/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 1992-2024 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include ZONE::ZONE( BOARD_ITEM_CONTAINER* aParent ) : BOARD_CONNECTED_ITEM( aParent, PCB_ZONE_T ), m_Poly( nullptr ), m_teardropType( TEARDROP_TYPE::TD_NONE ), m_isFilled( false ), m_CornerSelection( nullptr ), m_area( 0.0 ), m_outlinearea( 0.0 ) { m_Poly = new SHAPE_POLY_SET(); // Outlines SetLocalFlags( 0 ); // flags temporary used in zone calculations m_fillVersion = 5; // set the "old" way to build filled polygon areas (< 6.0.x) if( GetParentFootprint() ) SetIsRuleArea( true ); // Zones living in footprints have the rule area option if( aParent->GetBoard() ) aParent->GetBoard()->GetDesignSettings().GetDefaultZoneSettings().ExportSetting( *this ); else ZONE_SETTINGS().ExportSetting( *this ); m_needRefill = false; // True only after edits. } ZONE::ZONE( const ZONE& aZone ) : BOARD_CONNECTED_ITEM( aZone ), m_Poly( nullptr ), m_CornerSelection( nullptr ) { InitDataFromSrcInCopyCtor( aZone ); } ZONE& ZONE::operator=( const ZONE& aOther ) { BOARD_CONNECTED_ITEM::operator=( aOther ); InitDataFromSrcInCopyCtor( aOther ); return *this; } ZONE::~ZONE() { delete m_Poly; delete m_CornerSelection; if( BOARD* board = GetBoard() ) board->IncrementTimeStamp(); } void ZONE::InitDataFromSrcInCopyCtor( const ZONE& aZone ) { // members are expected non initialize in this. // InitDataFromSrcInCopyCtor() is expected to be called only from a copy constructor. // Copy only useful EDA_ITEM flags: m_flags = aZone.m_flags; m_forceVisible = aZone.m_forceVisible; // Replace the outlines for aZone outlines. delete m_Poly; m_Poly = new SHAPE_POLY_SET( *aZone.m_Poly ); m_cornerSmoothingType = aZone.m_cornerSmoothingType; m_cornerRadius = aZone.m_cornerRadius; m_zoneName = aZone.m_zoneName; m_priority = aZone.m_priority; m_isRuleArea = aZone.m_isRuleArea; SetLayerSet( aZone.GetLayerSet() ); m_doNotAllowCopperPour = aZone.m_doNotAllowCopperPour; m_doNotAllowVias = aZone.m_doNotAllowVias; m_doNotAllowTracks = aZone.m_doNotAllowTracks; m_doNotAllowPads = aZone.m_doNotAllowPads; m_doNotAllowFootprints = aZone.m_doNotAllowFootprints; m_PadConnection = aZone.m_PadConnection; m_ZoneClearance = aZone.m_ZoneClearance; // clearance value m_ZoneMinThickness = aZone.m_ZoneMinThickness; m_fillVersion = aZone.m_fillVersion; m_islandRemovalMode = aZone.m_islandRemovalMode; m_minIslandArea = aZone.m_minIslandArea; m_isFilled = aZone.m_isFilled; m_needRefill = aZone.m_needRefill; m_teardropType = aZone.m_teardropType; m_thermalReliefGap = aZone.m_thermalReliefGap; m_thermalReliefSpokeWidth = aZone.m_thermalReliefSpokeWidth; m_fillMode = aZone.m_fillMode; // solid vs. hatched m_hatchThickness = aZone.m_hatchThickness; m_hatchGap = aZone.m_hatchGap; m_hatchOrientation = aZone.m_hatchOrientation; m_hatchSmoothingLevel = aZone.m_hatchSmoothingLevel; m_hatchSmoothingValue = aZone.m_hatchSmoothingValue; m_hatchBorderAlgorithm = aZone.m_hatchBorderAlgorithm; m_hatchHoleMinArea = aZone.m_hatchHoleMinArea; // For corner moving, corner index to drag, or nullptr if no selection delete m_CornerSelection; m_CornerSelection = nullptr; for( PCB_LAYER_ID layer : aZone.GetLayerSet().Seq() ) { std::shared_ptr fill = aZone.m_FilledPolysList.at( layer ); if( fill ) m_FilledPolysList[layer] = std::make_shared( *fill ); else m_FilledPolysList[layer] = std::make_shared(); m_filledPolysHash[layer] = aZone.m_filledPolysHash.at( layer ); m_insulatedIslands[layer] = aZone.m_insulatedIslands.at( layer ); } m_borderStyle = aZone.m_borderStyle; m_borderHatchPitch = aZone.m_borderHatchPitch; m_borderHatchLines = aZone.m_borderHatchLines; SetLocalFlags( aZone.GetLocalFlags() ); m_netinfo = aZone.m_netinfo; m_area = aZone.m_area; m_outlinearea = aZone.m_outlinearea; } EDA_ITEM* ZONE::Clone() const { return new ZONE( *this ); } bool ZONE::HigherPriority( const ZONE* aOther ) const { // Teardrops are always higher priority than regular zones, so if one zone is a teardrop // and the other is not, then return higher priority as the teardrop if( ( m_teardropType == TEARDROP_TYPE::TD_NONE ) ^ ( aOther->m_teardropType == TEARDROP_TYPE::TD_NONE ) ) { return static_cast( m_teardropType ) > static_cast( aOther->m_teardropType ); } if( m_priority != aOther->m_priority ) return m_priority > aOther->m_priority; return m_Uuid > aOther->m_Uuid; } bool ZONE::SameNet( const ZONE* aOther ) const { return GetNetCode() == aOther->GetNetCode(); } bool ZONE::UnFill() { bool change = false; for( std::pair>& pair : m_FilledPolysList ) { change |= !pair.second->IsEmpty(); m_insulatedIslands[pair.first].clear(); pair.second->RemoveAllContours(); } m_isFilled = false; m_fillFlags.reset(); return change; } bool ZONE::IsConflicting() const { return HasFlag( COURTYARD_CONFLICT ); } VECTOR2I ZONE::GetPosition() const { return GetCornerPosition( 0 ); } PCB_LAYER_ID ZONE::GetLayer() const { if( m_layerSet.count() == 1 ) return m_layerSet.UIOrder()[0]; else return UNDEFINED_LAYER; } PCB_LAYER_ID ZONE::GetFirstLayer() const { if( m_layerSet.count() ) return m_layerSet.UIOrder()[0]; else return UNDEFINED_LAYER; } bool ZONE::IsOnCopperLayer() const { return ( m_layerSet & LSET::AllCuMask() ).count() > 0; } void ZONE::SetLayer( PCB_LAYER_ID aLayer ) { SetLayerSet( LSET( aLayer ) ); } void ZONE::SetLayerSet( LSET aLayerSet ) { if( aLayerSet.count() == 0 ) return; if( m_layerSet != aLayerSet ) { SetNeedRefill( true ); UnFill(); m_FilledPolysList.clear(); m_filledPolysHash.clear(); m_insulatedIslands.clear(); for( PCB_LAYER_ID layer : aLayerSet.Seq() ) { m_FilledPolysList[layer] = std::make_shared(); m_filledPolysHash[layer] = {}; m_insulatedIslands[layer] = {}; } } m_layerSet = aLayerSet; } void ZONE::ViewGetLayers( int aLayers[], int& aCount ) const { aCount = 0; LSEQ layers = m_layerSet.Seq(); for( PCB_LAYER_ID layer : m_layerSet.Seq() ) { aLayers[ aCount++ ] = layer; // For outline (always full opacity) aLayers[ aCount++ ] = layer + static_cast( LAYER_ZONE_START ); // For fill (obeys global zone opacity) } if( IsConflicting() ) aLayers[ aCount++ ] = LAYER_CONFLICTS_SHADOW; } double ZONE::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const { constexpr double HIDE = std::numeric_limits::max(); if( !aView ) return 0; if( !aView->IsLayerVisible( LAYER_ZONES ) ) return HIDE; if( FOOTPRINT* parentFP = GetParentFootprint() ) { bool flipped = parentFP->GetLayer() == B_Cu; // Handle Render tab switches if( !flipped && !aView->IsLayerVisible( LAYER_FOOTPRINTS_FR ) ) return HIDE; if( flipped && !aView->IsLayerVisible( LAYER_FOOTPRINTS_BK ) ) return HIDE; } // Other layers are shown without any conditions return 0.0; } bool ZONE::IsOnLayer( PCB_LAYER_ID aLayer ) const { return m_layerSet.test( aLayer ); } const BOX2I ZONE::GetBoundingBox() const { if( const BOARD* board = GetBoard() ) { std::unordered_map& cache = board->m_ZoneBBoxCache; { std::shared_lock readLock( board->m_CachesMutex ); auto cacheIter = cache.find( this ); if( cacheIter != cache.end() ) return cacheIter->second; } BOX2I bbox = m_Poly->BBox(); { std::unique_lock writeLock( board->m_CachesMutex ); cache[ this ] = bbox; } return bbox; } return m_Poly->BBox(); } void ZONE::CacheBoundingBox() { // GetBoundingBox() will cache it for us, and there's no sense duplicating the somewhat tricky // locking code. GetBoundingBox(); } int ZONE::GetThermalReliefGap( PAD* aPad, wxString* aSource ) const { if( aPad->GetLocalThermalGapOverride() == 0 ) { if( aSource ) *aSource = _( "zone" ); return m_thermalReliefGap; } return aPad->GetLocalThermalGapOverride( aSource ); } void ZONE::SetCornerRadius( unsigned int aRadius ) { if( m_cornerRadius != aRadius ) SetNeedRefill( true ); m_cornerRadius = aRadius; } static SHAPE_POLY_SET g_nullPoly; MD5_HASH ZONE::GetHashValue( PCB_LAYER_ID aLayer ) { if( !m_filledPolysHash.count( aLayer ) ) return g_nullPoly.GetHash(); else return m_filledPolysHash.at( aLayer ); } void ZONE::BuildHashValue( PCB_LAYER_ID aLayer ) { if( !m_FilledPolysList.count( aLayer ) ) m_filledPolysHash[aLayer] = g_nullPoly.GetHash(); else m_filledPolysHash[aLayer] = m_FilledPolysList.at( aLayer )->GetHash(); } bool ZONE::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const { // When looking for an "exact" hit aAccuracy will be 0 which works poorly for very thin // lines. Give it a floor. int accuracy = std::max( aAccuracy, pcbIUScale.mmToIU( 0.1 ) ); return HitTestForCorner( aPosition, accuracy * 2 ) || HitTestForEdge( aPosition, accuracy ); } bool ZONE::HitTestForCorner( const VECTOR2I& refPos, int aAccuracy, SHAPE_POLY_SET::VERTEX_INDEX* aCornerHit ) const { return m_Poly->CollideVertex( VECTOR2I( refPos ), aCornerHit, aAccuracy ); } bool ZONE::HitTestForEdge( const VECTOR2I& refPos, int aAccuracy, SHAPE_POLY_SET::VERTEX_INDEX* aCornerHit ) const { return m_Poly->CollideEdge( VECTOR2I( refPos ), aCornerHit, aAccuracy ); } bool ZONE::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const { // Calculate bounding box for zone BOX2I bbox = GetBoundingBox(); bbox.Normalize(); BOX2I arect = aRect; arect.Normalize(); arect.Inflate( aAccuracy ); if( aContained ) { return arect.Contains( bbox ); } else { // Fast test: if aBox is outside the polygon bounding box, rectangles cannot intersect if( !arect.Intersects( bbox ) ) return false; int count = m_Poly->TotalVertices(); for( int ii = 0; ii < count; ii++ ) { VECTOR2I vertex = m_Poly->CVertex( ii ); VECTOR2I vertexNext = m_Poly->CVertex( ( ii + 1 ) % count ); // Test if the point is within the rect if( arect.Contains( vertex ) ) return true; // Test if this edge intersects the rect if( arect.Intersects( vertex, vertexNext ) ) return true; } return false; } } std::optional ZONE::GetLocalClearance() const { return m_isRuleArea ? 0 : m_ZoneClearance; } bool ZONE::HitTestFilledArea( PCB_LAYER_ID aLayer, const VECTOR2I& aRefPos, int aAccuracy ) const { // Rule areas have no filled area, but it's generally nice to treat their interior as if it were // filled so that people don't have to select them by their outline (which is min-width) if( GetIsRuleArea() ) return m_Poly->Contains( aRefPos, -1, aAccuracy ); if( !m_FilledPolysList.count( aLayer ) ) return false; return m_FilledPolysList.at( aLayer )->Contains( aRefPos, -1, aAccuracy ); } bool ZONE::HitTestCutout( const VECTOR2I& aRefPos, int* aOutlineIdx, int* aHoleIdx ) const { // Iterate over each outline polygon in the zone and then iterate over // each hole it has to see if the point is in it. for( int i = 0; i < m_Poly->OutlineCount(); i++ ) { for( int j = 0; j < m_Poly->HoleCount( i ); j++ ) { if( m_Poly->Hole( i, j ).PointInside( aRefPos ) ) { if( aOutlineIdx ) *aOutlineIdx = i; if( aHoleIdx ) *aHoleIdx = j; return true; } } } return false; } void ZONE::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) { wxString msg = GetFriendlyName(); // Display Cutout instead of Outline for holes inside a zone (i.e. when num contour !=0). // Check whether the selected corner is in a hole; i.e., in any contour but the first one. if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 ) msg << wxT( " " ) << _( "Cutout" ); aList.emplace_back( _( "Type" ), msg ); if( GetIsRuleArea() ) { msg.Empty(); if( GetDoNotAllowVias() ) AccumulateDescription( msg, _( "No vias" ) ); if( GetDoNotAllowTracks() ) AccumulateDescription( msg, _( "No tracks" ) ); if( GetDoNotAllowPads() ) AccumulateDescription( msg, _( "No pads" ) ); if( GetDoNotAllowCopperPour() ) AccumulateDescription( msg, _( "No copper zones" ) ); if( GetDoNotAllowFootprints() ) AccumulateDescription( msg, _( "No footprints" ) ); if( !msg.IsEmpty() ) aList.emplace_back( _( "Restrictions" ), msg ); } else if( IsOnCopperLayer() ) { if( aFrame->GetName() == PCB_EDIT_FRAME_NAME ) { aList.emplace_back( _( "Net" ), UnescapeString( GetNetname() ) ); aList.emplace_back( _( "Resolved Netclass" ), UnescapeString( GetEffectiveNetClass()->GetName() ) ); } // Display priority level aList.emplace_back( _( "Priority" ), wxString::Format( wxT( "%d" ), GetAssignedPriority() ) ); } if( aFrame->GetName() == PCB_EDIT_FRAME_NAME ) { if( IsLocked() ) aList.emplace_back( _( "Status" ), _( "Locked" ) ); } LSEQ layers = m_layerSet.Seq(); wxString layerDesc; if( layers.size() == 1 ) { layerDesc.Printf( _( "%s" ), GetBoard()->GetLayerName( layers[0] ) ); } else if (layers.size() == 2 ) { layerDesc.Printf( _( "%s and %s" ), GetBoard()->GetLayerName( layers[0] ), GetBoard()->GetLayerName( layers[1] ) ); } else if (layers.size() == 3 ) { layerDesc.Printf( _( "%s, %s and %s" ), GetBoard()->GetLayerName( layers[0] ), GetBoard()->GetLayerName( layers[1] ), GetBoard()->GetLayerName( layers[2] ) ); } else if( layers.size() > 3 ) { layerDesc.Printf( _( "%s, %s and %d more" ), GetBoard()->GetLayerName( layers[0] ), GetBoard()->GetLayerName( layers[1] ), static_cast( layers.size() - 2 ) ); } aList.emplace_back( _( "Layer" ), layerDesc ); if( !m_zoneName.empty() ) aList.emplace_back( _( "Name" ), m_zoneName ); switch( m_fillMode ) { case ZONE_FILL_MODE::POLYGONS: msg = _( "Solid" ); break; case ZONE_FILL_MODE::HATCH_PATTERN: msg = _( "Hatched" ); break; default: msg = _( "Unknown" ); break; } aList.emplace_back( _( "Fill Mode" ), msg ); aList.emplace_back( _( "Filled Area" ), aFrame->MessageTextFromValue( m_area, true, EDA_DATA_TYPE::AREA ) ); wxString source; int clearance = GetOwnClearance( UNDEFINED_LAYER, &source ); if( !source.IsEmpty() ) { aList.emplace_back( wxString::Format( _( "Min Clearance: %s" ), aFrame->MessageTextFromValue( clearance ) ), wxString::Format( _( "(from %s)" ), source ) ); } if( !m_FilledPolysList.empty() ) { int count = 0; for( std::pair>& ii: m_FilledPolysList ) count += ii.second->TotalVertices(); aList.emplace_back( _( "Corner Count" ), wxString::Format( wxT( "%d" ), count ) ); } } void ZONE::Move( const VECTOR2I& offset ) { /* move outlines */ m_Poly->Move( offset ); HatchBorder(); /* move fills */ for( std::pair>& pair : m_FilledPolysList ) pair.second->Move( offset ); /* * move boundingbox cache * * While the cache will get nuked at the conclusion of the operation, we use it for some * things (such as drawing the parent group) during the move. */ if( GetBoard() ) { auto it = GetBoard()->m_ZoneBBoxCache.find( this ); if( it != GetBoard()->m_ZoneBBoxCache.end() ) it->second.Move( offset ); } } wxString ZONE::GetFriendlyName() const { if( GetIsRuleArea() ) return _( "Rule Area" ); else if( IsTeardropArea() ) return _( "Teardrop Area" ); else if( IsOnCopperLayer() ) return _( "Copper Zone" ); else return _( "Non-copper Zone" ); } void ZONE::MoveEdge( const VECTOR2I& offset, int aEdge ) { int next_corner; if( m_Poly->GetNeighbourIndexes( aEdge, nullptr, &next_corner ) ) { m_Poly->SetVertex( aEdge, m_Poly->CVertex( aEdge ) + VECTOR2I( offset ) ); m_Poly->SetVertex( next_corner, m_Poly->CVertex( next_corner ) + VECTOR2I( offset ) ); HatchBorder(); SetNeedRefill( true ); } } void ZONE::Rotate( const VECTOR2I& aCentre, const EDA_ANGLE& aAngle ) { m_Poly->Rotate( aAngle, aCentre ); HatchBorder(); /* rotate filled areas: */ for( std::pair>& pair : m_FilledPolysList ) pair.second->Rotate( aAngle, aCentre ); } void ZONE::Flip( const VECTOR2I& aCentre, bool aFlipLeftRight ) { Mirror( aCentre, aFlipLeftRight ); std::map fillsCopy; for( auto& [oldLayer, shapePtr] : m_FilledPolysList ) { fillsCopy[oldLayer] = *shapePtr; } SetLayerSet( FlipLayerMask( GetLayerSet(), GetBoard()->GetCopperLayerCount() ) ); for( auto& [oldLayer, shape] : fillsCopy ) { PCB_LAYER_ID newLayer = FlipLayer( oldLayer, GetBoard()->GetCopperLayerCount() ); SetFilledPolysList( newLayer, shape ); } } void ZONE::Mirror( const VECTOR2I& aMirrorRef, bool aMirrorLeftRight ) { m_Poly->Mirror( aMirrorLeftRight, !aMirrorLeftRight, aMirrorRef ); HatchBorder(); for( std::pair>& pair : m_FilledPolysList ) pair.second->Mirror( aMirrorLeftRight, !aMirrorLeftRight, aMirrorRef ); } void ZONE::RemoveCutout( int aOutlineIdx, int aHoleIdx ) { // Ensure the requested cutout is valid if( m_Poly->OutlineCount() < aOutlineIdx || m_Poly->HoleCount( aOutlineIdx ) < aHoleIdx ) return; SHAPE_POLY_SET cutPoly( m_Poly->Hole( aOutlineIdx, aHoleIdx ) ); // Add the cutout back to the zone m_Poly->BooleanAdd( cutPoly, SHAPE_POLY_SET::PM_FAST ); SetNeedRefill( true ); } void ZONE::AddPolygon( const SHAPE_LINE_CHAIN& aPolygon ) { wxASSERT( aPolygon.IsClosed() ); // Add the outline as a new polygon in the polygon set if( m_Poly->OutlineCount() == 0 ) m_Poly->AddOutline( aPolygon ); else m_Poly->AddHole( aPolygon ); SetNeedRefill( true ); } void ZONE::AddPolygon( std::vector& aPolygon ) { if( aPolygon.empty() ) return; SHAPE_LINE_CHAIN outline; // Create an outline and populate it with the points of aPolygon for( const VECTOR2I& pt : aPolygon ) outline.Append( pt ); outline.SetClosed( true ); AddPolygon( outline ); } bool ZONE::AppendCorner( VECTOR2I aPosition, int aHoleIdx, bool aAllowDuplication ) { // Ensure the main outline exists: if( m_Poly->OutlineCount() == 0 ) m_Poly->NewOutline(); // If aHoleIdx >= 0, the corner musty be added to the hole, index aHoleIdx. // (remember: the index of the first hole is 0) // Return error if it does not exist. if( aHoleIdx >= m_Poly->HoleCount( 0 ) ) return false; m_Poly->Append( aPosition.x, aPosition.y, -1, aHoleIdx, aAllowDuplication ); SetNeedRefill( true ); return true; } wxString ZONE::GetItemDescription( UNITS_PROVIDER* aUnitsProvider ) const { LSEQ layers = m_layerSet.Seq(); wxString layerDesc; if( layers.size() == 1 ) { layerDesc.Printf( _( "on %s" ), GetBoard()->GetLayerName( layers[0] ) ); } else if (layers.size() == 2 ) { layerDesc.Printf( _( "on %s and %s" ), GetBoard()->GetLayerName( layers[0] ), GetBoard()->GetLayerName( layers[1] ) ); } else if (layers.size() == 3 ) { layerDesc.Printf( _( "on %s, %s and %s" ), GetBoard()->GetLayerName( layers[0] ), GetBoard()->GetLayerName( layers[1] ), GetBoard()->GetLayerName( layers[2] ) ); } else if( layers.size() > 3 ) { layerDesc.Printf( _( "on %s, %s and %zu more" ), GetBoard()->GetLayerName( layers[0] ), GetBoard()->GetLayerName( layers[1] ), layers.size() - 2 ); } // Check whether the selected contour is a hole (contour index > 0) if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 ) { if( GetIsRuleArea() ) return wxString::Format( _( "Rule Area Cutout %s" ), layerDesc ); else return wxString::Format( _( "Zone Cutout %s" ), layerDesc ); } else { if( GetIsRuleArea() ) return wxString::Format( _( "Rule Area %s" ), layerDesc ); else return wxString::Format( _( "Zone %s %s" ), GetNetnameMsg(), layerDesc ); } } int ZONE::GetBorderHatchPitch() const { return m_borderHatchPitch; } void ZONE::SetBorderDisplayStyle( ZONE_BORDER_DISPLAY_STYLE aBorderHatchStyle, int aBorderHatchPitch, bool aRebuildBorderHatch ) { aBorderHatchPitch = std::max( aBorderHatchPitch, pcbIUScale.mmToIU( ZONE_BORDER_HATCH_MINDIST_MM ) ); aBorderHatchPitch = std::min( aBorderHatchPitch, pcbIUScale.mmToIU( ZONE_BORDER_HATCH_MAXDIST_MM ) ); SetBorderHatchPitch( aBorderHatchPitch ); m_borderStyle = aBorderHatchStyle; if( aRebuildBorderHatch ) HatchBorder(); } void ZONE::SetBorderHatchPitch( int aPitch ) { m_borderHatchPitch = aPitch; } void ZONE::UnHatchBorder() { m_borderHatchLines.clear(); } // Creates hatch lines inside the outline of the complex polygon // sort function used in ::HatchBorder to sort points by descending VECTOR2I.x values bool sortEndsByDescendingX( const VECTOR2I& ref, const VECTOR2I& tst ) { return tst.x < ref.x; } void ZONE::HatchBorder() { UnHatchBorder(); if( m_borderStyle == ZONE_BORDER_DISPLAY_STYLE::NO_HATCH || m_borderHatchPitch == 0 || m_Poly->IsEmpty() ) { return; } // define range for hatch lines int min_x = m_Poly->CVertex( 0 ).x; int max_x = m_Poly->CVertex( 0 ).x; int min_y = m_Poly->CVertex( 0 ).y; int max_y = m_Poly->CVertex( 0 ).y; for( auto iterator = m_Poly->IterateWithHoles(); iterator; iterator++ ) { if( iterator->x < min_x ) min_x = iterator->x; if( iterator->x > max_x ) max_x = iterator->x; if( iterator->y < min_y ) min_y = iterator->y; if( iterator->y > max_y ) max_y = iterator->y; } // Calculate spacing between 2 hatch lines int spacing; if( m_borderStyle == ZONE_BORDER_DISPLAY_STYLE::DIAGONAL_EDGE ) spacing = m_borderHatchPitch; else spacing = m_borderHatchPitch * 2; // set the "length" of hatch lines (the length on horizontal axis) int hatch_line_len = m_borderHatchPitch; // To have a better look, give a slope depending on the layer int layer = GetFirstLayer(); std::vector slope_flags; if( IsTeardropArea() ) slope_flags = { 1, -1 }; else if( layer & 1 ) slope_flags = { 1 }; else slope_flags = { -1 }; for( int slope_flag : slope_flags ) { double slope = 0.707106 * slope_flag; // 45 degrees slope int64_t max_a, min_a; if( slope_flag == 1 ) { max_a = KiROUND( max_y - slope * min_x ); min_a = KiROUND( min_y - slope * max_x ); } else { max_a = KiROUND( max_y - slope * max_x ); min_a = KiROUND( min_y - slope * min_x ); } min_a = (min_a / spacing) * spacing; // calculate an offset depending on layer number, // for a better look of hatches on a multilayer board int offset = (layer * 7) / 8; min_a += offset; // loop through hatch lines std::vector pointbuffer; pointbuffer.reserve( 256 ); for( int64_t a = min_a; a < max_a; a += spacing ) { pointbuffer.clear(); // Iterate through all vertices for( auto iterator = m_Poly->IterateSegmentsWithHoles(); iterator; iterator++ ) { const SEG seg = *iterator; double x, y; if( FindLineSegmentIntersection( a, slope, seg.A.x, seg.A.y, seg.B.x, seg.B.y, x, y ) ) pointbuffer.emplace_back( KiROUND( x ), KiROUND( y ) ); } // sort points in order of descending x (if more than 2) to // ensure the starting point and the ending point of the same segment // are stored one just after the other. if( pointbuffer.size() > 2 ) sort( pointbuffer.begin(), pointbuffer.end(), sortEndsByDescendingX ); // creates lines or short segments inside the complex polygon for( size_t ip = 0; ip + 1 < pointbuffer.size(); ip += 2 ) { int dx = pointbuffer[ip + 1].x - pointbuffer[ip].x; // Push only one line for diagonal hatch, // or for small lines < twice the line length // else push 2 small lines if( m_borderStyle == ZONE_BORDER_DISPLAY_STYLE::DIAGONAL_FULL || std::abs( dx ) < 2 * hatch_line_len ) { m_borderHatchLines.emplace_back( SEG( pointbuffer[ip], pointbuffer[ ip + 1] ) ); } else { double dy = pointbuffer[ip + 1].y - pointbuffer[ip].y; slope = dy / dx; if( dx > 0 ) dx = hatch_line_len; else dx = -hatch_line_len; int x1 = KiROUND( pointbuffer[ip].x + dx ); int x2 = KiROUND( pointbuffer[ip + 1].x - dx ); int y1 = KiROUND( pointbuffer[ip].y + dx * slope ); int y2 = KiROUND( pointbuffer[ip + 1].y - dx * slope ); m_borderHatchLines.emplace_back( SEG( pointbuffer[ip].x, pointbuffer[ip].y, x1, y1 ) ); m_borderHatchLines.emplace_back( SEG( pointbuffer[ip+1].x, pointbuffer[ip+1].y, x2, y2 ) ); } } } } } int ZONE::GetDefaultHatchPitch() { return pcbIUScale.mmToIU( ZONE_BORDER_HATCH_DIST_MM ); } BITMAPS ZONE::GetMenuImage() const { return BITMAPS::add_zone; } void ZONE::swapData( BOARD_ITEM* aImage ) { assert( aImage->Type() == PCB_ZONE_T ); std::swap( *static_cast( this ), *static_cast( aImage) ); } void ZONE::CacheTriangulation( PCB_LAYER_ID aLayer ) { if( aLayer == UNDEFINED_LAYER ) { for( auto& [ layer, poly ] : m_FilledPolysList ) poly->CacheTriangulation(); m_Poly->CacheTriangulation( false ); } else { if( m_FilledPolysList.count( aLayer ) ) m_FilledPolysList[ aLayer ]->CacheTriangulation(); } } bool ZONE::IsIsland( PCB_LAYER_ID aLayer, int aPolyIdx ) const { if( GetNetCode() < 1 ) return true; if( !m_insulatedIslands.count( aLayer ) ) return false; return m_insulatedIslands.at( aLayer ).count( aPolyIdx ); } void ZONE::GetInteractingZones( PCB_LAYER_ID aLayer, std::vector* aSameNetCollidingZones, std::vector* aOtherNetIntersectingZones ) const { int epsilon = pcbIUScale.mmToIU( 0.001 ); BOX2I bbox = GetBoundingBox(); bbox.Inflate( epsilon ); for( ZONE* candidate : GetBoard()->Zones() ) { if( candidate == this ) continue; if( !candidate->GetLayerSet().test( aLayer ) ) continue; if( candidate->GetIsRuleArea() || candidate->IsTeardropArea() ) continue; if( !candidate->GetBoundingBox().Intersects( bbox ) ) continue; if( candidate->GetNetCode() == GetNetCode() ) { if( m_Poly->Collide( candidate->m_Poly ) ) aSameNetCollidingZones->push_back( candidate ); } else { aOtherNetIntersectingZones->push_back( candidate ); } } } bool ZONE::BuildSmoothedPoly( SHAPE_POLY_SET& aSmoothedPoly, PCB_LAYER_ID aLayer, SHAPE_POLY_SET* aBoardOutline, SHAPE_POLY_SET* aSmoothedPolyWithApron ) const { if( GetNumCorners() <= 2 ) // malformed zone. polygon calculations will not like it ... return false; // Processing of arc shapes in zones is not yet supported because Clipper can't do boolean // operations on them. The poly outline must be converted to segments first. SHAPE_POLY_SET flattened = m_Poly->CloneDropTriangulation(); flattened.ClearArcs(); if( GetIsRuleArea() ) { // We like keepouts just the way they are.... aSmoothedPoly = flattened; return true; } const BOARD* board = GetBoard(); int maxError = ARC_HIGH_DEF; bool keepExternalFillets = false; bool smooth_requested = m_cornerSmoothingType == ZONE_SETTINGS::SMOOTHING_CHAMFER || m_cornerSmoothingType == ZONE_SETTINGS::SMOOTHING_FILLET; if( IsTeardropArea() ) { // We use teardrop shapes with no smoothing; these shapes are already optimized smooth_requested = false; } if( board ) { BOARD_DESIGN_SETTINGS& bds = board->GetDesignSettings(); maxError = bds.m_MaxError; keepExternalFillets = bds.m_ZoneKeepExternalFillets; } auto smooth = [&]( SHAPE_POLY_SET& aPoly ) { if( !smooth_requested ) return; switch( m_cornerSmoothingType ) { case ZONE_SETTINGS::SMOOTHING_CHAMFER: aPoly = aPoly.Chamfer( (int) m_cornerRadius ); break; case ZONE_SETTINGS::SMOOTHING_FILLET: { aPoly = aPoly.Fillet( (int) m_cornerRadius, maxError ); break; } default: break; } }; SHAPE_POLY_SET* maxExtents = &flattened; SHAPE_POLY_SET withFillets; aSmoothedPoly = flattened; // Should external fillets (that is, those applied to concave corners) be kept? While it // seems safer to never have copper extend outside the zone outline, 5.1.x and prior did // indeed fill them so we leave the mode available. if( keepExternalFillets && smooth_requested ) { withFillets = flattened; smooth( withFillets ); withFillets.BooleanAdd( flattened, SHAPE_POLY_SET::PM_FAST ); maxExtents = &withFillets; } // We now add in the areas of any same-net, intersecting zones. This keeps us from smoothing // corners at an intersection (which often produces undesired divots between the intersecting // zones -- see #2752). // // After smoothing, we'll subtract back out everything outside of our zone. std::vector sameNetCollidingZones; std::vector diffNetIntersectingZones; GetInteractingZones( aLayer, &sameNetCollidingZones, &diffNetIntersectingZones ); for( ZONE* sameNetZone : sameNetCollidingZones ) { BOX2I sameNetBoundingBox = sameNetZone->GetBoundingBox(); // Note: a two-pass algorithm could use sameNetZone's actual fill instead of its outline. // This would obviate the need for the below wrinkles, in addition to fixing both issues // in #16095. // (And we wouldn't need to collect all the diffNetIntersectingZones either.) SHAPE_POLY_SET sameNetPoly = sameNetZone->Outline()->CloneDropTriangulation(); SHAPE_POLY_SET diffNetPoly; // Of course there's always a wrinkle. The same-net intersecting zone *might* get knocked // out along the border by a higher-priority, different-net zone. #12797 for( ZONE* diffNetZone : diffNetIntersectingZones ) { if( diffNetZone->HigherPriority( sameNetZone ) && diffNetZone->GetBoundingBox().Intersects( sameNetBoundingBox ) ) { diffNetPoly.BooleanAdd( *diffNetZone->Outline(), SHAPE_POLY_SET::PM_FAST ); } } // Second wrinkle. After unioning the higher priority, different net zones together, we // need to check to see if they completely enclose our zone. If they do, then we need to // treat the enclosed zone as isolated, not connected to the outer zone. #13915 bool isolated = false; if( diffNetPoly.OutlineCount() ) { SHAPE_POLY_SET thisPoly = Outline()->CloneDropTriangulation(); thisPoly.BooleanSubtract( diffNetPoly, SHAPE_POLY_SET::PM_FAST ); isolated = thisPoly.OutlineCount() == 0; } if( !isolated ) { sameNetPoly.ClearArcs(); aSmoothedPoly.BooleanAdd( sameNetPoly, SHAPE_POLY_SET::PM_FAST ); } } if( aBoardOutline ) aSmoothedPoly.BooleanIntersection( *aBoardOutline, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); smooth( aSmoothedPoly ); if( aSmoothedPolyWithApron ) { SHAPE_POLY_SET poly = maxExtents->CloneDropTriangulation(); poly.Inflate( m_ZoneMinThickness, CORNER_STRATEGY::ROUND_ALL_CORNERS, maxError ); *aSmoothedPolyWithApron = aSmoothedPoly; aSmoothedPolyWithApron->BooleanIntersection( poly, SHAPE_POLY_SET::PM_FAST ); } aSmoothedPoly.BooleanIntersection( *maxExtents, SHAPE_POLY_SET::PM_FAST ); return true; } double ZONE::CalculateFilledArea() { m_area = 0.0; // Iterate over each outline polygon in the zone and then iterate over // each hole it has to compute the total area. for( std::pair>& pair : m_FilledPolysList ) { std::shared_ptr& poly = pair.second; for( int i = 0; i < poly->OutlineCount(); i++ ) { m_area += poly->Outline( i ).Area(); for( int j = 0; j < poly->HoleCount( i ); j++ ) m_area -= poly->Hole( i, j ).Area(); } } return m_area; } double ZONE::CalculateOutlineArea() { m_outlinearea = std::abs( m_Poly->Area() ); return m_outlinearea; } void ZONE::TransformSmoothedOutlineToPolygon( SHAPE_POLY_SET& aBuffer, int aClearance, int aMaxError, ERROR_LOC aErrorLoc, SHAPE_POLY_SET* aBoardOutline ) const { // Creates the zone outline polygon (with holes if any) SHAPE_POLY_SET polybuffer; // TODO: using GetFirstLayer() means it only works for single-layer zones.... BuildSmoothedPoly( polybuffer, GetFirstLayer(), aBoardOutline ); // Calculate the polygon with clearance // holes are linked to the main outline, so only one polygon is created. if( aClearance ) { const BOARD* board = GetBoard(); int maxError = ARC_HIGH_DEF; if( board ) maxError = board->GetDesignSettings().m_MaxError; if( aErrorLoc == ERROR_OUTSIDE ) aClearance += maxError; polybuffer.Inflate( aClearance, CORNER_STRATEGY::ROUND_ALL_CORNERS, maxError ); } polybuffer.Fracture( SHAPE_POLY_SET::PM_FAST ); aBuffer.Append( polybuffer ); } std::shared_ptr ZONE::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING aFlash ) const { if( m_FilledPolysList.find( aLayer ) == m_FilledPolysList.end() ) return std::make_shared(); else return m_FilledPolysList.at( aLayer ); } void ZONE::TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer, int aClearance, int aError, ERROR_LOC aErrorLoc, bool aIgnoreLineWidth ) const { wxASSERT_MSG( !aIgnoreLineWidth, wxT( "IgnoreLineWidth has no meaning for zones." ) ); if( !m_FilledPolysList.count( aLayer ) ) return; if( !aClearance ) { aBuffer.Append( *m_FilledPolysList.at( aLayer ) ); return; } SHAPE_POLY_SET temp_buf = m_FilledPolysList.at( aLayer )->CloneDropTriangulation(); // Rebuild filled areas only if clearance is not 0 if( aClearance > 0 || aErrorLoc == ERROR_OUTSIDE ) { if( aErrorLoc == ERROR_OUTSIDE ) aClearance += aError; temp_buf.InflateWithLinkedHoles( aClearance, CORNER_STRATEGY::ROUND_ALL_CORNERS, aError, SHAPE_POLY_SET::PM_FAST ); } aBuffer.Append( temp_buf ); } void ZONE::TransformSolidAreasShapesToPolygon( PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aBuffer ) const { if( m_FilledPolysList.count( aLayer ) && !m_FilledPolysList.at( aLayer )->IsEmpty() ) aBuffer.Append( *m_FilledPolysList.at( aLayer ) ); } bool ZONE::operator==( const BOARD_ITEM& aOther ) const { if( aOther.Type() != Type() ) return false; const ZONE& other = static_cast( aOther ); return *this == other; } bool ZONE::operator==( const ZONE& aOther ) const { if( GetIsRuleArea() != aOther.GetIsRuleArea() ) return false; if( GetLayerSet() != aOther.GetLayerSet() ) return false; if( GetNetCode() != aOther.GetNetCode() ) return false; if( GetIsRuleArea() ) { if( GetDoNotAllowCopperPour() != aOther.GetDoNotAllowCopperPour() ) return false; if( GetDoNotAllowTracks() != aOther.GetDoNotAllowTracks() ) return false; if( GetDoNotAllowVias() != aOther.GetDoNotAllowVias() ) return false; if( GetDoNotAllowFootprints() != aOther.GetDoNotAllowFootprints() ) return false; if( GetDoNotAllowPads() != aOther.GetDoNotAllowPads() ) return false; } else { if( GetAssignedPriority() != aOther.GetAssignedPriority() ) return false; if( GetMinThickness() != aOther.GetMinThickness() ) return false; if( GetCornerSmoothingType() != aOther.GetCornerSmoothingType() ) return false; if( GetCornerRadius() != aOther.GetCornerRadius() ) return false; if( GetTeardropParams() != aOther.GetTeardropParams() ) return false; } if( GetNumCorners() != aOther.GetNumCorners() ) return false; for( int ii = 0; ii < GetNumCorners(); ii++ ) { if( GetCornerPosition( ii ) != aOther.GetCornerPosition( ii ) ) return false; } return true; } double ZONE::Similarity( const BOARD_ITEM& aOther ) const { if( aOther.Type() != Type() ) return 0.0; const ZONE& other = static_cast( aOther ); if( GetIsRuleArea() != other.GetIsRuleArea() ) return 0.0; double similarity = 1.0; if( GetLayerSet() != other.GetLayerSet() ) similarity *= 0.9; if( GetNetCode() != other.GetNetCode() ) similarity *= 0.9; if( !GetIsRuleArea() ) { if( GetAssignedPriority() != other.GetAssignedPriority() ) similarity *= 0.9; if( GetMinThickness() != other.GetMinThickness() ) similarity *= 0.9; if( GetCornerSmoothingType() != other.GetCornerSmoothingType() ) similarity *= 0.9; if( GetCornerRadius() != other.GetCornerRadius() ) similarity *= 0.9; if( GetTeardropParams() != other.GetTeardropParams() ) similarity *= 0.9; } else { if( GetDoNotAllowCopperPour() != other.GetDoNotAllowCopperPour() ) similarity *= 0.9; if( GetDoNotAllowTracks() != other.GetDoNotAllowTracks() ) similarity *= 0.9; if( GetDoNotAllowVias() != other.GetDoNotAllowVias() ) similarity *= 0.9; if( GetDoNotAllowFootprints() != other.GetDoNotAllowFootprints() ) similarity *= 0.9; if( GetDoNotAllowPads() != other.GetDoNotAllowPads() ) similarity *= 0.9; } std::vector corners; std::vector otherCorners; VECTOR2I lastCorner( 0, 0 ); for( int ii = 0; ii < GetNumCorners(); ii++ ) { corners.push_back( lastCorner - GetCornerPosition( ii ) ); lastCorner = GetCornerPosition( ii ); } lastCorner = VECTOR2I( 0, 0 ); for( int ii = 0; ii < other.GetNumCorners(); ii++ ) { otherCorners.push_back( lastCorner - other.GetCornerPosition( ii ) ); lastCorner = other.GetCornerPosition( ii ); } size_t longest = alg::longest_common_subset( corners, otherCorners ); similarity *= std::pow( 0.9, GetNumCorners() + other.GetNumCorners() - 2 * longest ); return similarity; } static struct ZONE_DESC { ZONE_DESC() { ENUM_MAP& layerEnum = ENUM_MAP::Instance(); if( layerEnum.Choices().GetCount() == 0 ) { layerEnum.Undefined( UNDEFINED_LAYER ); for( LSEQ seq = LSET::AllLayersMask().Seq(); seq; ++seq ) layerEnum.Map( *seq, LSET::Name( *seq ) ); } ENUM_MAP& zcMap = ENUM_MAP::Instance(); if( zcMap.Choices().GetCount() == 0 ) { zcMap.Undefined( ZONE_CONNECTION::INHERITED ); zcMap.Map( ZONE_CONNECTION::INHERITED, _HKI( "Inherited" ) ) .Map( ZONE_CONNECTION::NONE, _HKI( "None" ) ) .Map( ZONE_CONNECTION::THERMAL, _HKI( "Thermal reliefs" ) ) .Map( ZONE_CONNECTION::FULL, _HKI( "Solid" ) ) .Map( ZONE_CONNECTION::THT_THERMAL, _HKI( "Thermal reliefs for PTH" ) ); } ENUM_MAP& zfmMap = ENUM_MAP::Instance(); if( zfmMap.Choices().GetCount() == 0 ) { zfmMap.Undefined( ZONE_FILL_MODE::POLYGONS ); zfmMap.Map( ZONE_FILL_MODE::POLYGONS, _HKI( "Solid fill" ) ) .Map( ZONE_FILL_MODE::HATCH_PATTERN, _HKI( "Hatch pattern" ) ); } ENUM_MAP& irmMap = ENUM_MAP::Instance(); if( irmMap.Choices().GetCount() == 0 ) { irmMap.Undefined( ISLAND_REMOVAL_MODE::ALWAYS ); irmMap.Map( ISLAND_REMOVAL_MODE::ALWAYS, _HKI( "Always" ) ) .Map( ISLAND_REMOVAL_MODE::NEVER, _HKI( "Never" ) ) .Map( ISLAND_REMOVAL_MODE::AREA, _HKI( "Below area limit" ) ); } PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance(); REGISTER_TYPE( ZONE ); propMgr.InheritsAfter( TYPE_HASH( ZONE ), TYPE_HASH( BOARD_CONNECTED_ITEM ) ); // Mask layer and position properties; they aren't useful in current form auto posX = new PROPERTY( _HKI( "Position X" ), NO_SETTER( ZONE, int ), static_cast( &ZONE::GetX ), PROPERTY_DISPLAY::PT_COORD, ORIGIN_TRANSFORMS::ABS_X_COORD ); posX->SetIsHiddenFromPropertiesManager(); auto posY = new PROPERTY( _HKI( "Position Y" ), NO_SETTER( ZONE, int ), static_cast( &ZONE::GetY ), PROPERTY_DISPLAY::PT_COORD, ORIGIN_TRANSFORMS::ABS_Y_COORD ); posY->SetIsHiddenFromPropertiesManager(); propMgr.ReplaceProperty( TYPE_HASH( BOARD_ITEM ), _HKI( "Position X" ), posX ); propMgr.ReplaceProperty( TYPE_HASH( BOARD_ITEM ), _HKI( "Position Y" ), posY ); auto isCopperZone = []( INSPECTABLE* aItem ) -> bool { if( ZONE* zone = dynamic_cast( aItem ) ) return !zone->GetIsRuleArea() && IsCopperLayer( zone->GetFirstLayer() ); return false; }; auto isHatchedFill = []( INSPECTABLE* aItem ) -> bool { if( ZONE* zone = dynamic_cast( aItem ) ) return zone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN; return false; }; auto isAreaBasedIslandRemoval = []( INSPECTABLE* aItem ) -> bool { if( ZONE* zone = dynamic_cast( aItem ) ) return zone->GetIslandRemovalMode() == ISLAND_REMOVAL_MODE::AREA; return false; }; // Layer property is hidden because it only holds a single layer and zones actually use // a layer set propMgr.ReplaceProperty( TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Layer" ), new PROPERTY_ENUM( _HKI( "Layer" ), &ZONE::SetLayer, &ZONE::GetLayer ) ) .SetIsHiddenFromPropertiesManager(); propMgr.OverrideAvailability( TYPE_HASH( ZONE ), TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Net" ), isCopperZone ); propMgr.OverrideAvailability( TYPE_HASH( ZONE ), TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Net Class" ), isCopperZone ); propMgr.AddProperty( new PROPERTY( _HKI( "Priority" ), &ZONE::SetAssignedPriority, &ZONE::GetAssignedPriority ) ) .SetAvailableFunc( isCopperZone ); propMgr.AddProperty( new PROPERTY( _HKI( "Name" ), &ZONE::SetZoneName, &ZONE::GetZoneName ) ); const wxString groupFill = _HKI( "Fill Style" ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Fill Mode" ), &ZONE::SetFillMode, &ZONE::GetFillMode ), groupFill ) .SetAvailableFunc( isCopperZone ); propMgr.AddProperty( new PROPERTY( _HKI( "Orientation" ), &ZONE::SetHatchOrientation, &ZONE::GetHatchOrientation, PROPERTY_DISPLAY::PT_DEGREE ), groupFill ) .SetAvailableFunc( isCopperZone ) .SetWriteableFunc( isHatchedFill ); auto atLeastMinWidthValidator = []( const wxAny&& aValue, EDA_ITEM* aZone ) -> VALIDATOR_RESULT { int val = aValue.As(); ZONE* zone = dynamic_cast( aZone ); wxCHECK( zone, std::nullopt ); if( val < zone->GetMinThickness() ) { return std::make_unique( _( "Cannot be less than zone minimum width" ) ); } return std::nullopt; }; propMgr.AddProperty( new PROPERTY( _HKI( "Hatch Width" ), &ZONE::SetHatchThickness, &ZONE::GetHatchThickness, PROPERTY_DISPLAY::PT_SIZE ), groupFill ) .SetAvailableFunc( isCopperZone ) .SetWriteableFunc( isHatchedFill ) .SetValidator( atLeastMinWidthValidator ); propMgr.AddProperty( new PROPERTY( _HKI( "Hatch Gap" ), &ZONE::SetHatchGap, &ZONE::GetHatchGap, PROPERTY_DISPLAY::PT_SIZE ), groupFill ) .SetAvailableFunc( isCopperZone ) .SetWriteableFunc( isHatchedFill ) .SetValidator( atLeastMinWidthValidator ); propMgr.AddProperty( new PROPERTY( _HKI( "Hatch Minimum Hole Ratio" ), &ZONE::SetHatchHoleMinArea, &ZONE::GetHatchHoleMinArea ), groupFill ) .SetAvailableFunc( isCopperZone ) .SetWriteableFunc( isHatchedFill ) .SetValidator( PROPERTY_VALIDATORS::PositiveRatioValidator ); // TODO: Smoothing effort needs to change to enum (in dialog too) propMgr.AddProperty( new PROPERTY( _HKI( "Smoothing Effort" ), &ZONE::SetHatchSmoothingLevel, &ZONE::GetHatchSmoothingLevel ), groupFill ) .SetAvailableFunc( isCopperZone ) .SetWriteableFunc( isHatchedFill ); propMgr.AddProperty( new PROPERTY( _HKI( "Smoothing Amount" ), &ZONE::SetHatchSmoothingValue, &ZONE::GetHatchSmoothingValue ), groupFill ) .SetAvailableFunc( isCopperZone ) .SetWriteableFunc( isHatchedFill ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Remove Islands" ), &ZONE::SetIslandRemovalMode, &ZONE::GetIslandRemovalMode ), groupFill ) .SetAvailableFunc( isCopperZone ); propMgr.AddProperty( new PROPERTY( _HKI( "Minimum Island Area" ), &ZONE::SetMinIslandArea, &ZONE::GetMinIslandArea, PROPERTY_DISPLAY::PT_AREA ), groupFill ) .SetAvailableFunc( isCopperZone ) .SetWriteableFunc( isAreaBasedIslandRemoval ); const wxString groupElectrical = _HKI( "Electrical" ); auto clearanceOverride = new PROPERTY>( _HKI( "Clearance" ), &ZONE::SetLocalClearance, &ZONE::GetLocalClearance, PROPERTY_DISPLAY::PT_SIZE ); clearanceOverride->SetAvailableFunc( isCopperZone ); constexpr int maxClearance = pcbIUScale.mmToIU( ZONE_CLEARANCE_MAX_VALUE_MM ); clearanceOverride->SetValidator( PROPERTY_VALIDATORS::RangeIntValidator<0, maxClearance> ); auto minWidth = new PROPERTY( _HKI( "Minimum Width" ), &ZONE::SetMinThickness, &ZONE::GetMinThickness, PROPERTY_DISPLAY::PT_SIZE ); minWidth->SetAvailableFunc( isCopperZone ); constexpr int minMinWidth = pcbIUScale.mmToIU( ZONE_THICKNESS_MIN_VALUE_MM ); clearanceOverride->SetValidator( PROPERTY_VALIDATORS::RangeIntValidator ); auto padConnections = new PROPERTY_ENUM( _HKI( "Pad Connections" ), &ZONE::SetPadConnection, &ZONE::GetPadConnection ); padConnections->SetAvailableFunc( isCopperZone ); auto thermalGap = new PROPERTY( _HKI( "Thermal Relief Gap" ), &ZONE::SetThermalReliefGap, &ZONE::GetThermalReliefGap, PROPERTY_DISPLAY::PT_SIZE ); thermalGap->SetAvailableFunc( isCopperZone ); thermalGap->SetValidator( PROPERTY_VALIDATORS::PositiveIntValidator ); auto thermalSpokeWidth = new PROPERTY( _HKI( "Thermal Relief Spoke Width" ), &ZONE::SetThermalReliefSpokeWidth, &ZONE::GetThermalReliefSpokeWidth, PROPERTY_DISPLAY::PT_SIZE ); thermalSpokeWidth->SetAvailableFunc( isCopperZone ); thermalSpokeWidth->SetValidator( atLeastMinWidthValidator ); propMgr.AddProperty( clearanceOverride, groupElectrical ); propMgr.AddProperty( minWidth, groupElectrical ); propMgr.AddProperty( padConnections, groupElectrical ); propMgr.AddProperty( thermalGap, groupElectrical ); propMgr.AddProperty( thermalSpokeWidth, groupElectrical ); } } _ZONE_DESC; IMPLEMENT_ENUM_TO_WXANY( ZONE_CONNECTION ) IMPLEMENT_ENUM_TO_WXANY( ZONE_FILL_MODE ) IMPLEMENT_ENUM_TO_WXANY( ISLAND_REMOVAL_MODE )