/*
 * This program source code file is part of KiCad, a free EDA CAD application.
 *
 * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
 * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
 * Copyright (C) 2011 Wayne Stambaugh <stambaughw@gmail.com>
 * Copyright (C) 1992-2022 KiCad Developers, see AUTHORS.txt for contributors.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you may find one here:
 * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
 * or you may search the http://www.gnu.org website for the version 2 license,
 * or you may write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
 */

#include <bezier_curves.h>
#include <base_units.h>
#include <convert_basic_shapes_to_polygon.h>
#include <eda_draw_frame.h>
#include <geometry/shape_simple.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_circle.h>
#include <macros.h>
#include <math/util.h>      // for KiROUND
#include <eda_shape.h>
#include <plotters/plotter.h>


EDA_SHAPE::EDA_SHAPE( SHAPE_T aType, int aLineWidth, FILL_T aFill ) :
        m_endsSwapped( false ),
        m_shape( aType ),
        m_stroke( aLineWidth, PLOT_DASH_TYPE::DEFAULT, COLOR4D::UNSPECIFIED ),
        m_fill( aFill ),
        m_fillColor( COLOR4D::UNSPECIFIED ),
        m_editState( 0 ),
        m_annotationProxy( false )
{
}


EDA_SHAPE::~EDA_SHAPE()
{
}


wxString EDA_SHAPE::ShowShape() const
{
    if( IsAnnotationProxy() )
        return _( "Number Box" );

    switch( m_shape )
    {
    case SHAPE_T::SEGMENT: return _( "Line" );
    case SHAPE_T::RECT:    return _( "Rect" );
    case SHAPE_T::ARC:     return _( "Arc" );
    case SHAPE_T::CIRCLE:  return _( "Circle" );
    case SHAPE_T::BEZIER:  return _( "Bezier Curve" );
    case SHAPE_T::POLY:    return _( "Polygon" );
    default:               return wxT( "??" );
    }
}


wxString EDA_SHAPE::SHAPE_T_asString() const
{
    switch( m_shape )
    {
    case SHAPE_T::SEGMENT: return wxS( "S_SEGMENT" );
    case SHAPE_T::RECT:    return wxS( "S_RECT" );
    case SHAPE_T::ARC:     return wxS( "S_ARC" );
    case SHAPE_T::CIRCLE:  return wxS( "S_CIRCLE" );
    case SHAPE_T::POLY:    return wxS( "S_POLYGON" );
    case SHAPE_T::BEZIER:  return wxS( "S_CURVE" );
    case SHAPE_T::LAST:    return wxS( "!S_LAST!" );  // Synthetic value, but if we come across it then
                                               // we're going to want to know.
    }

    return wxEmptyString;  // Just to quiet GCC.
}


void EDA_SHAPE::setPosition( const VECTOR2I& aPos )
{
    move( aPos - getPosition() );
}


VECTOR2I EDA_SHAPE::getPosition() const
{
    if( m_shape == SHAPE_T::ARC )
        return getCenter();
    else if( m_shape == SHAPE_T::POLY )
        return m_poly.CVertex( 0 );
    else
        return m_start;
}


double EDA_SHAPE::GetLength() const
{
    double length = 0.0;

    switch( m_shape )
    {
    case SHAPE_T::BEZIER:
        for( size_t ii = 1; ii < m_bezierPoints.size(); ++ii )
            length += GetLineLength( m_bezierPoints[ ii - 1], m_bezierPoints[ii] );

        return length;

    case SHAPE_T::SEGMENT:
        return GetLineLength( GetStart(), GetEnd() );

    case SHAPE_T::POLY:
        for( int ii = 0; ii < m_poly.COutline( 0 ).SegmentCount(); ii++ )
            length += m_poly.COutline( 0 ).CSegment( ii ).Length();

        return length;

    case SHAPE_T::ARC:
        return GetRadius() * GetArcAngle().AsRadians();

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        return 0.0;
    }
}


bool EDA_SHAPE::IsClosed() const
{
    switch( m_shape )
    {
    case SHAPE_T::CIRCLE:
    case SHAPE_T::RECT:
        return true;

    case SHAPE_T::ARC:
    case SHAPE_T::SEGMENT:
        return false;

    case SHAPE_T::POLY:
        if( m_poly.IsEmpty() )
            return false;
        else
            return m_poly.Outline( 0 ).IsClosed();

    case SHAPE_T::BEZIER:
        if( m_bezierPoints.size() < 3 )
            return false;
        else
            return m_bezierPoints[0] == m_bezierPoints[ m_bezierPoints.size() - 1 ];

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        return false;
    }
}



void EDA_SHAPE::move( const VECTOR2I& aMoveVector )
{
    switch ( m_shape )
    {
    case SHAPE_T::ARC:
    case SHAPE_T::SEGMENT:
    case SHAPE_T::RECT:
    case SHAPE_T::CIRCLE:
        m_start += aMoveVector;
        m_end += aMoveVector;
        m_arcCenter += aMoveVector;
        break;

    case SHAPE_T::POLY:
        m_poly.Move( VECTOR2I( aMoveVector ) );
        break;

    case SHAPE_T::BEZIER:
        m_start += aMoveVector;
        m_end += aMoveVector;
        m_bezierC1 += aMoveVector;
        m_bezierC2 += aMoveVector;

        for( VECTOR2I& pt : m_bezierPoints )
            pt += aMoveVector;

        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        break;
    }
}


void EDA_SHAPE::scale( double aScale )
{
    auto scalePt = [&]( VECTOR2I& pt )
                   {
                       pt.x = KiROUND( pt.x * aScale );
                       pt.y = KiROUND( pt.y * aScale );
                   };

    switch( m_shape )
    {
    case SHAPE_T::ARC:
    case SHAPE_T::SEGMENT:
    case SHAPE_T::RECT:
        scalePt( m_start );
        scalePt( m_end );
        scalePt( m_arcCenter );
        break;

    case SHAPE_T::CIRCLE: //  ring or circle
        scalePt( m_start );
        m_end.x = m_start.x + KiROUND( GetRadius() * aScale );
        m_end.y = m_start.y;
        break;

    case SHAPE_T::POLY: // polygon
    {
        std::vector<VECTOR2I> pts;

        for( int ii = 0; ii < m_poly.OutlineCount(); ++ ii )
        {
            for( const VECTOR2I& pt : m_poly.Outline( ii ).CPoints() )
            {
                pts.emplace_back( pt );
                scalePt( pts.back() );
            }
        }

        SetPolyPoints( pts );
    }
        break;

    case SHAPE_T::BEZIER:
        scalePt( m_start );
        scalePt( m_end );
        scalePt( m_bezierC1 );
        scalePt( m_bezierC2 );
        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        break;
    }
}


void EDA_SHAPE::rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle )
{
    switch( m_shape )
    {
    case SHAPE_T::SEGMENT:
    case SHAPE_T::CIRCLE:
        RotatePoint( m_start, aRotCentre, aAngle );
        RotatePoint( m_end, aRotCentre, aAngle );
        break;

    case SHAPE_T::ARC:
        RotatePoint( m_start, aRotCentre, aAngle );
        RotatePoint( m_end, aRotCentre, aAngle );
        RotatePoint( m_arcCenter, aRotCentre, aAngle );
        break;

    case SHAPE_T::RECT:
        if( aAngle.IsCardinal() )
        {
            RotatePoint( m_start, aRotCentre, aAngle );
            RotatePoint( m_end, aRotCentre, aAngle );
            break;
        }

        // Convert non-cardinally-rotated rect to a diamond
        m_shape = SHAPE_T::POLY;
        m_poly.RemoveAllContours();
        m_poly.NewOutline();
        m_poly.Append( m_start );
        m_poly.Append( m_end.x, m_start.y );
        m_poly.Append( m_end );
        m_poly.Append( m_start.x, m_end.y );

        KI_FALLTHROUGH;

    case SHAPE_T::POLY:
        m_poly.Rotate( aAngle, aRotCentre );
        break;

    case SHAPE_T::BEZIER:
        RotatePoint( m_start, aRotCentre, aAngle );
        RotatePoint( m_end, aRotCentre, aAngle );
        RotatePoint( m_bezierC1, aRotCentre, aAngle );
        RotatePoint( m_bezierC2, aRotCentre, aAngle );

        for( VECTOR2I& pt : m_bezierPoints )
            RotatePoint( pt, aRotCentre, aAngle);

        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        break;
    }
}


void EDA_SHAPE::flip( const VECTOR2I& aCentre, bool aFlipLeftRight )
{
    switch ( m_shape )
    {
    case SHAPE_T::SEGMENT:
    case SHAPE_T::RECT:
        if( aFlipLeftRight )
        {
            m_start.x = aCentre.x - ( m_start.x - aCentre.x );
            m_end.x   = aCentre.x - ( m_end.x - aCentre.x );
        }
        else
        {
            m_start.y = aCentre.y - ( m_start.y - aCentre.y );
            m_end.y   = aCentre.y - ( m_end.y - aCentre.y );
        }

        std::swap( m_start, m_end );
        break;

    case SHAPE_T::CIRCLE:
        if( aFlipLeftRight )
        {
            m_start.x = aCentre.x - ( m_start.x - aCentre.x );
            m_end.x   = aCentre.x - ( m_end.x - aCentre.x );
        }
        else
        {
            m_start.y = aCentre.y - ( m_start.y - aCentre.y );
            m_end.y   = aCentre.y - ( m_end.y - aCentre.y );
        }
        break;

    case SHAPE_T::ARC:
        if( aFlipLeftRight )
        {
            m_start.x     = aCentre.x - ( m_start.x - aCentre.x );
            m_end.x       = aCentre.x - ( m_end.x - aCentre.x );
            m_arcCenter.x = aCentre.x - ( m_arcCenter.x - aCentre.x );
        }
        else
        {
            m_start.y     = aCentre.y - ( m_start.y - aCentre.y );
            m_end.y       = aCentre.y - ( m_end.y - aCentre.y );
            m_arcCenter.y = aCentre.y - ( m_arcCenter.y - aCentre.y );
        }

        std::swap( m_start, m_end );
        break;

    case SHAPE_T::POLY:
        m_poly.Mirror( aFlipLeftRight, !aFlipLeftRight, aCentre );
        break;

    case SHAPE_T::BEZIER:
        if( aFlipLeftRight )
        {
            m_start.x    = aCentre.x - ( m_start.x - aCentre.x );
            m_end.x      = aCentre.x - ( m_end.x - aCentre.x );
            m_bezierC1.x = aCentre.x - ( m_bezierC1.x - aCentre.x );
            m_bezierC2.x = aCentre.x - ( m_bezierC2.x - aCentre.x );
        }
        else
        {
            m_start.y    = aCentre.y - ( m_start.y - aCentre.y );
            m_end.y      = aCentre.y - ( m_end.y - aCentre.y );
            m_bezierC1.y = aCentre.y - ( m_bezierC1.y - aCentre.y );
            m_bezierC2.y = aCentre.y - ( m_bezierC2.y - aCentre.y );
        }

        // Rebuild the poly points shape
        {
            std::vector<VECTOR2I> ctrlPoints = { m_start, m_bezierC1, m_bezierC2, m_end };
            BEZIER_POLY converter( ctrlPoints );
            converter.GetPoly( m_bezierPoints, m_stroke.GetWidth() );
        }
        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        break;
    }
}


void EDA_SHAPE::RebuildBezierToSegmentsPointsList( int aMinSegLen )
{
    // Has meaning only for SHAPE_T::BEZIER
    if( m_shape != SHAPE_T::BEZIER )
    {
        m_bezierPoints.clear();
        return;
    }

    // Rebuild the m_BezierPoints vertex list that approximate the Bezier curve
    m_bezierPoints = buildBezierToSegmentsPointsList( aMinSegLen );

    // Ensure last point respects aMinSegLen parameter
    if( m_bezierPoints.size() > 2 )
    {
        int idx = m_bezierPoints.size()-1;

        if( VECTOR2I( m_bezierPoints[idx] - m_bezierPoints[idx]-1 ).EuclideanNorm() < aMinSegLen )
        {
            m_bezierPoints[idx]-1 = m_bezierPoints[idx];
            m_bezierPoints.pop_back();
        }
    }
}


const std::vector<VECTOR2I> EDA_SHAPE::buildBezierToSegmentsPointsList( int aMinSegLen ) const
{
    std::vector<VECTOR2I> bezierPoints;

    // Rebuild the m_BezierPoints vertex list that approximate the Bezier curve
    std::vector<VECTOR2I> ctrlPoints = { m_start, m_bezierC1, m_bezierC2, m_end };
    BEZIER_POLY converter( ctrlPoints );
    converter.GetPoly( bezierPoints, aMinSegLen );

    return bezierPoints;
}


VECTOR2I EDA_SHAPE::getCenter() const
{
    switch( m_shape )
    {
    case SHAPE_T::ARC:
        return m_arcCenter;

    case SHAPE_T::CIRCLE:
        return m_start;

    case SHAPE_T::SEGMENT:
        // Midpoint of the line
        return ( m_start + m_end ) / 2;

    case SHAPE_T::POLY:
    case SHAPE_T::RECT:
    case SHAPE_T::BEZIER:
        return getBoundingBox().Centre();

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        return VECTOR2I();
    }
}


void EDA_SHAPE::SetCenter( const VECTOR2I& aCenter )
{
    switch( m_shape )
    {
    case SHAPE_T::ARC:
        m_arcCenter = aCenter;
        break;

    case SHAPE_T::CIRCLE:
        m_start = aCenter;
        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
    }
}


VECTOR2I EDA_SHAPE::GetArcMid() const
{
    // If none of the input data have changed since we loaded the arc,
    // keep the original mid point data to minimize churn
    if( m_arcMidData.start == m_start && m_arcMidData.end == m_end
            && m_arcMidData.center == m_arcCenter )
        return m_arcMidData.mid;

    VECTOR2I mid = m_start;
    RotatePoint( mid, m_arcCenter, -GetArcAngle() / 2.0 );
    return mid;
}


void EDA_SHAPE::CalcArcAngles( EDA_ANGLE& aStartAngle, EDA_ANGLE& aEndAngle ) const
{
    VECTOR2D startRadial( GetStart() - getCenter() );
    VECTOR2D endRadial( GetEnd() - getCenter() );

    aStartAngle = EDA_ANGLE( startRadial );
    aEndAngle = EDA_ANGLE( endRadial );

    if( aEndAngle == aStartAngle )
        aEndAngle = aStartAngle + ANGLE_360;   // ring, not null

    if( aStartAngle > aEndAngle )
    {
        if( aEndAngle < ANGLE_0 )
            aEndAngle.Normalize();
        else
            aStartAngle = aStartAngle.Normalize() - ANGLE_360;
    }
}


int EDA_SHAPE::GetRadius() const
{
    double radius = 0.0;

    switch( m_shape )
    {
    case SHAPE_T::ARC:
        radius = GetLineLength( m_arcCenter, m_start );
        break;

    case SHAPE_T::CIRCLE:
        radius = GetLineLength( m_start, m_end );
        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
    }

    // don't allow degenerate circles/arcs
    return std::max( 1, KiROUND( radius ) );
}


void EDA_SHAPE::SetCachedArcData( const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd, const VECTOR2I& aCenter )
{
    m_arcMidData.start = aStart;
    m_arcMidData.end = aEnd;
    m_arcMidData.center = aCenter;
    m_arcMidData.mid = aMid;
}


void EDA_SHAPE::SetArcGeometry( const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd )
{
    m_arcMidData = {};
    m_start = aStart;
    m_end = aEnd;
    m_arcCenter = CalcArcCenter( aStart, aMid, aEnd );
    VECTOR2I new_mid = GetArcMid();

    m_endsSwapped = false;

    // Watch the ordering here.  GetArcMid above needs to be called prior to initializing the
    // m_arcMidData structure in order to ensure we get the calculated variant, not the cached
    SetCachedArcData( aStart, aMid, aEnd, m_arcCenter );

    /*
     * If the input winding doesn't match our internal winding, the calculated midpoint will end
     * up on the other side of the arc.  In this case, we need to flip the start/end points and
     * flag this change for the system.
     */
    VECTOR2D dist( new_mid - aMid );
    VECTOR2D dist2( new_mid - m_arcCenter );

    if( dist.SquaredEuclideanNorm() > dist2.SquaredEuclideanNorm() )
    {
        std::swap( m_start, m_end );
        m_endsSwapped = true;
    }
}


EDA_ANGLE EDA_SHAPE::GetArcAngle() const
{
    EDA_ANGLE startAngle;
    EDA_ANGLE endAngle;

    CalcArcAngles( startAngle, endAngle );

    return endAngle - startAngle;
}


void EDA_SHAPE::SetArcAngleAndEnd( const EDA_ANGLE& aAngle, bool aCheckNegativeAngle )
{
    EDA_ANGLE angle( aAngle );

    m_end = m_start;
    RotatePoint( m_end, m_arcCenter, -angle.Normalize720() );

    if( aCheckNegativeAngle && aAngle < ANGLE_0 )
    {
        std::swap( m_start, m_end );
        m_endsSwapped = true;
    }
}


wxString EDA_SHAPE::GetFriendlyName() const
{
    switch( m_shape )
    {
    case SHAPE_T::CIRCLE:   return _( "Circle" );
    case SHAPE_T::ARC:      return _( "Arc" );
    case SHAPE_T::BEZIER:   return _( "Curve" );
    case SHAPE_T::POLY:     return _( "Polygon" );
    case SHAPE_T::RECT:     return IsAnnotationProxy() ? _( "Pad Number Box" ) : _( "Rectangle" );
    case SHAPE_T::SEGMENT:  return _( "Segment" );
    default:                return _( "Unrecognized" );
    }
}


void EDA_SHAPE::ShapeGetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
    ORIGIN_TRANSFORMS originTransforms = aFrame->GetOriginTransforms();
    wxString          msg;

    wxString shape = _( "Shape" );
    aList.emplace_back( shape, GetFriendlyName() );

    switch( m_shape )
    {
    case SHAPE_T::CIRCLE:
        aList.emplace_back( _( "Radius" ), aFrame->MessageTextFromValue( GetRadius() ) );
        break;

    case SHAPE_T::ARC:
        msg = EDA_UNIT_UTILS::UI::MessageTextFromValue( GetArcAngle() );
        aList.emplace_back( _( "Angle" ), msg );

        aList.emplace_back( _( "Radius" ), aFrame->MessageTextFromValue( GetRadius() ) );
        break;

    case SHAPE_T::BEZIER:
        aList.emplace_back( _( "Length" ), aFrame->MessageTextFromValue( GetLength() ) );
        break;

    case SHAPE_T::POLY:
        msg.Printf( wxS( "%d" ), GetPolyShape().Outline(0).PointCount() );
        aList.emplace_back( _( "Points" ), msg );
        break;

    case SHAPE_T::RECT:
        aList.emplace_back( _( "Width" ),
                            aFrame->MessageTextFromValue( std::abs( GetEnd().x - GetStart().x ) ) );

        aList.emplace_back( _( "Height" ),
                            aFrame->MessageTextFromValue( std::abs( GetEnd().y - GetStart().y ) ) );
        break;

    case SHAPE_T::SEGMENT:
    {
        aList.emplace_back( _( "Length" ),
                            aFrame->MessageTextFromValue( GetLineLength( GetStart(), GetEnd() ) ));

        // angle counter-clockwise from 3'o-clock
        EDA_ANGLE angle( atan2( (double)( GetStart().y - GetEnd().y ),
                                (double)( GetEnd().x - GetStart().x ) ), RADIANS_T );
        aList.emplace_back( _( "Angle" ), EDA_UNIT_UTILS::UI::MessageTextFromValue( angle ) );
        break;
    }

    default:
        break;
    }

    m_stroke.GetMsgPanelInfo( aFrame, aList );
}


const BOX2I EDA_SHAPE::getBoundingBox() const
{
    BOX2I bbox;

    switch( m_shape )
    {
    case SHAPE_T::RECT:
        for( VECTOR2I& pt : GetRectCorners() )
            bbox.Merge( pt );

        break;

    case SHAPE_T::SEGMENT:
        bbox.SetOrigin( GetStart() );
        bbox.SetEnd( GetEnd() );
        break;

    case SHAPE_T::CIRCLE:
        bbox.SetOrigin( GetStart() );
        bbox.Inflate( GetRadius() );
        break;

    case SHAPE_T::ARC:
        computeArcBBox( bbox );
        break;

    case SHAPE_T::POLY:
        if( m_poly.IsEmpty() )
            break;

        for( auto iter = m_poly.CIterate(); iter; iter++ )
        {
            VECTOR2I pt( iter->x, iter->y );

            RotatePoint( pt, getParentOrientation() );
            pt += getParentPosition();

            bbox.Merge( pt );
        }

        break;

    case SHAPE_T::BEZIER:
        bbox.SetOrigin( GetStart() );
        bbox.Merge( GetBezierC1() );
        bbox.Merge( GetBezierC2() );
        bbox.Merge( GetEnd() );
        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        break;
    }

    bbox.Inflate( std::max( 0, GetWidth() ) / 2 );
    bbox.Normalize();

    return bbox;
}


bool EDA_SHAPE::hitTest( const VECTOR2I& aPosition, int aAccuracy ) const
{
    int maxdist = aAccuracy;

    if( GetWidth() > 0 )
        maxdist += GetWidth() / 2;

    switch( m_shape )
    {
    case SHAPE_T::CIRCLE:
    {
        int radius = GetRadius();

        VECTOR2I::extended_type dist = KiROUND<double, VECTOR2I::extended_type>(
                EuclideanNorm( aPosition - getCenter() ) );

        if( IsFilled() )
            return dist <= radius + maxdist;          // Filled circle hit-test
        else
            return abs( radius - dist ) <= maxdist;   // Ring hit-test
    }

    case SHAPE_T::ARC:
    {
        if( EuclideanNorm( aPosition - m_start ) <= maxdist )
            return true;

        if( EuclideanNorm( aPosition - m_end ) <= maxdist )
            return true;

        VECTOR2I relPos = aPosition - getCenter();
        int      radius = GetRadius();

        VECTOR2I::extended_type dist =
                KiROUND<double, VECTOR2I::extended_type>( EuclideanNorm( relPos ) );

        if( IsFilled() )
        {
            // Check distance from arc center
            if( dist > radius + maxdist )
                return false;
        }
        else
        {
            // Check distance from arc circumference
            if( abs( radius - dist ) > maxdist )
                return false;
        }

        // Finally, check to see if it's within arc's swept angle.
        EDA_ANGLE startAngle;
        EDA_ANGLE endAngle;
        CalcArcAngles( startAngle, endAngle );

        EDA_ANGLE relPosAngle( relPos );

        startAngle.Normalize();
        endAngle.Normalize();
        relPosAngle.Normalize();

        if( endAngle > startAngle )
            return relPosAngle >= startAngle && relPosAngle <= endAngle;
        else
            return relPosAngle >= startAngle || relPosAngle <= endAngle;
    }

    case SHAPE_T::BEZIER:
        const_cast<EDA_SHAPE*>( this )->RebuildBezierToSegmentsPointsList( GetWidth() );

        for( unsigned int i= 1; i < m_bezierPoints.size(); i++)
        {
            if( TestSegmentHit( aPosition, m_bezierPoints[ i - 1], m_bezierPoints[i], maxdist ) )
                return true;
        }

        return false;

    case SHAPE_T::SEGMENT:
        return TestSegmentHit( aPosition, GetStart(), GetEnd(), maxdist );

    case SHAPE_T::RECT:
        if( IsAnnotationProxy() || IsFilled() )         // Filled rect hit-test
        {
            SHAPE_POLY_SET poly;
            poly.NewOutline();

            for( const VECTOR2I& pt : GetRectCorners() )
                poly.Append( pt );

            return poly.Collide( aPosition, maxdist );
        }
        else                                            // Open rect hit-test
        {
            std::vector<VECTOR2I> pts = GetRectCorners();

            return TestSegmentHit( aPosition, pts[0], pts[1], maxdist )
                    || TestSegmentHit( aPosition, pts[1], pts[2], maxdist )
                    || TestSegmentHit( aPosition, pts[2], pts[3], maxdist )
                    || TestSegmentHit( aPosition, pts[3], pts[0], maxdist );
        }

    case SHAPE_T::POLY:
        if( IsFilled() )
            return m_poly.Collide( aPosition, maxdist );
        else
            return m_poly.CollideEdge( aPosition, nullptr, maxdist );

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        return false;
    }
}


bool EDA_SHAPE::hitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const
{
    BOX2I arect = aRect;
    arect.Normalize();
    arect.Inflate( aAccuracy );

    BOX2I bbox = getBoundingBox();

    switch( m_shape )
    {
    case SHAPE_T::CIRCLE:
        // Test if area intersects or contains the circle:
        if( aContained )
        {
            return arect.Contains( bbox );
        }
        else
        {
            // If the rectangle does not intersect the bounding box, this is a much quicker test
            if( !arect.Intersects( bbox ) )
                return false;
            else
                return arect.IntersectsCircleEdge( getCenter(), GetRadius(), GetWidth() );
        }

    case SHAPE_T::ARC:
        // Test for full containment of this arc in the rect
        if( aContained )
        {
            return arect.Contains( bbox );
        }
        // Test if the rect crosses the arc
        else
        {
            if( !arect.Intersects( bbox ) )
                return false;

            if( IsFilled() )
            {
                return ( arect.Intersects( getCenter(), GetStart() )
                      || arect.Intersects( getCenter(), GetEnd() )
                      || arect.IntersectsCircleEdge( getCenter(), GetRadius(), GetWidth() ) );
            }
            else
            {
                return arect.IntersectsCircleEdge( getCenter(), GetRadius(), GetWidth() );
            }
        }

    case SHAPE_T::RECT:
        if( aContained )
        {
            return arect.Contains( bbox );
        }
        else
        {
            std::vector<VECTOR2I> pts = GetRectCorners();

            // Account for the width of the lines
            arect.Inflate( GetWidth() / 2 );
            return ( arect.Intersects( pts[0], pts[1] )
                  || arect.Intersects( pts[1], pts[2] )
                  || arect.Intersects( pts[2], pts[3] )
                  || arect.Intersects( pts[3], pts[0] ) );
        }

    case SHAPE_T::SEGMENT:
        if( aContained )
        {
            return arect.Contains( GetStart() ) && aRect.Contains( GetEnd() );
        }
        else
        {
            // Account for the width of the line
            arect.Inflate( GetWidth() / 2 );
            return arect.Intersects( GetStart(), GetEnd() );
        }

    case SHAPE_T::POLY:
        if( aContained )
        {
            return arect.Contains( bbox );
        }
        else
        {
            // Fast test: if aRect is outside the polygon bounding box,
            // rectangles cannot intersect
            if( !arect.Intersects( bbox ) )
                return false;

            // Account for the width of the line
            arect.Inflate( GetWidth() / 2 );

            // Polygons in footprints use coordinates relative to the footprint.
            // Therefore, instead of using m_poly, we make a copy which is translated
            // to the actual location in the board.
            VECTOR2I offset = getParentPosition();

            for( int ii = 0; ii < m_poly.OutlineCount(); ++ii )
            {
                SHAPE_LINE_CHAIN poly = m_poly.Outline( ii );
                poly.Rotate( getParentOrientation() );
                poly.Move( offset );

                int count = poly.GetPointCount();

                for( int jj = 0; jj < count; jj++ )
                {
                    VECTOR2I vertex = poly.GetPoint( jj );

                    // Test if the point is within aRect
                    if( arect.Contains( vertex ) )
                        return true;

                    if( jj + 1 < count )
                    {
                        VECTOR2I vertexNext = poly.GetPoint( jj + 1 );

                        // Test if this edge intersects aRect
                        if( arect.Intersects( vertex, vertexNext ) )
                            return true;
                    }
                    else if( poly.IsClosed() )
                    {
                        VECTOR2I vertexNext = poly.GetPoint( 0 );

                        // Test if this edge intersects aRect
                        if( arect.Intersects( vertex, vertexNext ) )
                            return true;
                    }
                }
            }

            return false;
        }

    case SHAPE_T::BEZIER:
        if( aContained )
        {
            return arect.Contains( bbox );
        }
        else
        {
            // Fast test: if aRect is outside the polygon bounding box,
            // rectangles cannot intersect
            if( !arect.Intersects( bbox ) )
                return false;

            // Account for the width of the line
            arect.Inflate( GetWidth() / 2 );
            unsigned count = m_bezierPoints.size();

            for( unsigned ii = 1; ii < count; ii++ )
            {
                VECTOR2I vertex = m_bezierPoints[ii - 1];
                VECTOR2I vertexNext = m_bezierPoints[ii];

                // Test if the point is within aRect
                if( arect.Contains( vertex ) )
                    return true;

                // Test if this edge intersects aRect
                if( arect.Intersects( vertex, vertexNext ) )
                    return true;
            }

            return false;
        }

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        return false;
    }
}


std::vector<VECTOR2I> EDA_SHAPE::GetRectCorners() const
{
    std::vector<VECTOR2I> pts;
    VECTOR2I              topLeft = GetStart();
    VECTOR2I              botRight = GetEnd();

    // Un-rotate rect topLeft and botRight
    if( !getParentOrientation().IsCardinal() )
    {
        topLeft -= getParentPosition();
        RotatePoint( topLeft, -getParentOrientation() );

        botRight -= getParentPosition();
        RotatePoint( botRight, -getParentOrientation() );
    }

    // Set up the un-rotated 4 corners
    pts.emplace_back( topLeft );
    pts.emplace_back( botRight.x, topLeft.y );
    pts.emplace_back( botRight );
    pts.emplace_back( topLeft.x, botRight.y );

    // Now re-rotate the 4 corners to get a diamond
    if( !getParentOrientation().IsCardinal() )
    {
        for( VECTOR2I& pt : pts )
        {
            RotatePoint( pt, getParentOrientation() );
            pt += getParentPosition();
        }
    }

    return pts;
}


void EDA_SHAPE::computeArcBBox( BOX2I& aBBox ) const
{
    // Start, end, and each inflection point the arc crosses will enclose the entire arc.
    // Only include the center when filled; it's not necessarily inside the BB of an unfilled
    // arc with a small included angle.
    aBBox.SetOrigin( m_start );
    aBBox.Merge( m_end );

    if( IsFilled() )
        aBBox.Merge( m_arcCenter );

    int       radius = GetRadius();
    EDA_ANGLE t1, t2;

    CalcArcAngles( t1, t2 );

    t1.Normalize();
    t2.Normalize();

    if( t2 > t1 )
    {
        if( t1 < ANGLE_0 && t2 > ANGLE_0 )
            aBBox.Merge( VECTOR2I( m_arcCenter.x + radius, m_arcCenter.y ) ); // right

        if( t1 < ANGLE_90 && t2 > ANGLE_90 )
            aBBox.Merge( VECTOR2I( m_arcCenter.x, m_arcCenter.y + radius ) ); // down

        if( t1 < ANGLE_180 && t2 > ANGLE_180 )
            aBBox.Merge( VECTOR2I( m_arcCenter.x - radius, m_arcCenter.y ) ); // left

        if( t1 < ANGLE_270 && t2 > ANGLE_270 )
            aBBox.Merge( VECTOR2I( m_arcCenter.x, m_arcCenter.y - radius ) ); // up
    }
    else
    {
        if( t1 < ANGLE_0 || t2 > ANGLE_0 )
            aBBox.Merge( VECTOR2I( m_arcCenter.x + radius, m_arcCenter.y ) ); // right

        if( t1 < ANGLE_90 || t2 > ANGLE_90 )
            aBBox.Merge( VECTOR2I( m_arcCenter.x, m_arcCenter.y + radius ) ); // down

        if( t1 < ANGLE_180 || t2 > ANGLE_180 )
            aBBox.Merge( VECTOR2I( m_arcCenter.x - radius, m_arcCenter.y ) ); // left

        if( t1 < ANGLE_270 || t2 > ANGLE_270 )
            aBBox.Merge( VECTOR2I( m_arcCenter.x, m_arcCenter.y - radius ) ); // up
    }
}


void EDA_SHAPE::SetPolyPoints( const std::vector<VECTOR2I>& aPoints )
{
    m_poly.RemoveAllContours();
    m_poly.NewOutline();

    for( const VECTOR2I& p : aPoints )
        m_poly.Append( p.x, p.y );
}


std::vector<SHAPE*> EDA_SHAPE::makeEffectiveShapes( bool aEdgeOnly, bool aLineChainOnly ) const
{
    std::vector<SHAPE*> effectiveShapes;
    int                 width = GetEffectiveWidth();

    switch( m_shape )
    {
    case SHAPE_T::ARC:
        effectiveShapes.emplace_back( new SHAPE_ARC( m_arcCenter, m_start, GetArcAngle(), width ) );
        break;

    case SHAPE_T::SEGMENT:
        effectiveShapes.emplace_back( new SHAPE_SEGMENT( m_start, m_end, width ) );
        break;

    case SHAPE_T::RECT:
    {
        std::vector<VECTOR2I> pts = GetRectCorners();

        if( ( IsFilled() || IsAnnotationProxy() ) && !aEdgeOnly )
            effectiveShapes.emplace_back( new SHAPE_SIMPLE( pts ) );

        if( width > 0 || !IsFilled() || aEdgeOnly )
        {
            effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[0], pts[1], width ) );
            effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[1], pts[2], width ) );
            effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[2], pts[3], width ) );
            effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[3], pts[0], width ) );
        }
    }
        break;

    case SHAPE_T::CIRCLE:
    {
        if( IsFilled() && !aEdgeOnly )
            effectiveShapes.emplace_back( new SHAPE_CIRCLE( getCenter(), GetRadius() ) );

        if( width > 0 || !IsFilled() || aEdgeOnly )
            effectiveShapes.emplace_back( new SHAPE_ARC( getCenter(), GetEnd(), ANGLE_360, width ) );

        break;
    }

    case SHAPE_T::BEZIER:
    {
        std::vector<VECTOR2I> bezierPoints = buildBezierToSegmentsPointsList( width );
        VECTOR2I              start_pt = bezierPoints[0];

        for( unsigned int jj = 1; jj < bezierPoints.size(); jj++ )
        {
            VECTOR2I end_pt = bezierPoints[jj];
            effectiveShapes.emplace_back( new SHAPE_SEGMENT( start_pt, end_pt, width ) );
            start_pt = end_pt;
        }

        break;
    }

    case SHAPE_T::POLY:
    {
        if( GetPolyShape().OutlineCount() == 0 )    // malformed/empty polygon
            break;

        for( int ii = 0; ii < GetPolyShape().OutlineCount(); ++ii )
        {
            SHAPE_LINE_CHAIN l = GetPolyShape().COutline( ii );

            if( aLineChainOnly )
                l.SetClosed( false );

            l.Rotate( getParentOrientation() );
            l.Move( getParentPosition() );

            if( IsFilled() && !aEdgeOnly )
                effectiveShapes.emplace_back( new SHAPE_SIMPLE( l ) );

            if( width > 0 || !IsFilled() || aEdgeOnly )
            {
                for( int jj = 0; jj < l.SegmentCount(); jj++ )
                    effectiveShapes.emplace_back( new SHAPE_SEGMENT( l.Segment( jj ), width ) );
            }
        }
    }
        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        break;
    }

    return effectiveShapes;
}


void EDA_SHAPE::DupPolyPointsList( std::vector<VECTOR2I>& aBuffer ) const
{
    for( int ii = 0; ii < m_poly.OutlineCount(); ++ii )
    {
        int pointCount = m_poly.COutline( ii ).PointCount();

        if( pointCount )
        {
            aBuffer.reserve( pointCount );

            for ( auto iter = m_poly.CIterate(); iter; iter++ )
                aBuffer.emplace_back( iter->x, iter->y );
        }
    }
}


bool EDA_SHAPE::IsPolyShapeValid() const
{
    // return true if the polygonal shape is valid (has more than 2 points)
    if( GetPolyShape().OutlineCount() == 0 )
        return false;

    const SHAPE_LINE_CHAIN& outline = static_cast<const SHAPE_POLY_SET&>( GetPolyShape() ).Outline( 0 );

    return outline.PointCount() > 2;
}


int EDA_SHAPE::GetPointCount() const
{
    // return the number of corners of the polygonal shape
    // this shape is expected to be only one polygon without hole
    if( GetPolyShape().OutlineCount() )
        return GetPolyShape().VertexCount( 0 );

    return 0;
}


void EDA_SHAPE::beginEdit( const VECTOR2I& aPosition )
{
    switch( GetShape() )
    {
    case SHAPE_T::SEGMENT:
    case SHAPE_T::CIRCLE:
    case SHAPE_T::RECT:
        SetStart( aPosition );
        SetEnd( aPosition );
        break;

    case SHAPE_T::ARC:
        SetArcGeometry( aPosition, aPosition, aPosition );
        m_editState = 1;
        break;

    case SHAPE_T::POLY:
        m_poly.NewOutline();
        m_poly.Outline( 0 ).SetClosed( false );

        // Start and end of the first segment (co-located for now)
        m_poly.Outline( 0 ).Append( aPosition );
        m_poly.Outline( 0 ).Append( aPosition, true );
        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
    }
}


bool EDA_SHAPE::continueEdit( const VECTOR2I& aPosition )
{
    switch( GetShape() )
    {
    case SHAPE_T::ARC:
    case SHAPE_T::SEGMENT:
    case SHAPE_T::CIRCLE:
    case SHAPE_T::RECT:
        return false;

    case SHAPE_T::POLY:
    {
        SHAPE_LINE_CHAIN& poly = m_poly.Outline( 0 );

        // do not add zero-length segments
        if( poly.CPoint( poly.GetPointCount() - 2 ) != poly.CLastPoint() )
            poly.Append( aPosition, true );
    }
        return true;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        return false;
    }
}


void EDA_SHAPE::calcEdit( const VECTOR2I& aPosition )
{
#define sq( x ) pow( x, 2 )

    switch( GetShape() )
    {
    case SHAPE_T::SEGMENT:
    case SHAPE_T::CIRCLE:
    case SHAPE_T::RECT:
        SetEnd( aPosition );
        break;

    case SHAPE_T::ARC:
    {
        int radius = GetRadius();

        // Edit state 0: drawing: place start
        // Edit state 1: drawing: place end (center calculated for 90-degree subtended angle)
        // Edit state 2: point edit: move start (center calculated for invariant subtended angle)
        // Edit state 3: point edit: move end (center calculated for invariant subtended angle)
        // Edit state 4: point edit: move center
        // Edit state 5: point edit: move arc-mid-point

        switch( m_editState )
        {
        case 0:
            SetArcGeometry( aPosition, aPosition, aPosition );
            return;

        case 1:
            m_end = aPosition;
            radius = KiROUND( sqrt( sq( GetLineLength( m_start, m_end ) ) / 2.0 ) );
            break;

        case 2:
        case 3:
        {
            VECTOR2I v = m_start - m_end;
            double chordBefore = sq( v.x ) + sq( v.y );

            if( m_editState == 2 )
                m_start = aPosition;
            else
                m_end = aPosition;

            v = m_start - m_end;
            double chordAfter = sq( v.x ) + sq( v.y );
            double ratio = chordAfter / chordBefore;

            if( ratio != 0 )
            {
                radius = std::max( int( sqrt( sq( radius ) * ratio ) ) + 1,
                                   int( sqrt( chordAfter ) / 2 ) + 1 );
            }
        }
            break;

        case 4:
        {
            double radialA = GetLineLength( m_start, aPosition );
            double radialB = GetLineLength( m_end, aPosition );
            radius = int( ( radialA + radialB ) / 2.0 ) + 1;
        }
            break;

        case 5:
            SetArcGeometry( GetStart(), aPosition, GetEnd() );
            return;
        }

        // Calculate center based on start, end, and radius
        //
        // Let 'l' be the length of the chord and 'm' the middle point of the chord
        double  l = GetLineLength( m_start, m_end );
        VECTOR2I m = ( m_start + m_end ) / 2;

        // Calculate 'd', the vector from the chord midpoint to the center
        VECTOR2I d;
        d.x = KiROUND( sqrt( sq( radius ) - sq( l/2 ) ) * ( m_start.y - m_end.y ) / l );
        d.y = KiROUND( sqrt( sq( radius ) - sq( l/2 ) ) * ( m_end.x - m_start.x ) / l );

        VECTOR2I c1 = m + d;
        VECTOR2I c2 = m - d;

        // Solution gives us 2 centers; we need to pick one:
        switch( m_editState )
        {
        case 1:
            // Keep arc clockwise while drawing i.e. arc angle = 90 deg.
            // it can be 90 or 270 deg depending on the arc center choice (c1 or c2)
            m_arcCenter = c1;   // first trial

            if( GetArcAngle() > ANGLE_180 )
                m_arcCenter = c2;

            break;

        case 2:
        case 3:
            // Pick the one of c1, c2 to keep arc <= 180 deg
            m_arcCenter = c1;   // first trial

            if( GetArcAngle() > ANGLE_180 )
                m_arcCenter = c2;

            break;

        case 4:
            // Pick the one closer to the mouse position
            m_arcCenter = GetLineLength( c1, aPosition ) < GetLineLength( c2, aPosition ) ? c1 : c2;

            // keep arc angle <= 180 deg
            if( GetArcAngle() > ANGLE_180 )
                std::swap( m_start, m_end );

            break;
        }
    }
        break;

    case SHAPE_T::POLY:
        m_poly.Outline( 0 ).SetPoint( m_poly.Outline( 0 ).GetPointCount() - 1, aPosition );
        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
    }
}


void EDA_SHAPE::endEdit( bool aClosed )
{
    switch( GetShape() )
    {
    case SHAPE_T::ARC:
    case SHAPE_T::SEGMENT:
    case SHAPE_T::CIRCLE:
    case SHAPE_T::RECT:
        break;

    case SHAPE_T::POLY:
    {
        SHAPE_LINE_CHAIN& poly = m_poly.Outline( 0 );

        // do not include last point twice
        if( poly.GetPointCount() > 2 )
        {
            if( poly.CPoint( poly.GetPointCount() - 2 ) == poly.CLastPoint() )
            {
                poly.SetClosed( aClosed );
                poly.Remove( poly.GetPointCount() - 1 );
            }
        }
    }
        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
    }
}


void EDA_SHAPE::SwapShape( EDA_SHAPE* aImage )
{
    EDA_SHAPE* image = dynamic_cast<EDA_SHAPE*>( aImage );
    assert( image );

    #define SWAPITEM( x ) std::swap( x, image->x )
    SWAPITEM( m_stroke );
    SWAPITEM( m_start );
    SWAPITEM( m_end );
    SWAPITEM( m_arcCenter );
    SWAPITEM( m_shape );
    SWAPITEM( m_bezierC1 );
    SWAPITEM( m_bezierC2 );
    SWAPITEM( m_bezierPoints );
    SWAPITEM( m_poly );
    SWAPITEM( m_fill );
    SWAPITEM( m_fillColor );
    SWAPITEM( m_editState );
    SWAPITEM( m_endsSwapped );
    #undef SWAPITEM
}


int EDA_SHAPE::Compare( const EDA_SHAPE* aOther ) const
{
#define EPSILON 2       // Should be enough for rounding errors on calculated items

#define TEST( a, b ) { if( a != b ) return a - b; }
#define TEST_E( a, b ) { if( abs( a - b ) > EPSILON ) return a - b; }
#define TEST_PT( a, b ) { TEST_E( a.x, b.x ); TEST_E( a.y, b.y ); }

    TEST_PT( m_start, aOther->m_start );
    TEST_PT( m_end, aOther->m_end );

    TEST( (int) m_shape, (int) aOther->m_shape );

    if( m_shape == SHAPE_T::ARC )
    {
        TEST_PT( m_arcCenter, aOther->m_arcCenter );
    }
    else if( m_shape == SHAPE_T::BEZIER )
    {
        TEST_PT( m_bezierC1, aOther->m_bezierC1 );
        TEST_PT( m_bezierC2, aOther->m_bezierC2 );
    }
    else if( m_shape == SHAPE_T::POLY )
    {
        TEST( m_poly.TotalVertices(), aOther->m_poly.TotalVertices() );
    }

    for( size_t ii = 0; ii < m_bezierPoints.size(); ++ii )
        TEST_PT( m_bezierPoints[ii], aOther->m_bezierPoints[ii] );

    for( int ii = 0; ii < m_poly.TotalVertices(); ++ii )
        TEST_PT( m_poly.CVertex( ii ), aOther->m_poly.CVertex( ii ) );

    TEST_E( m_stroke.GetWidth(), aOther->m_stroke.GetWidth() );
    TEST( (int) m_stroke.GetPlotStyle(), (int) aOther->m_stroke.GetPlotStyle() );
    TEST( (int) m_fill, (int) aOther->m_fill );

    return 0;
}


void EDA_SHAPE::TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, int aClearance, int aError,
                                         ERROR_LOC aErrorLoc, bool ignoreLineWidth ) const
{
    int width = ignoreLineWidth ? 0 : GetWidth();

    width += 2 * aClearance;

    switch( m_shape )
    {
    case SHAPE_T::CIRCLE:
    {
        int r = GetRadius();

        if( IsFilled() )
            TransformCircleToPolygon( aBuffer, getCenter(), r + width / 2, aError, aErrorLoc );
        else
            TransformRingToPolygon( aBuffer, getCenter(), r, width, aError, aErrorLoc );

        break;
    }

    case SHAPE_T::RECT:
    {
        std::vector<VECTOR2I> pts = GetRectCorners();

        if( IsFilled() || IsAnnotationProxy() )
        {
            aBuffer.NewOutline();

            for( const VECTOR2I& pt : pts )
                aBuffer.Append( pt );
        }

        if( width > 0 || !IsFilled() )
        {
            // Add in segments
            TransformOvalToPolygon( aBuffer, pts[0], pts[1], width, aError, aErrorLoc );
            TransformOvalToPolygon( aBuffer, pts[1], pts[2], width, aError, aErrorLoc );
            TransformOvalToPolygon( aBuffer, pts[2], pts[3], width, aError, aErrorLoc );
            TransformOvalToPolygon( aBuffer, pts[3], pts[0], width, aError, aErrorLoc );
        }

        break;
    }

    case SHAPE_T::ARC:
        TransformArcToPolygon( aBuffer, GetStart(), GetArcMid(), GetEnd(), width, aError, aErrorLoc );
        break;

    case SHAPE_T::SEGMENT:
        TransformOvalToPolygon( aBuffer, GetStart(), GetEnd(), width, aError, aErrorLoc );
        break;

    case SHAPE_T::POLY:
    {
        if( !IsPolyShapeValid() )
            break;

        // The polygon is expected to be a simple polygon; not self intersecting, no hole.
        EDA_ANGLE orientation = getParentOrientation();
        VECTOR2I  offset = getParentPosition();

        // Build the polygon with the actual position and orientation:
        std::vector<VECTOR2I> poly;
        DupPolyPointsList( poly );

        for( VECTOR2I& point : poly )
        {
            RotatePoint( point, orientation );
            point += offset;
        }

        if( IsFilled() )
        {
            aBuffer.NewOutline();

            for( const VECTOR2I& point : poly )
                aBuffer.Append( point.x, point.y );
        }

        if( width > 0 || !IsFilled() )
        {
            VECTOR2I pt1( poly[poly.size() - 1] );

            for( const VECTOR2I& pt2 : poly )
            {
                if( pt2 != pt1 )
                    TransformOvalToPolygon( aBuffer, pt1, pt2, width, aError, aErrorLoc );

                pt1 = pt2;
            }
        }

        break;
    }

    case SHAPE_T::BEZIER:
    {
        std::vector<VECTOR2I> ctrlPts = { GetStart(), GetBezierC1(), GetBezierC2(), GetEnd() };
        BEZIER_POLY converter( ctrlPts );
        std::vector<VECTOR2I> poly;
        converter.GetPoly( poly, GetWidth() );

        for( unsigned ii = 1; ii < poly.size(); ii++ )
            TransformOvalToPolygon( aBuffer, poly[ii - 1], poly[ii], width, aError, aErrorLoc );

        break;
    }

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        break;
    }
}


ENUM_TO_WXANY( SHAPE_T )
ENUM_TO_WXANY( PLOT_DASH_TYPE )


static struct EDA_SHAPE_DESC
{
    EDA_SHAPE_DESC()
    {
        ENUM_MAP<SHAPE_T>::Instance()
                    .Map( SHAPE_T::SEGMENT, _HKI( "Segment" ) )
                    .Map( SHAPE_T::RECT,    _HKI( "Rectangle" ) )
                    .Map( SHAPE_T::ARC,     _HKI( "Arc" ) )
                    .Map( SHAPE_T::CIRCLE,  _HKI( "Circle" ) )
                    .Map( SHAPE_T::POLY,    _HKI( "Polygon" ) )
                    .Map( SHAPE_T::BEZIER,  _HKI( "Bezier" ) );
        ENUM_MAP<PLOT_DASH_TYPE>::Instance()
                    .Map( PLOT_DASH_TYPE::DEFAULT,    _HKI( "Default" ) )
                    .Map( PLOT_DASH_TYPE::SOLID,      _HKI( "Solid" ) )
                    .Map( PLOT_DASH_TYPE::DASH,       _HKI( "Dashed" ) )
                    .Map( PLOT_DASH_TYPE::DOT,        _HKI( "Dotted" ) )
                    .Map( PLOT_DASH_TYPE::DASHDOT,    _HKI( "Dash-Dot" ) )
                    .Map( PLOT_DASH_TYPE::DASHDOTDOT, _HKI( "Dash-Dot-Dot" ) );

        PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance();
        REGISTER_TYPE( EDA_SHAPE );

        auto isNotPolygon =
                []( INSPECTABLE* aItem ) -> bool
                {
                    // Polygons, unlike other shapes, have no meaningful start or end coordinates
                    if( EDA_SHAPE* shape = dynamic_cast<EDA_SHAPE*>( aItem ) )
                        return shape->GetShape() != SHAPE_T::POLY;

                    return false;
                };

        auto shape = new PROPERTY_ENUM<EDA_SHAPE, SHAPE_T>( _HKI( "Shape" ),
                     NO_SETTER( EDA_SHAPE, SHAPE_T ), &EDA_SHAPE::GetShape );
        propMgr.AddProperty( shape );
        propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Start X" ),
                    &EDA_SHAPE::SetStartX, &EDA_SHAPE::GetStartX, PROPERTY_DISPLAY::PT_COORD,
                    ORIGIN_TRANSFORMS::ABS_X_COORD ) )
                .SetAvailableFunc( isNotPolygon );
        propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Start Y" ),
                    &EDA_SHAPE::SetStartY, &EDA_SHAPE::GetStartY, PROPERTY_DISPLAY::PT_COORD,
                    ORIGIN_TRANSFORMS::ABS_Y_COORD ) )
                .SetAvailableFunc( isNotPolygon );
        propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "End X" ),
                    &EDA_SHAPE::SetEndX, &EDA_SHAPE::GetEndX, PROPERTY_DISPLAY::PT_COORD,
                    ORIGIN_TRANSFORMS::ABS_X_COORD ) )
                .SetAvailableFunc( isNotPolygon );
        propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "End Y" ),
                    &EDA_SHAPE::SetEndY, &EDA_SHAPE::GetEndY, PROPERTY_DISPLAY::PT_COORD,
                    ORIGIN_TRANSFORMS::ABS_Y_COORD ) )
                .SetAvailableFunc( isNotPolygon );
        // TODO: m_arcCenter, m_bezierC1, m_bezierC2, m_poly
        propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Line Width" ),
                    &EDA_SHAPE::SetWidth, &EDA_SHAPE::GetWidth, PROPERTY_DISPLAY::PT_SIZE ) );

        auto angle = new PROPERTY<EDA_SHAPE, EDA_ANGLE>( _HKI( "Angle" ),
                    NO_SETTER( EDA_SHAPE, EDA_ANGLE ), &EDA_SHAPE::GetArcAngle,
                    PROPERTY_DISPLAY::PT_DECIDEGREE );
        angle->SetAvailableFunc(
                [=]( INSPECTABLE* aItem ) -> bool
                {
                    return aItem->Get<SHAPE_T>( shape ) == SHAPE_T::ARC;
                } );
        propMgr.AddProperty( angle );

        auto filled = new PROPERTY<EDA_SHAPE, bool>( _HKI( "Filled" ),
                                                     &EDA_SHAPE::SetFilled, &EDA_SHAPE::IsFilled );
        filled->SetAvailableFunc(
                      [=]( INSPECTABLE* aItem ) -> bool
                      {
                          SHAPE_T itemShape;

                          try
                          {
                            itemShape = aItem->Get<SHAPE_T>( shape );
                          }
                          catch( std::runtime_error& err )
                          {
                              wxFAIL_MSG( err.what() );
                              return false;
                          }

                          switch( itemShape )
                          {
                          case SHAPE_T::POLY:
                          case SHAPE_T::RECT:
                          case SHAPE_T::CIRCLE:
                              return true;

                          default:
                              return false;
                          }
                      } );

        propMgr.AddProperty( filled );
    }
} _EDA_SHAPE_DESC;