pHitObject->Intersect( rayLTC, hitInfoLTC ); else if( hitPacket[ iLT ].m_hitresult ) hitted = hitPacket[ iLT ].m_HitInfo.pHitObject->Intersect( rayLTC, hitInfoLTC ); if( hitted ) cLTC = COLOR_RGB( shadeHit( bgColorY, rayLTC, hitInfoLTC, false, 0, false ) ); } // Trace and shade cRTC COLOR_RGB cRTC = BlendColor( cRT , cC ); if( hitPacket[ iRT ].m_hitresult || hittedC ) { // Trace the center ray RAY rayRTC; rayRTC.Init( ( oriRT + oriC ) * 0.5f, glm::normalize( ( dirRT + dirC ) * 0.5f ) ); HITINFO hitInfoRTC; hitInfoRTC.m_tHit = std::numeric_limits<float>::infinity(); bool hitted = false; if( hittedC ) hitted = centerHitInfo.pHitObject->Intersect( rayRTC, hitInfoRTC ); else if( hitPacket[ iRT ].m_hitresult ) hitted = hitPacket[ iRT ].m_HitInfo.pHitObject->Intersect( rayRTC, hitInfoRTC ); if( hitted ) cRTC = COLOR_RGB( shadeHit( bgColorY, rayRTC, hitInfoRTC, false, 0, false ) ); } // Trace and shade cLBC COLOR_RGB cLBC = BlendColor( cLB , cC ); if( hitPacket[ iLB ].m_hitresult || hittedC ) { // Trace the center ray RAY rayLBC; rayLBC.Init( ( oriLB + oriC ) * 0.5f, glm::normalize( ( dirLB + dirC ) * 0.5f ) ); HITINFO hitInfoLBC; hitInfoLBC.m_tHit = std::numeric_limits<float>::infinity(); bool hitted = false; if( hittedC ) hitted = centerHitInfo.pHitObject->Intersect( rayLBC, hitInfoLBC ); else if( hitPacket[ iLB ].m_hitresult ) hitted = hitPacket[ iLB ].m_HitInfo.pHitObject->Intersect( rayLBC, hitInfoLBC ); if( hitted ) cLBC = COLOR_RGB( shadeHit( bgColorY, rayLBC, hitInfoLBC, false, 0, false ) ); } // Trace and shade cRBC COLOR_RGB cRBC = BlendColor( cRB , cC ); if( hitPacket[ iRB ].m_hitresult || hittedC ) { // Trace the center ray RAY rayRBC; rayRBC.Init( ( oriRB + oriC ) * 0.5f, glm::normalize( ( dirRB + dirC ) * 0.5f ) ); HITINFO hitInfoRBC; hitInfoRBC.m_tHit = std::numeric_limits<float>::infinity(); bool hitted = false; if( hittedC ) hitted = centerHitInfo.pHitObject->Intersect( rayRBC, hitInfoRBC ); else if( hitPacket[ iRB ].m_hitresult ) hitted = hitPacket[ iRB ].m_HitInfo.pHitObject->Intersect( rayRBC, hitInfoRBC ); if( hitted ) cRBC = COLOR_RGB( shadeHit( bgColorY, rayRBC, hitInfoRBC, false, 0, false ) ); } // Set pixel colors GLubyte* ptr = &ptrPBO[( 4 * x + m_blockPositionsFast[iBlock].x + m_realBufferSize.x * ( m_blockPositionsFast[iBlock].y + 4 * y ) ) * 4]; SetPixel( ptr + 0, cLT ); SetPixel( ptr + 4, BlendColor( cLT, cLRT, cLTC ) ); SetPixel( ptr + 8, cLRT ); SetPixel( ptr + 12, BlendColor( cLRT, cRT, cRTC ) ); ptr += m_realBufferSize.x * 4; SetPixel( ptr + 0, BlendColor( cLT , cLTB, cLTC ) ); SetPixel( ptr + 4, BlendColor( cLTC, BlendColor( cLT , cC ) ) ); SetPixel( ptr + 8, BlendColor( cC, BlendColor( cLRT, cLTC, cRTC ) ) ); SetPixel( ptr + 12, BlendColor( cRTC, BlendColor( cRT , cC ) ) ); ptr += m_realBufferSize.x * 4; SetPixel( ptr + 0, cLTB ); SetPixel( ptr + 4, BlendColor( cC, BlendColor( cLTB, cLTC, cLBC ) ) ); SetPixel( ptr + 8, cC ); SetPixel( ptr + 12, BlendColor( cC, BlendColor( cRTB, cRTC, cRBC ) ) ); ptr += m_realBufferSize.x * 4; SetPixel( ptr + 0, BlendColor( cLB , cLTB, cLBC ) ); SetPixel( ptr + 4, BlendColor( cLBC, BlendColor( cLB , cC ) ) ); SetPixel( ptr + 8, BlendColor( cC, BlendColor( cLRB, cLBC, cRBC ) ) ); SetPixel( ptr + 12, BlendColor( cRBC, BlendColor( cRB , cC ) ) ); } } } threadsFinished++; } ); t.detach(); } while( threadsFinished < parallelThreadCount ) std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) ); } #define USE_EXPERIMENTAL_SOFT_SHADOWS 1 SFVEC3F RENDER_3D_RAYTRACE::shadeHit( const SFVEC3F& aBgColor, const RAY& aRay, HITINFO& aHitInfo, bool aIsInsideObject, unsigned int aRecursiveLevel, bool is_testShadow ) const { const MATERIAL* objMaterial = aHitInfo.pHitObject->GetMaterial(); wxASSERT( objMaterial != nullptr ); SFVEC3F outColor = objMaterial->GetEmissiveColor() + objMaterial->GetAmbientColor(); if( aRecursiveLevel > 7 ) return outColor; SFVEC3F hitPoint = aHitInfo.m_HitPoint; hitPoint += aHitInfo.m_HitNormal * m_boardAdapter.GetNonCopperLayerThickness() * 0.6f; const SFVEC3F diffuseColorObj = aHitInfo.pHitObject->GetDiffuseColor( aHitInfo ); const LIST_LIGHT& lightList = m_lights.GetList(); #if USE_EXPERIMENTAL_SOFT_SHADOWS const bool is_aa_enabled = m_boardAdapter.GetFlag( FL_RENDER_RAYTRACING_ANTI_ALIASING ) && (!m_isPreview); #endif float shadow_att_factor_sum = 0.0f; unsigned int nr_lights_that_can_cast_shadows = 0; for( LIST_LIGHT::const_iterator ii = lightList.begin(); ii != lightList.end(); ++ii ) { const LIGHT* light = (LIGHT *)*ii; SFVEC3F vectorToLight; SFVEC3F colorOfLight; float distToLight; light->GetLightParameters( hitPoint, vectorToLight, colorOfLight, distToLight ); if( m_isPreview ) colorOfLight = SFVEC3F( 1.0f ); const float NdotL = glm::dot( aHitInfo.m_HitNormal, vectorToLight ); // Only calc shade if the normal is facing the direction of light, // otherwise it is in the shadow if( NdotL >= FLT_EPSILON ) { float shadow_att_factor_light = 1.0f; if( is_testShadow && light->GetCastShadows() ) { nr_lights_that_can_cast_shadows++; #if USE_EXPERIMENTAL_SOFT_SHADOWS // For rays that are recursive, just calculate one hit shadow if( aRecursiveLevel > 0 ) { #endif RAY rayToLight; rayToLight.Init( hitPoint, vectorToLight ); // Test if point is not in the shadow. // Test for any hit from the point in the direction of light if( m_accelerator->IntersectP( rayToLight, distToLight ) ) shadow_att_factor_light = 0.0f; #if USE_EXPERIMENTAL_SOFT_SHADOWS } else // Experimental softshadow calculation { const unsigned int shadow_number_of_samples = m_boardAdapter.m_RtShadowSampleCount; const float shadow_inc_factor = 1.0f / (float) ( shadow_number_of_samples ); for( unsigned int i = 0; i < shadow_number_of_samples; ++i ) { RAY rayToLight; if( i == 0 ) { rayToLight.Init( hitPoint, vectorToLight ); } else { const SFVEC3F unifVector = UniformRandomHemisphereDirection(); const SFVEC3F disturbed_vector_to_light = glm::normalize( vectorToLight + unifVector * m_boardAdapter.m_RtSpreadShadows ); rayToLight.Init( hitPoint, disturbed_vector_to_light ); } // !TODO: there are multiple ways that this tests can be // optimized. Eg: by packing rays or to test against the // latest hit object. if( m_accelerator->IntersectP( rayToLight, distToLight ) ) { shadow_att_factor_light -= shadow_inc_factor; } } } #endif shadow_att_factor_sum += shadow_att_factor_light; } outColor += objMaterial->Shade( aRay, aHitInfo, NdotL, diffuseColorObj, vectorToLight, colorOfLight, shadow_att_factor_light ); } // Only use the headlight for preview if( m_isPreview ) break; } // Improvement: this is not taking in account the lightcolor if( nr_lights_that_can_cast_shadows > 0 ) { aHitInfo.m_ShadowFactor = glm::max( shadow_att_factor_sum / (float) ( nr_lights_that_can_cast_shadows * 1.0f ), 0.0f ); } else { aHitInfo.m_ShadowFactor = 1.0f; } // Clamp color to not be brighter than 1.0f outColor = glm::min( outColor, SFVEC3F( 1.0f ) ); if( !m_isPreview ) { // Reflections if( ( objMaterial->GetReflection() > 0.0f ) && m_boardAdapter.GetFlag( FL_RENDER_RAYTRACING_REFLECTIONS ) && ( aRecursiveLevel < objMaterial->GetReflectionRecursionCount() ) ) { const unsigned int reflection_number_of_samples = objMaterial->GetReflectionRayCount(); SFVEC3F sum_color = SFVEC3F( 0.0f ); const SFVEC3F reflectVector = aRay.m_Dir - 2.0f * glm::dot( aRay.m_Dir, aHitInfo.m_HitNormal ) * aHitInfo.m_HitNormal; for( unsigned int i = 0; i < reflection_number_of_samples; ++i ) { RAY reflectedRay; if( i == 0 ) { reflectedRay.Init( hitPoint, reflectVector ); } else { // Apply some randomize to the reflected vector const SFVEC3F random_reflectVector = glm::normalize( reflectVector + UniformRandomHemisphereDirection() * m_boardAdapter.m_RtSpreadReflections ); reflectedRay.Init( hitPoint, random_reflectVector ); } HITINFO reflectedHit; reflectedHit.m_tHit = std::numeric_limits<float>::infinity(); if( m_accelerator->Intersect( reflectedRay, reflectedHit ) ) { sum_color += ( diffuseColorObj + objMaterial->GetSpecularColor() ) * shadeHit( aBgColor, reflectedRay, reflectedHit, false, aRecursiveLevel + 1, is_testShadow ) * SFVEC3F( objMaterial->GetReflection() * // Falloff factor (1.0f / ( 1.0f + 0.75f * reflectedHit.m_tHit * reflectedHit.m_tHit) ) ); } } outColor += (sum_color / SFVEC3F( (float)reflection_number_of_samples) ); } // Refraction const float objTransparency = aHitInfo.pHitObject->GetModelTransparency(); if( ( objTransparency > 0.0f ) && m_boardAdapter.GetFlag( FL_RENDER_RAYTRACING_REFRACTIONS ) && ( aRecursiveLevel < objMaterial->GetRefractionRecursionCount() ) ) { const float airIndex = 1.000293f; const float glassIndex = 1.49f; const float air_over_glass = airIndex / glassIndex; const float glass_over_air = glassIndex / airIndex; const float refractionRatio = aIsInsideObject?glass_over_air:air_over_glass; SFVEC3F refractedVector; if( Refract( aRay.m_Dir, aHitInfo.m_HitNormal, refractionRatio, refractedVector ) ) { // This increase the start point by a "fixed" factor so it will work the // same for all distances const SFVEC3F startPoint = aRay.at( aHitInfo.m_tHit + m_boardAdapter.GetNonCopperLayerThickness() * 0.25f ); const unsigned int refractions_number_of_samples = objMaterial->GetRefractionRayCount(); SFVEC3F sum_color = SFVEC3F(0.0f); for( unsigned int i = 0; i < refractions_number_of_samples; ++i ) { RAY refractedRay; if( i == 0 ) { refractedRay.Init( startPoint, refractedVector ); } else { // apply some randomize to the refracted vector const SFVEC3F randomizeRefractedVector = glm::normalize( refractedVector + UniformRandomHemisphereDirection() * m_boardAdapter.m_RtSpreadRefractions ); refractedRay.Init( startPoint, randomizeRefractedVector ); } HITINFO refractedHit; refractedHit.m_tHit = std::numeric_limits<float>::infinity(); SFVEC3F refractedColor = aBgColor; if( m_accelerator->Intersect( refractedRay, refractedHit ) ) { refractedColor = shadeHit( aBgColor, refractedRay, refractedHit, !aIsInsideObject, aRecursiveLevel + 1, false ); const SFVEC3F absorbance = ( SFVEC3F(1.0f) - diffuseColorObj ) * (1.0f - objTransparency ) * objMaterial->GetAbsorvance() * refractedHit.m_tHit; const SFVEC3F transparency = 1.0f / ( absorbance + 1.0f ); sum_color += refractedColor * transparency; } else { sum_color += refractedColor; } } outColor = outColor * ( 1.0f - objTransparency ) + objTransparency * sum_color / SFVEC3F( (float) refractions_number_of_samples ); } else { outColor = outColor * ( 1.0f - objTransparency ) + objTransparency * aBgColor; } } } return outColor; } void RENDER_3D_RAYTRACE::initializeNewWindowSize() { initPbo(); } void RENDER_3D_RAYTRACE::initPbo() { if( GLEW_ARB_pixel_buffer_object ) { m_openglSupportsVertexBufferObjects = true; // Try to delete vbo if it was already initialized deletePbo(); // Learn about Pixel buffer objects at: // http://www.songho.ca/opengl/gl_pbo.html // http://web.eecs.umich.edu/~sugih/courses/eecs487/lectures/25-PBO+Mipmapping.pdf // "create 2 pixel buffer objects, you need to delete them when program exits. // glBufferDataARB with NULL pointer reserves only memory space." // This sets the number of RGBA pixels m_pboDataSize = m_realBufferSize.x * m_realBufferSize.y * 4; glGenBuffersARB( 1, &m_pboId ); glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, m_pboId ); glBufferDataARB( GL_PIXEL_UNPACK_BUFFER_ARB, m_pboDataSize, 0, GL_STREAM_DRAW_ARB ); glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, 0 ); wxLogTrace( m_logTrace, wxT( "RENDER_3D_RAYTRACE:: GLEW_ARB_pixel_buffer_object is supported" ) ); } } bool RENDER_3D_RAYTRACE::initializeOpenGL() { m_is_opengl_initialized = true; return true; } static float distance( const SFVEC2UI& a, const SFVEC2UI& b ) { const float dx = (float) a.x - (float) b.x; const float dy = (float) a.y - (float) b.y; return hypotf( dx, dy ); } void RENDER_3D_RAYTRACE::initializeBlockPositions() { m_realBufferSize = SFVEC2UI( 0 ); // Calc block positions for fast preview mode m_blockPositionsFast.clear(); unsigned int i = 0; while(1) { const unsigned int mX = DecodeMorton2X(i); const unsigned int mY = DecodeMorton2Y(i); i++; const SFVEC2UI blockPos( mX * 4 * RAYPACKET_DIM - mX * 4, mY * 4 * RAYPACKET_DIM - mY * 4 ); if( ( blockPos.x >= ( (unsigned int)m_windowSize.x - ( 4 * RAYPACKET_DIM + 4 ) ) ) && ( blockPos.y >= ( (unsigned int)m_windowSize.y - ( 4 * RAYPACKET_DIM + 4 ) ) ) ) break; if( ( blockPos.x < ( (unsigned int)m_windowSize.x - ( 4 * RAYPACKET_DIM + 4 ) ) ) && ( blockPos.y < ( (unsigned int)m_windowSize.y - ( 4 * RAYPACKET_DIM + 4 ) ) ) ) { m_blockPositionsFast.push_back( blockPos ); if( blockPos.x > m_realBufferSize.x ) m_realBufferSize.x = blockPos.x; if( blockPos.y > m_realBufferSize.y ) m_realBufferSize.y = blockPos.y; } } m_fastPreviewModeSize = m_realBufferSize; m_realBufferSize.x = ( ( m_realBufferSize.x + RAYPACKET_DIM * 4 ) & RAYPACKET_INVMASK ); m_realBufferSize.y = ( ( m_realBufferSize.y + RAYPACKET_DIM * 4 ) & RAYPACKET_INVMASK ); m_xoffset = ( m_windowSize.x - m_realBufferSize.x ) / 2; m_yoffset = ( m_windowSize.y - m_realBufferSize.y ) / 2; m_postShaderSsao.UpdateSize( m_realBufferSize ); // Calc block positions for regular rendering. Choose an 'inside out' style of rendering. m_blockPositions.clear(); const int blocks_x = m_realBufferSize.x / RAYPACKET_DIM; const int blocks_y = m_realBufferSize.y / RAYPACKET_DIM; m_blockPositions.reserve( blocks_x * blocks_y ); for( int x = 0; x < blocks_x; ++x ) { for( int y = 0; y < blocks_y; ++y ) m_blockPositions.emplace_back( x * RAYPACKET_DIM, y * RAYPACKET_DIM ); } const SFVEC2UI center( m_realBufferSize.x / 2, m_realBufferSize.y / 2 ); std::sort( m_blockPositions.begin(), m_blockPositions.end(), [&]( const SFVEC2UI& a, const SFVEC2UI& b ) { // Sort order: inside out. return distance( a, center ) < distance( b, center ); } ); // Create m_shader buffer delete[] m_shaderBuffer; m_shaderBuffer = new SFVEC3F[m_realBufferSize.x * m_realBufferSize.y]; initPbo(); } BOARD_ITEM* RENDER_3D_RAYTRACE::IntersectBoardItem( const RAY& aRay ) { HITINFO hitInfo; hitInfo.m_tHit = std::numeric_limits<float>::infinity(); if( m_accelerator ) { if( m_accelerator->Intersect( aRay, hitInfo ) ) { if( hitInfo.pHitObject ) return hitInfo.pHitObject->GetBoardItem(); } } return nullptr; }