/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015-2016 Mario Luzeiro * Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file cring2d.cpp * @brief */ #include "cring2d.h" #include "../../../3d_fastmath.h" #include CRING2D::CRING2D( const SFVEC2F& aCenter, float aInnerRadius, float aOuterRadius, const BOARD_ITEM& aBoardItem ) : COBJECT2D( OBJECT2D_TYPE::RING, aBoardItem ) { wxASSERT( aInnerRadius < aOuterRadius ); m_center = aCenter; m_inner_radius = aInnerRadius; m_outer_radius = aOuterRadius; m_inner_radius_squared = aInnerRadius * aInnerRadius; m_outer_radius_squared = aOuterRadius * aOuterRadius; m_bbox.Reset(); m_bbox.Set( m_center - SFVEC2F( aOuterRadius, aOuterRadius ), m_center + SFVEC2F( aOuterRadius, aOuterRadius ) ); m_bbox.ScaleNextUp(); m_centroid = m_bbox.GetCenter(); wxASSERT( m_bbox.IsInitialized() ); } bool CRING2D::Overlaps( const CBBOX2D &aBBox ) const { // NOT IMPLEMENTED return false; } bool CRING2D::Intersects( const CBBOX2D &aBBox ) const { // !TODO: check the inside for a great improvement return aBBox.Intersects( m_center, m_outer_radius_squared ); } bool CRING2D::Intersect( const RAYSEG2D &aSegRay, float *aOutT, SFVEC2F *aNormalOut ) const { // This code used directly from Steve Marschner's CS667 framework // http://cs665pd.googlecode.com/svn/trunk/photon/sphere.cpp // Compute some factors used in computation const float qx = (aSegRay.m_Start.x - m_center.x); const float qy = (aSegRay.m_Start.y - m_center.y); const float qd = qx * aSegRay.m_Dir.x + qy * aSegRay.m_Dir.y; const float qq = qx * qx + qy * qy; // solving the quadratic equation for t at the pts of intersection // dd*t^2 + (2*qd)*t + (qq-r^2) = 0 const float discriminantsqr = qd * qd - qq; const float discriminantsqr_outer = discriminantsqr + m_outer_radius_squared; // If the discriminant is less than zero, there is no intersection if( discriminantsqr_outer < FLT_EPSILON ) return false; // Otherwise check and make sure that the intersections occur on the ray (t // > 0) and return the closer one const float discriminant = sqrt( discriminantsqr_outer ); float t = (-qd - discriminant); if( (t > FLT_EPSILON) && (t < aSegRay.m_Length) ) { if( aNormalOut ) { SFVEC2F hitPoint = aSegRay.at( t ); *aNormalOut = (hitPoint - m_center) / m_outer_radius; } } else { const float discriminantsqr_inter = discriminantsqr + m_inner_radius_squared; if( discriminantsqr_inter > FLT_EPSILON ) { const float discriminant_inner = sqrt( discriminantsqr_inter ); const float t2_inner = (-qd + discriminant_inner); if( (t2_inner > FLT_EPSILON) && (t2_inner < aSegRay.m_Length) ) { t = t2_inner; if( aNormalOut ) { const SFVEC2F hitPoint = aSegRay.at( t2_inner ); *aNormalOut = (m_center - hitPoint) / m_inner_radius; } } else { return false; } } else { return false; } } wxASSERT( (t > 0.0f) && (t <= aSegRay.m_Length) ); // Convert the intersection to a normalized 0.0 .. 1.0 if( aOutT ) *aOutT = t / aSegRay.m_Length; return true; } INTERSECTION_RESULT CRING2D::IsBBoxInside( const CBBOX2D &aBBox ) const { /* if( !m_bbox.Overlaps( aBBox ) ) return INTERSECTION_RESULT::MISSES; SFVEC2F v[4]; v[0] = aBBox.Min() - m_center; v[1] = aBBox.Max() - m_center; v[2] = SFVEC2F( aBBox.Min().x, aBBox.Max().y ) - m_center; v[3] = SFVEC2F( aBBox.Max().x, aBBox.Min().y ) - m_center; float s[4]; s[0] = v[0].x * v[0].x + v[0].y * v[0].y; s[1] = v[1].x * v[1].x + v[1].y * v[1].y; s[2] = v[2].x * v[2].x + v[2].y * v[2].y; s[3] = v[3].x * v[3].x + v[3].y * v[3].y; bool isInside[4]; isInside[0] = s[0] <= m_radius_squared; isInside[1] = s[1] <= m_radius_squared; isInside[2] = s[2] <= m_radius_squared; isInside[3] = s[3] <= m_radius_squared; // Check if all points are inside the circle if( isInside[0] && isInside[1] && isInside[2] && isInside[3] ) return INTERSECTION_RESULT::FULL_INSIDE; // Check if any point is inside the circle if( isInside[0] || isInside[1] || isInside[2] || isInside[3] ) return INTERSECTION_RESULT::INTERSECTS; */ return INTERSECTION_RESULT::MISSES; } bool CRING2D::IsPointInside( const SFVEC2F &aPoint ) const { const SFVEC2F v = m_center - aPoint; const float dot = glm::dot( v, v ); if( (dot <= m_outer_radius_squared) && (dot >= m_inner_radius_squared) ) return true; return false; }