/** * @file class_board.cpp * @brief BOARD class functions. */ /* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 2011 Wayne Stambaugh * * Copyright (C) 1992-2019 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** * A singleton item of this class is returned for a weak reference that no longer exists. * Its sole purpose is to flag the item as having been deleted. */ class DELETED_BOARD_ITEM : public BOARD_ITEM { public: DELETED_BOARD_ITEM() : BOARD_ITEM( nullptr, NOT_USED ) {} wxString GetSelectMenuText( EDA_UNITS_T aUnits ) const override { return _( "(Deleted Item)" ); } wxString GetClass() const override { return wxT( "DELETED_BOARD_ITEM" ); } // pure virtuals: const wxPoint GetPosition() const override { return wxPoint(); } void SetPosition( const wxPoint& ) override {} void Print( PCB_BASE_FRAME* aFrame, wxDC* DC, const wxPoint& aOffset ) override {} #if defined(DEBUG) void Show( int , std::ostream& ) const override {} #endif }; DELETED_BOARD_ITEM g_DeletedItem; /* This is an odd place for this, but CvPcb won't link if it is * in class_board_item.cpp like I first tried it. */ wxPoint BOARD_ITEM::ZeroOffset( 0, 0 ); // Dummy general settings (defined colors are the default values) used to initialize the board. // These settings will be overriden later, depending on the draw frame that displays the board. // However, when a board is created by a python script, outside a frame, the colors must be set // so dummyColorsSettings provide this default initialization static PCB_GENERAL_SETTINGS dummyGeneralSettings( FRAME_PCB ); BOARD::BOARD() : BOARD_ITEM_CONTAINER( (BOARD_ITEM*) NULL, PCB_T ), m_paper( PAGE_INFO::A4 ), m_NetInfo( this ) { // we have not loaded a board yet, assume latest until then. m_fileFormatVersionAtLoad = LEGACY_BOARD_FILE_VERSION; m_generalSettings = &dummyGeneralSettings; m_CurrentZoneContour = NULL; // This ZONE_CONTAINER handle the // zone contour currently in progress BuildListOfNets(); // prepare pad and netlist containers. for( LAYER_NUM layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer ) { m_Layer[layer].m_name = GetStandardLayerName( ToLAYER_ID( layer ) ); if( IsCopperLayer( layer ) ) m_Layer[layer].m_type = LT_SIGNAL; else m_Layer[layer].m_type = LT_UNDEFINED; } // Initialize default netclass. NETCLASSPTR defaultClass = m_designSettings.GetDefault(); defaultClass->SetDescription( _( "This is the default net class." ) ); m_designSettings.SetCurrentNetClass( defaultClass->GetName() ); // Set sensible initial values for custom track width & via size m_designSettings.UseCustomTrackViaSize( false ); m_designSettings.SetCustomTrackWidth( m_designSettings.GetCurrentTrackWidth() ); m_designSettings.SetCustomViaSize( m_designSettings.GetCurrentViaSize() ); m_designSettings.SetCustomViaDrill( m_designSettings.GetCurrentViaDrill() ); // Initialize ratsnest m_connectivity.reset( new CONNECTIVITY_DATA() ); } BOARD::~BOARD() { while( m_ZoneDescriptorList.size() ) { ZONE_CONTAINER* area_to_remove = m_ZoneDescriptorList[0]; Delete( area_to_remove ); } // Clean up the owned elements DeleteMARKERs(); DeleteZONEOutlines(); // Delete the modules for( auto m : m_modules ) delete m; m_modules.clear(); // Delete the tracks for( auto t : m_tracks ) delete t; m_tracks.clear(); // Delete the drawings for (auto d : m_drawings ) delete d; m_drawings.clear(); delete m_CurrentZoneContour; m_CurrentZoneContour = NULL; } void BOARD::BuildConnectivity() { GetConnectivity()->Build( this ); } const wxPoint BOARD::GetPosition() const { return ZeroOffset; } void BOARD::SetPosition( const wxPoint& aPos ) { wxLogWarning( wxT( "This should not be called on the BOARD object") ); } void BOARD::Move( const wxPoint& aMoveVector ) // overload { // @todo : anything like this elsewhere? maybe put into GENERAL_COLLECTOR class. static const KICAD_T top_level_board_stuff[] = { PCB_MARKER_T, PCB_TEXT_T, PCB_LINE_T, PCB_DIMENSION_T, PCB_TARGET_T, PCB_VIA_T, PCB_TRACE_T, // PCB_PAD_T, Can't be at board level // PCB_MODULE_TEXT_T, Can't be at board level PCB_MODULE_T, PCB_ZONE_AREA_T, EOT }; INSPECTOR_FUNC inspector = [&] ( EDA_ITEM* item, void* testData ) { BOARD_ITEM* brd_item = (BOARD_ITEM*) item; // aMoveVector was snapshotted, don't need "data". brd_item->Move( aMoveVector ); return SEARCH_CONTINUE; }; Visit( inspector, NULL, top_level_board_stuff ); } TRACKS BOARD::TracksInNet( int aNetCode ) { TRACKS ret; INSPECTOR_FUNC inspector = [aNetCode,&ret] ( EDA_ITEM* item, void* testData ) { TRACK* t = (TRACK*) item; if( t->GetNetCode() == aNetCode ) ret.push_back( t ); return SEARCH_CONTINUE; }; // visit this BOARD's TRACKs and VIAs with above TRACK INSPECTOR which // appends all in aNetCode to ret. Visit( inspector, NULL, GENERAL_COLLECTOR::Tracks ); return ret; } bool BOARD::SetLayerDescr( PCB_LAYER_ID aIndex, const LAYER& aLayer ) { if( unsigned( aIndex ) < arrayDim( m_Layer ) ) { m_Layer[ aIndex ] = aLayer; return true; } return false; } const PCB_LAYER_ID BOARD::GetLayerID( const wxString& aLayerName ) const { // Look for the BOARD specific copper layer names for( LAYER_NUM layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer ) { if ( IsCopperLayer( layer ) && ( m_Layer[ layer ].m_name == aLayerName ) ) { return ToLAYER_ID( layer ); } } // Otherwise fall back to the system standard layer names for( LAYER_NUM layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer ) { if( GetStandardLayerName( ToLAYER_ID( layer ) ) == aLayerName ) { return ToLAYER_ID( layer ); } } return UNDEFINED_LAYER; } const wxString BOARD::GetLayerName( PCB_LAYER_ID aLayer ) const { // All layer names are stored in the BOARD. if( IsLayerEnabled( aLayer ) ) { // Standard names were set in BOARD::BOARD() but they may be // over-ridden by BOARD::SetLayerName(). // For copper layers, return the actual copper layer name, // otherwise return the Standard English layer name. if( IsCopperLayer( aLayer ) ) return m_Layer[aLayer].m_name; } return GetStandardLayerName( aLayer ); } bool BOARD::SetLayerName( PCB_LAYER_ID aLayer, const wxString& aLayerName ) { if( !IsCopperLayer( aLayer ) ) return false; if( aLayerName == wxEmptyString ) return false; // no quote chars in the name allowed if( aLayerName.Find( wxChar( '"' ) ) != wxNOT_FOUND ) return false; wxString nameTemp = aLayerName; // replace any spaces with underscores before we do any comparing nameTemp.Replace( wxT( " " ), wxT( "_" ) ); if( IsLayerEnabled( aLayer ) ) { #if 0 for( LAYER_NUM i = FIRST_COPPER_LAYER; i < NB_COPPER_LAYERS; ++i ) { if( i != aLayer && IsLayerEnabled( i ) && nameTemp == m_Layer[i].m_Name ) return false; } #else for( LSEQ cu = GetEnabledLayers().CuStack(); cu; ++cu ) { PCB_LAYER_ID id = *cu; // veto changing the name if it exists elsewhere. if( id != aLayer && nameTemp == m_Layer[id].m_name ) // if( id != aLayer && nameTemp == wxString( m_Layer[id].m_name ) ) return false; } #endif m_Layer[aLayer].m_name = nameTemp; return true; } return false; } LAYER_T BOARD::GetLayerType( PCB_LAYER_ID aLayer ) const { if( !IsCopperLayer( aLayer ) ) return LT_SIGNAL; //@@IMB: The original test was broken due to the discontinuity // in the layer sequence. if( IsLayerEnabled( aLayer ) ) return m_Layer[aLayer].m_type; return LT_SIGNAL; } bool BOARD::SetLayerType( PCB_LAYER_ID aLayer, LAYER_T aLayerType ) { if( !IsCopperLayer( aLayer ) ) return false; //@@IMB: The original test was broken due to the discontinuity // in the layer sequence. if( IsLayerEnabled( aLayer ) ) { m_Layer[aLayer].m_type = aLayerType; return true; } return false; } const char* LAYER::ShowType( LAYER_T aType ) { const char* cp; switch( aType ) { default: case LT_SIGNAL: cp = "signal"; break; case LT_POWER: cp = "power"; break; case LT_MIXED: cp = "mixed"; break; case LT_JUMPER: cp = "jumper"; break; } return cp; } LAYER_T LAYER::ParseType( const char* aType ) { if( strcmp( aType, "signal" ) == 0 ) return LT_SIGNAL; else if( strcmp( aType, "power" ) == 0 ) return LT_POWER; else if( strcmp( aType, "mixed" ) == 0 ) return LT_MIXED; else if( strcmp( aType, "jumper" ) == 0 ) return LT_JUMPER; else return LT_UNDEFINED; } int BOARD::GetCopperLayerCount() const { return m_designSettings.GetCopperLayerCount(); } void BOARD::SetCopperLayerCount( int aCount ) { m_designSettings.SetCopperLayerCount( aCount ); } LSET BOARD::GetEnabledLayers() const { return m_designSettings.GetEnabledLayers(); } LSET BOARD::GetVisibleLayers() const { return m_designSettings.GetVisibleLayers(); } void BOARD::SetEnabledLayers( LSET aLayerSet ) { m_designSettings.SetEnabledLayers( aLayerSet ); } void BOARD::SetVisibleLayers( LSET aLayerSet ) { m_designSettings.SetVisibleLayers( aLayerSet ); } void BOARD::SetVisibleElements( int aMask ) { // Call SetElementVisibility for each item // to ensure specific calculations that can be needed by some items, // just changing the visibility flags could be not sufficient. for( GAL_LAYER_ID ii = GAL_LAYER_ID_START; ii < GAL_LAYER_ID_BITMASK_END; ++ii ) { int item_mask = 1 << GAL_LAYER_INDEX( ii ); SetElementVisibility( ii, aMask & item_mask ); } } void BOARD::SetVisibleAlls() { SetVisibleLayers( LSET().set() ); // Call SetElementVisibility for each item, // to ensure specific calculations that can be needed by some items for( GAL_LAYER_ID ii = GAL_LAYER_ID_START; ii < GAL_LAYER_ID_BITMASK_END; ++ii ) SetElementVisibility( ii, true ); } int BOARD::GetVisibleElements() const { return m_designSettings.GetVisibleElements(); } bool BOARD::IsElementVisible( GAL_LAYER_ID aLayer ) const { return m_designSettings.IsElementVisible( aLayer ); } void BOARD::SetElementVisibility( GAL_LAYER_ID aLayer, bool isEnabled ) { m_designSettings.SetElementVisibility( aLayer, isEnabled ); switch( aLayer ) { case LAYER_RATSNEST: { // because we have a tool to show/hide ratsnest relative to a pad or a module // so the hide/show option is a per item selection for( auto track : Tracks() ) track->SetLocalRatsnestVisible( isEnabled ); for( auto mod : Modules() ) { for( auto pad : mod->Pads() ) pad->SetLocalRatsnestVisible( isEnabled ); } for( int i = 0; iSetLocalRatsnestVisible( isEnabled ); } break; } default: ; } } bool BOARD::IsModuleLayerVisible( PCB_LAYER_ID aLayer ) { switch( aLayer ) { case F_Cu: return IsElementVisible( LAYER_MOD_FR ); case B_Cu: return IsElementVisible( LAYER_MOD_BK ); default: wxFAIL_MSG( wxT( "BOARD::IsModuleLayerVisible() param error: bad layer" ) ); return true; } } void BOARD::Add( BOARD_ITEM* aBoardItem, ADD_MODE aMode ) { if( aBoardItem == NULL ) { wxFAIL_MSG( wxT( "BOARD::Add() param error: aBoardItem NULL" ) ); return; } switch( aBoardItem->Type() ) { case PCB_NETINFO_T: m_NetInfo.AppendNet( (NETINFO_ITEM*) aBoardItem ); break; // this one uses a vector case PCB_MARKER_T: m_markers.push_back( (MARKER_PCB*) aBoardItem ); break; // this one uses a vector case PCB_ZONE_AREA_T: m_ZoneDescriptorList.push_back( (ZONE_CONTAINER*) aBoardItem ); break; case PCB_TRACE_T: case PCB_VIA_T: // N.B. This inserts a small memory leak as we lose the if( !IsCopperLayer( aBoardItem->GetLayer() ) ) { wxFAIL_MSG( wxT( "BOARD::Add() Cannot place Track on non-copper layer" ) ); return; } if( aMode == ADD_APPEND ) m_tracks.push_back( static_cast( aBoardItem ) ); else m_tracks.push_front( static_cast( aBoardItem ) ); break; case PCB_MODULE_T: if( aMode == ADD_APPEND ) m_modules.push_back( (MODULE*) aBoardItem ); else m_modules.push_front( (MODULE*) aBoardItem ); break; case PCB_DIMENSION_T: case PCB_LINE_T: case PCB_TEXT_T: case PCB_TARGET_T: if( aMode == ADD_APPEND ) m_drawings.push_back( aBoardItem ); else m_drawings.push_front( aBoardItem ); break; // other types may use linked list default: { wxString msg; msg.Printf( wxT( "BOARD::Add() needs work: BOARD_ITEM type (%d) not handled" ), aBoardItem->Type() ); wxFAIL_MSG( msg ); return; } break; } aBoardItem->SetParent( this ); aBoardItem->ClearEditFlags(); m_connectivity->Add( aBoardItem ); } void BOARD::Remove( BOARD_ITEM* aBoardItem ) { // find these calls and fix them! Don't send me no stinking' NULL. wxASSERT( aBoardItem ); switch( aBoardItem->Type() ) { case PCB_NETINFO_T: { NETINFO_ITEM* item = (NETINFO_ITEM*) aBoardItem; m_NetInfo.RemoveNet( item ); break; } case PCB_MARKER_T: // find the item in the vector, then remove it for( unsigned i = 0; iRemove( aBoardItem ); } wxString BOARD::GetSelectMenuText( EDA_UNITS_T aUnits ) const { return wxString::Format( _( "PCB" ) ); } void BOARD::DeleteMARKERs() { // the vector does not know how to delete the MARKER_PCB, it holds pointers for( MARKER_PCB* marker : m_markers ) delete marker; m_markers.clear(); } void BOARD::DeleteZONEOutlines() { // the vector does not know how to delete the ZONE Outlines, it holds pointers for( ZONE_CONTAINER* zone : m_ZoneDescriptorList ) delete zone; m_ZoneDescriptorList.clear(); } BOARD_ITEM* BOARD::GetItem( void* aWeakReference ) { for( TRACK* track : Tracks() ) if( track == aWeakReference ) return track; for( MODULE* module : Modules() ) { if( module == aWeakReference ) return module; for( D_PAD* pad : module->Pads() ) if( pad == aWeakReference ) return pad; if( &module->Reference() == aWeakReference ) return &module->Reference(); if( &module->Value() == aWeakReference ) return &module->Value(); for( BOARD_ITEM* drawing : module->GraphicalItems() ) if( drawing == aWeakReference ) return drawing; } for( ZONE_CONTAINER* zone : Zones() ) if( zone == aWeakReference ) return zone; for( BOARD_ITEM* drawing : Drawings() ) if( drawing == aWeakReference ) return drawing; // Not found; weak reference has been deleted. return &g_DeletedItem; } unsigned BOARD::GetNodesCount( int aNet ) { unsigned retval = 0; for( auto mod : Modules() ) { for( auto pad : mod->Pads() ) { if( ( aNet == -1 && pad->GetNetCode() > 0 ) || aNet == pad->GetNetCode() ) retval++; } } return retval; } unsigned BOARD::GetUnconnectedNetCount() const { return m_connectivity->GetUnconnectedCount(); } EDA_RECT BOARD::ComputeBoundingBox( bool aBoardEdgesOnly ) const { EDA_RECT area; LSET visible = GetVisibleLayers(); bool showInvisibleText = IsElementVisible( LAYER_MOD_TEXT_INVISIBLE ) && !Pgm().m_Printing; // Check segments, dimensions, texts, and fiducials for( auto item : m_drawings ) { if( aBoardEdgesOnly && ( item->GetLayer() != Edge_Cuts ) ) continue; if( ( item->GetLayerSet() & visible ).any() ) area.Merge( item->GetBoundingBox() ); } // Check modules for( auto module : m_modules ) { if( !( module->GetLayerSet() & visible ).any() ) continue; if( aBoardEdgesOnly ) { for( const auto edge : module->GraphicalItems() ) { if( edge->GetLayer() == Edge_Cuts ) area.Merge( edge->GetBoundingBox() ); } } else { area.Merge( module->GetBoundingBox( showInvisibleText ) ); } } if( !aBoardEdgesOnly ) { // Check tracks for( auto track : m_tracks ) { if( ( track->GetLayerSet() & visible ).any() ) area.Merge( track->GetBoundingBox() ); } // Check zones for( auto aZone : m_ZoneDescriptorList ) { if( ( aZone->GetLayerSet() & visible ).any() ) area.Merge( aZone->GetBoundingBox() ); } } return area; } void BOARD::GetMsgPanelInfo( EDA_UNITS_T aUnits, std::vector< MSG_PANEL_ITEM >& aList ) { wxString txt; int viasCount = 0; int trackSegmentsCount = 0; for( auto item : m_tracks ) { if( item->Type() == PCB_VIA_T ) viasCount++; else trackSegmentsCount++; } txt.Printf( wxT( "%d" ), GetPadCount() ); aList.push_back( MSG_PANEL_ITEM( _( "Pads" ), txt, DARKGREEN ) ); txt.Printf( wxT( "%d" ), viasCount ); aList.push_back( MSG_PANEL_ITEM( _( "Vias" ), txt, DARKGREEN ) ); txt.Printf( wxT( "%d" ), trackSegmentsCount ); aList.push_back( MSG_PANEL_ITEM( _( "Track Segments" ), txt, DARKGREEN ) ); txt.Printf( wxT( "%d" ), GetNodesCount() ); aList.push_back( MSG_PANEL_ITEM( _( "Nodes" ), txt, DARKCYAN ) ); txt.Printf( wxT( "%d" ), m_NetInfo.GetNetCount() - 1 /* Don't include "No Net" in count */ ); aList.push_back( MSG_PANEL_ITEM( _( "Nets" ), txt, RED ) ); txt.Printf( wxT( "%d" ), GetConnectivity()->GetUnconnectedCount() ); aList.push_back( MSG_PANEL_ITEM( _( "Unrouted" ), txt, BLUE ) ); } SEARCH_RESULT BOARD::Visit( INSPECTOR inspector, void* testData, const KICAD_T scanTypes[] ) { KICAD_T stype; SEARCH_RESULT result = SEARCH_CONTINUE; const KICAD_T* p = scanTypes; bool done = false; #if 0 && defined(DEBUG) std::cout << GetClass().mb_str() << ' '; #endif while( !done ) { stype = *p; switch( stype ) { case PCB_T: result = inspector( this, testData ); // inspect me // skip over any types handled in the above call. ++p; break; /* Instances of the requested KICAD_T live in a list, either one * that I manage, or that my modules manage. If it's a type managed * by class MODULE, then simply pass it on to each module's * MODULE::Visit() function by way of the * IterateForward( m_Modules, ... ) call. */ case PCB_MODULE_T: case PCB_PAD_T: case PCB_MODULE_TEXT_T: case PCB_MODULE_EDGE_T: // this calls MODULE::Visit() on each module. result = IterateForward( m_modules, inspector, testData, p ); // skip over any types handled in the above call. for( ; ; ) { switch( stype = *++p ) { case PCB_MODULE_T: case PCB_PAD_T: case PCB_MODULE_TEXT_T: case PCB_MODULE_EDGE_T: continue; default: ; } break; } break; case PCB_LINE_T: case PCB_TEXT_T: case PCB_DIMENSION_T: case PCB_TARGET_T: result = IterateForward( m_drawings, inspector, testData, p ); // skip over any types handled in the above call. for( ; ; ) { switch( stype = *++p ) { case PCB_LINE_T: case PCB_TEXT_T: case PCB_DIMENSION_T: case PCB_TARGET_T: continue; default: ; } break; } ; break; #if 0 // both these are on same list, so we must scan it twice in order // to get VIA priority, using new #else code below. // But we are not using separate lists for TRACKs and VIA, because // items are ordered (sorted) in the linked // list by netcode AND by physical distance: // when created, if a track or via is connected to an existing track or // via, it is put in linked list after this existing track or via // So usually, connected tracks or vias are grouped in this list // So the algorithm (used in ratsnest computations) which computes the // track connectivity is faster (more than 100 time regarding to // a non ordered list) because when it searches for a connection, first // it tests the near (near in term of linked list) 50 items // from the current item (track or via) in test. // Usually, because of this sort, a connected item (if exists) is // found. // If not found (and only in this case) an exhaustive (and time // consuming) search is made, but this case is statistically rare. case PCB_VIA_T: case PCB_TRACE_T: result = IterateForward( m_Track, inspector, testData, p ); // skip over any types handled in the above call. for( ; ; ) { switch( stype = *++p ) { case PCB_VIA_T: case PCB_TRACE_T: continue; default: ; } break; } break; #else case PCB_VIA_T: result = IterateForward( m_tracks, inspector, testData, p ); ++p; break; case PCB_TRACE_T: result = IterateForward( m_tracks, inspector, testData, p ); ++p; break; #endif case PCB_MARKER_T: // MARKER_PCBS are in the m_markers std::vector for( unsigned i = 0; iVisit( inspector, testData, p ); if( result == SEARCH_QUIT ) break; } ++p; break; case PCB_ZONE_AREA_T: // PCB_ZONE_AREA_T are in the m_ZoneDescriptorList std::vector for( unsigned i = 0; i< m_ZoneDescriptorList.size(); ++i ) { result = m_ZoneDescriptorList[i]->Visit( inspector, testData, p ); if( result == SEARCH_QUIT ) break; } ++p; break; default: // catch EOT or ANY OTHER type here and return. done = true; break; } if( result == SEARCH_QUIT ) break; } return result; } NETINFO_ITEM* BOARD::FindNet( int aNetcode ) const { // the first valid netcode is 1 and the last is m_NetInfo.GetCount()-1. // zero is reserved for "no connection" and is not actually a net. // NULL is returned for non valid netcodes wxASSERT( m_NetInfo.GetNetCount() > 0 ); if( aNetcode == NETINFO_LIST::UNCONNECTED && m_NetInfo.GetNetCount() == 0 ) return &NETINFO_LIST::ORPHANED_ITEM; else return m_NetInfo.GetNetItem( aNetcode ); } NETINFO_ITEM* BOARD::FindNet( const wxString& aNetname ) const { return m_NetInfo.GetNetItem( aNetname ); } MODULE* BOARD::FindModuleByReference( const wxString& aReference ) const { MODULE* found = nullptr; // search only for MODULES static const KICAD_T scanTypes[] = { PCB_MODULE_T, EOT }; INSPECTOR_FUNC inspector = [&] ( EDA_ITEM* item, void* testData ) { MODULE* module = (MODULE*) item; if( aReference == module->GetReference() ) { found = module; return SEARCH_QUIT; } return SEARCH_CONTINUE; }; // visit this BOARD with the above inspector BOARD* nonconstMe = (BOARD*) this; nonconstMe->Visit( inspector, NULL, scanTypes ); return found; } MODULE* BOARD::FindModule( const wxString& aRefOrTimeStamp, bool aSearchByTimeStamp ) const { if( aSearchByTimeStamp ) { for( auto module : m_modules ) { if( aRefOrTimeStamp.CmpNoCase( module->GetPath() ) == 0 ) return module; } } else { return FindModuleByReference( aRefOrTimeStamp ); } return NULL; } // The pad count for each netcode, stored in a buffer for a fast access. // This is needed by the sort function sortNetsByNodes() static std::vector padCountListByNet; // Sort nets by decreasing pad count. // For same pad count, sort by alphabetic names static bool sortNetsByNodes( const NETINFO_ITEM* a, const NETINFO_ITEM* b ) { int countA = padCountListByNet[a->GetNet()]; int countB = padCountListByNet[b->GetNet()]; if( countA == countB ) return a->GetNetname() < b->GetNetname(); else return countB < countA; } // Sort nets by alphabetic names static bool sortNetsByNames( const NETINFO_ITEM* a, const NETINFO_ITEM* b ) { return a->GetNetname() < b->GetNetname(); } int BOARD::SortedNetnamesList( wxArrayString& aNames, bool aSortbyPadsCount ) { if( m_NetInfo.GetNetCount() == 0 ) return 0; // Build the list std::vector netBuffer; netBuffer.reserve( m_NetInfo.GetNetCount() ); int max_netcode = 0; for( NETINFO_ITEM* net : m_NetInfo ) { auto netcode = net->GetNet(); if( netcode > 0 && net->IsCurrent() ) { netBuffer.push_back( net ); max_netcode = std::max( netcode, max_netcode); } } // sort the list if( aSortbyPadsCount ) { // Build the pad count by net: padCountListByNet.clear(); std::vector pads = GetPads(); padCountListByNet.assign( max_netcode + 1, 0 ); for( D_PAD* pad : pads ) padCountListByNet[pad->GetNetCode()]++; sort( netBuffer.begin(), netBuffer.end(), sortNetsByNodes ); } else { sort( netBuffer.begin(), netBuffer.end(), sortNetsByNames ); } for( NETINFO_ITEM* net : netBuffer ) aNames.Add( UnescapeString( net->GetNetname() ) ); return netBuffer.size(); } ZONE_CONTAINER* BOARD::HitTestForAnyFilledArea( const wxPoint& aRefPos, PCB_LAYER_ID aStartLayer, PCB_LAYER_ID aEndLayer, int aNetCode ) { if( aEndLayer < 0 ) aEndLayer = aStartLayer; if( aEndLayer < aStartLayer ) std::swap( aEndLayer, aStartLayer ); for( ZONE_CONTAINER* area : m_ZoneDescriptorList ) { if( area->GetLayer() < aStartLayer || area->GetLayer() > aEndLayer ) continue; // In locate functions we must skip tagged items with BUSY flag set. if( area->GetState( BUSY ) ) continue; if( aNetCode >= 0 && area->GetNetCode() != aNetCode ) continue; if( area->HitTestFilledArea( aRefPos ) ) return area; } return NULL; } int BOARD::SetAreasNetCodesFromNetNames() { int error_count = 0; for( int ii = 0; ii < GetAreaCount(); ii++ ) { ZONE_CONTAINER* it = GetArea( ii ); if( !it->IsOnCopperLayer() ) { it->SetNetCode( NETINFO_LIST::UNCONNECTED ); continue; } if( it->GetNetCode() != 0 ) // i.e. if this zone is connected to a net { const NETINFO_ITEM* net = it->GetNet(); if( net ) { it->SetNetCode( net->GetNet() ); } else { error_count++; // keep Net Name and set m_NetCode to -1 : error flag. it->SetNetCode( -1 ); } } } return error_count; } D_PAD* BOARD::GetPad( const wxPoint& aPosition, LSET aLayerSet ) { if( !aLayerSet.any() ) aLayerSet = LSET::AllCuMask(); for( auto module : m_modules ) { D_PAD* pad = NULL; if( module->HitTest( aPosition ) ) pad = module->GetPad( aPosition, aLayerSet ); if( pad ) return pad; } return NULL; } D_PAD* BOARD::GetPad( TRACK* aTrace, ENDPOINT_T aEndPoint ) { const wxPoint& aPosition = aTrace->GetEndPoint( aEndPoint ); LSET lset( aTrace->GetLayer() ); return GetPad( aPosition, lset ); } D_PAD* BOARD::GetPadFast( const wxPoint& aPosition, LSET aLayerSet ) { for( auto mod : Modules() ) { for ( auto pad : mod->Pads() ) { if( pad->GetPosition() != aPosition ) continue; // Pad found, it must be on the correct layer if( ( pad->GetLayerSet() & aLayerSet ).any() ) return pad; } } return nullptr; } D_PAD* BOARD::GetPad( std::vector& aPadList, const wxPoint& aPosition, LSET aLayerSet ) { // Search aPadList for aPosition // aPadList is sorted by X then Y values, and a fast binary search is used int idxmax = aPadList.size()-1; int delta = aPadList.size(); int idx = 0; // Starting index is the beginning of list while( delta ) { // Calculate half size of remaining interval to test. // Ensure the computed value is not truncated (too small) if( (delta & 1) && ( delta > 1 ) ) delta++; delta /= 2; D_PAD* pad = aPadList[idx]; if( pad->GetPosition() == aPosition ) // candidate found { // The pad must match the layer mask: if( ( aLayerSet & pad->GetLayerSet() ).any() ) return pad; // More than one pad can be at aPosition // search for a pad at aPosition that matched this mask // search next for( int ii = idx+1; ii <= idxmax; ii++ ) { pad = aPadList[ii]; if( pad->GetPosition() != aPosition ) break; if( ( aLayerSet & pad->GetLayerSet() ).any() ) return pad; } // search previous for( int ii = idx-1 ;ii >=0; ii-- ) { pad = aPadList[ii]; if( pad->GetPosition() != aPosition ) break; if( ( aLayerSet & pad->GetLayerSet() ).any() ) return pad; } // Not found: return 0; } if( pad->GetPosition().x == aPosition.x ) // Must search considering Y coordinate { if( pad->GetPosition().y < aPosition.y ) // Must search after this item { idx += delta; if( idx > idxmax ) idx = idxmax; } else // Must search before this item { idx -= delta; if( idx < 0 ) idx = 0; } } else if( pad->GetPosition().x < aPosition.x ) // Must search after this item { idx += delta; if( idx > idxmax ) idx = idxmax; } else // Must search before this item { idx -= delta; if( idx < 0 ) idx = 0; } } return NULL; } /** * Function SortPadsByXCoord * is used by GetSortedPadListByXCoord to Sort a pad list by x coordinate value. * This function is used to build ordered pads lists */ bool sortPadsByXthenYCoord( D_PAD* const & ref, D_PAD* const & comp ) { if( ref->GetPosition().x == comp->GetPosition().x ) return ref->GetPosition().y < comp->GetPosition().y; return ref->GetPosition().x < comp->GetPosition().x; } void BOARD::GetSortedPadListByXthenYCoord( std::vector& aVector, int aNetCode ) { for ( auto mod : Modules() ) { for ( auto pad : mod->Pads( ) ) { if( aNetCode < 0 || pad->GetNetCode() == aNetCode ) { aVector.push_back( pad ); } } } std::sort( aVector.begin(), aVector.end(), sortPadsByXthenYCoord ); } void BOARD::PadDelete( D_PAD* aPad ) { GetConnectivity()->Remove( aPad ); aPad->DeleteStructure(); } std::tuple BOARD::GetTrackLength( const TRACK& aTrack ) const { int count = 0; double length = 0.0; double package_length = 0.0; constexpr KICAD_T types[] = { PCB_TRACE_T, PCB_VIA_T, PCB_PAD_T, EOT }; auto connectivity = GetBoard()->GetConnectivity(); for( auto item : connectivity->GetConnectedItems( static_cast( &aTrack ), types ) ) { count++; if( auto track = dyn_cast( item ) ) { bool inPad = false; for( auto pad_it : connectivity->GetConnectedPads( item ) ) { auto pad = static_cast( pad_it ); if( pad->HitTest( track->GetStart(), track->GetWidth() / 2 ) && pad->HitTest( track->GetEnd(), track->GetWidth() / 2 ) ) { inPad = true; break; } } if( !inPad ) length += track->GetLength(); } else if( auto pad = dyn_cast( item ) ) package_length += pad->GetPadToDieLength(); } return std::make_tuple( count, length, package_length ); } MODULE* BOARD::GetFootprint( const wxPoint& aPosition, PCB_LAYER_ID aActiveLayer, bool aVisibleOnly, bool aIgnoreLocked ) { MODULE* module = NULL; MODULE* alt_module = NULL; int min_dim = 0x7FFFFFFF; int alt_min_dim = 0x7FFFFFFF; bool current_layer_back = IsBackLayer( aActiveLayer ); for( auto pt_module : m_modules ) { // is the ref point within the module's bounds? if( !pt_module->HitTest( aPosition ) ) continue; // if caller wants to ignore locked modules, and this one is locked, skip it. if( aIgnoreLocked && pt_module->IsLocked() ) continue; PCB_LAYER_ID layer = pt_module->GetLayer(); // Filter non visible modules if requested if( !aVisibleOnly || IsModuleLayerVisible( layer ) ) { EDA_RECT bb = pt_module->GetFootprintRect(); int offx = bb.GetX() + bb.GetWidth() / 2; int offy = bb.GetY() + bb.GetHeight() / 2; // off x & offy point to the middle of the box. int dist = ( aPosition.x - offx ) * ( aPosition.x - offx ) + ( aPosition.y - offy ) * ( aPosition.y - offy ); if( current_layer_back == IsBackLayer( layer ) ) { if( dist <= min_dim ) { // better footprint shown on the active side module = pt_module; min_dim = dist; } } else if( aVisibleOnly && IsModuleLayerVisible( layer ) ) { if( dist <= alt_min_dim ) { // better footprint shown on the other side alt_module = pt_module; alt_min_dim = dist; } } } } if( module ) { return module; } if( alt_module) { return alt_module; } return NULL; } ZONE_CONTAINER* BOARD::AddArea( PICKED_ITEMS_LIST* aNewZonesList, int aNetcode, PCB_LAYER_ID aLayer, wxPoint aStartPointPosition, int aHatch ) { ZONE_CONTAINER* new_area = InsertArea( aNetcode, m_ZoneDescriptorList.size( ) - 1, aLayer, aStartPointPosition.x, aStartPointPosition.y, aHatch ); if( aNewZonesList ) { ITEM_PICKER picker( new_area, UR_NEW ); aNewZonesList->PushItem( picker ); } return new_area; } void BOARD::RemoveArea( PICKED_ITEMS_LIST* aDeletedList, ZONE_CONTAINER* area_to_remove ) { if( area_to_remove == NULL ) return; if( aDeletedList ) { ITEM_PICKER picker( area_to_remove, UR_DELETED ); aDeletedList->PushItem( picker ); Remove( area_to_remove ); // remove from zone list, but does not delete it } else { Delete( area_to_remove ); } } ZONE_CONTAINER* BOARD::InsertArea( int aNetcode, int aAreaIdx, PCB_LAYER_ID aLayer, int aCornerX, int aCornerY, int aHatch ) { ZONE_CONTAINER* new_area = new ZONE_CONTAINER( this ); new_area->SetNetCode( aNetcode ); new_area->SetLayer( aLayer ); new_area->SetTimeStamp( GetNewTimeStamp() ); if( aAreaIdx < (int) ( m_ZoneDescriptorList.size() - 1 ) ) m_ZoneDescriptorList.insert( m_ZoneDescriptorList.begin() + aAreaIdx + 1, new_area ); else m_ZoneDescriptorList.push_back( new_area ); new_area->SetHatchStyle( (ZONE_CONTAINER::HATCH_STYLE) aHatch ); // Add the first corner to the new zone new_area->AppendCorner( wxPoint( aCornerX, aCornerY ), -1 ); return new_area; } bool BOARD::NormalizeAreaPolygon( PICKED_ITEMS_LIST * aNewZonesList, ZONE_CONTAINER* aCurrArea ) { // mark all areas as unmodified except this one, if modified for( ZONE_CONTAINER* zone : m_ZoneDescriptorList ) zone->SetLocalFlags( 0 ); aCurrArea->SetLocalFlags( 1 ); if( aCurrArea->Outline()->IsSelfIntersecting() ) { aCurrArea->UnHatch(); // Normalize copied area and store resulting number of polygons int n_poly = aCurrArea->Outline()->NormalizeAreaOutlines(); // If clipping has created some polygons, we must add these new copper areas. if( n_poly > 1 ) { ZONE_CONTAINER* NewArea; // Move the newly created polygons to new areas, removing them from the current area for( int ip = 1; ip < n_poly; ip++ ) { // Create new copper area and copy poly into it SHAPE_POLY_SET* new_p = new SHAPE_POLY_SET( aCurrArea->Outline()->UnitSet( ip ) ); NewArea = AddArea( aNewZonesList, aCurrArea->GetNetCode(), aCurrArea->GetLayer(), wxPoint(0, 0), aCurrArea->GetHatchStyle() ); // remove the poly that was automatically created for the new area // and replace it with a poly from NormalizeAreaOutlines delete NewArea->Outline(); NewArea->SetOutline( new_p ); NewArea->Hatch(); NewArea->SetLocalFlags( 1 ); } SHAPE_POLY_SET* new_p = new SHAPE_POLY_SET( aCurrArea->Outline()->UnitSet( 0 ) ); delete aCurrArea->Outline(); aCurrArea->SetOutline( new_p ); } } aCurrArea->Hatch(); return true; } BOARD_ITEM* BOARD::Duplicate( const BOARD_ITEM* aItem, bool aAddToBoard ) { BOARD_ITEM* new_item = NULL; switch( aItem->Type() ) { case PCB_MODULE_T: case PCB_TEXT_T: case PCB_LINE_T: case PCB_TRACE_T: case PCB_VIA_T: case PCB_ZONE_AREA_T: case PCB_TARGET_T: case PCB_DIMENSION_T: new_item = static_cast( aItem->Clone() ); break; default: // Un-handled item for duplication new_item = NULL; break; } if( new_item && aAddToBoard ) Add( new_item ); return new_item; } /* Extracts the board outlines and build a closed polygon * from lines, arcs and circle items on edge cut layer * Any closed outline inside the main outline is a hole * All contours should be closed, i.e. are valid vertices for a closed polygon * return true if success, false if a contour is not valid */ extern bool BuildBoardPolygonOutlines( BOARD* aBoard, SHAPE_POLY_SET& aOutlines, wxString* aErrorText, unsigned int aTolerance, wxPoint* aErrorLocation = nullptr ); bool BOARD::GetBoardPolygonOutlines( SHAPE_POLY_SET& aOutlines, wxString* aErrorText, wxPoint* aErrorLocation ) { bool success = BuildBoardPolygonOutlines( this, aOutlines, aErrorText, GetDesignSettings().m_MaxError, aErrorLocation ); // Make polygon strictly simple to avoid issues (especially in 3D viewer) aOutlines.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); return success; } const std::vector BOARD::GetPads() { std::vector allPads; for( MODULE* mod : Modules() ) { for( D_PAD* pad : mod->Pads() ) allPads.push_back( pad ); } return allPads; } unsigned BOARD::GetPadCount() { unsigned retval = 0; for( auto mod : Modules() ) retval += mod->Pads().size(); return retval; } /** * Function GetPad * @return D_PAD* - at the \a aIndex */ D_PAD* BOARD::GetPad( unsigned aIndex ) const { unsigned count = 0; for( auto mod : m_modules ) { for( auto pad : mod->Pads() ) { if( count == aIndex ) return pad; count++; } } return nullptr; } void BOARD::ClearAllNetCodes() { for( auto zone : Zones() ) zone->SetNetCode( 0 ); for( auto pad : GetPads() ) pad->SetNetCode( 0 ); for( auto track : Tracks() ) track->SetNetCode( 0 ); } const std::vector BOARD::AllConnectedItems() { std::vector items; for( auto track : Tracks() ) { items.push_back( track ); } for( auto mod : Modules() ) { for( auto pad : mod->Pads() ) { items.push_back( pad ); } } for( int i = 0; iGetNetCode() ) == nullptr ) item->SetNetCode( NETINFO_LIST::ORPHANED ); } }