/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2007-2014 Jean-Pierre Charras jp.charras at wanadoo.fr * Copyright (C) 1992-2021 KiCad Developers, see change_log.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include "excellon_image.h" // Imported function extern const wxString GetPCBDefaultLayerName( LAYER_NUM aLayerNumber ); GBR_TO_PCB_EXPORTER::GBR_TO_PCB_EXPORTER( GERBVIEW_FRAME* aFrame, const wxString& aFileName ) { m_gerbview_frame = aFrame; m_pcb_file_name = aFileName; m_fp = NULL; m_pcbCopperLayersCount = 2; } GBR_TO_PCB_EXPORTER::~GBR_TO_PCB_EXPORTER() { } bool GBR_TO_PCB_EXPORTER::ExportPcb( const LAYER_NUM* aLayerLookUpTable, int aCopperLayers ) { LOCALE_IO toggle; // toggles on, then off, the C locale. m_fp = wxFopen( m_pcb_file_name, wxT( "wt" ) ); if( m_fp == NULL ) { wxString msg; msg.Printf( _( "Cannot create file \"%s\"" ), m_pcb_file_name ); DisplayError( m_gerbview_frame, msg ); return false; } m_pcbCopperLayersCount = aCopperLayers; writePcbHeader( aLayerLookUpTable ); // create an image of gerber data const int pcbCopperLayerMax = 31; GERBER_FILE_IMAGE_LIST* images = m_gerbview_frame->GetGerberLayout()->GetImagesList(); // First collect all the holes. We'll use these to generate pads, vias, etc. for( unsigned layer = 0; layer < images->ImagesMaxCount(); ++layer ) { EXCELLON_IMAGE* excellon = dynamic_cast( images->GetGbrImage( layer ) ); if( excellon == NULL ) // Layer not yet used or not a drill image continue; for( GERBER_DRAW_ITEM* gerb_item : excellon->GetItems() ) collect_hole( gerb_item ); } // Next: non copper layers: for( unsigned layer = 0; layer < images->ImagesMaxCount(); ++layer ) { GERBER_FILE_IMAGE* gerber = images->GetGbrImage( layer ); if( gerber == NULL ) // Graphic layer not yet used continue; LAYER_NUM pcb_layer_number = aLayerLookUpTable[layer]; if( !IsPcbLayer( pcb_layer_number ) ) continue; if( pcb_layer_number <= pcbCopperLayerMax ) // copper layer continue; for( GERBER_DRAW_ITEM* gerb_item : gerber->GetItems() ) export_non_copper_item( gerb_item, pcb_layer_number ); } // Copper layers for( unsigned layer = 0; layer < images->ImagesMaxCount(); ++layer ) { GERBER_FILE_IMAGE* gerber = images->GetGbrImage( layer ); if( gerber == NULL ) // Graphic layer not yet used continue; LAYER_NUM pcb_layer_number = aLayerLookUpTable[layer]; if( pcb_layer_number < 0 || pcb_layer_number > pcbCopperLayerMax ) continue; for( GERBER_DRAW_ITEM* gerb_item : gerber->GetItems() ) export_copper_item( gerb_item, pcb_layer_number ); } // Now write out the holes we collected earlier as vias for( const EXPORT_VIA& via : m_vias ) export_via( via ); fprintf( m_fp, ")\n" ); fclose( m_fp ); m_fp = NULL; return true; } void GBR_TO_PCB_EXPORTER::export_non_copper_item( const GERBER_DRAW_ITEM* aGbrItem, LAYER_NUM aLayer ) { // used when a D_CODE is not found. default D_CODE to draw a flashed item static D_CODE dummyD_CODE( 0 ); wxPoint seg_start = aGbrItem->m_Start; wxPoint seg_end = aGbrItem->m_End; D_CODE* d_codeDescr = aGbrItem->GetDcodeDescr(); SHAPE_POLY_SET polygon; if( d_codeDescr == NULL ) d_codeDescr = &dummyD_CODE; switch( aGbrItem->m_Shape ) { case GBR_POLYGON: writePcbPolygon( aGbrItem->m_Polygon, aLayer ); break; case GBR_SPOT_CIRCLE: { VECTOR2I center = aGbrItem->GetABPosition( seg_start ); int radius = d_codeDescr->m_Size.x / 2; writePcbFilledCircle( center, radius, aLayer ); } break; case GBR_SPOT_RECT: case GBR_SPOT_OVAL: case GBR_SPOT_POLY: case GBR_SPOT_MACRO: d_codeDescr->ConvertShapeToPolygon(); writePcbPolygon( d_codeDescr->m_Polygon, aLayer, aGbrItem->GetABPosition( seg_start ) ); break; case GBR_ARC: { double a = atan2( (double) ( aGbrItem->m_Start.y - aGbrItem->m_ArcCentre.y ), (double) ( aGbrItem->m_Start.x - aGbrItem->m_ArcCentre.x ) ); double b = atan2( (double) ( aGbrItem->m_End.y - aGbrItem->m_ArcCentre.y ), (double) ( aGbrItem->m_End.x - aGbrItem->m_ArcCentre.x ) ); double angle = RAD2DEG(b - a); seg_start = aGbrItem->m_ArcCentre; // Ensure arc orientation is CCW if( angle < 0 ) angle += 360.0; // Reverse Y axis: seg_start.y = -seg_start.y; seg_end.y = -seg_end.y; if( angle == 360.0 || angle == 0 ) { fprintf( m_fp, "(gr_circle (center %s %s) (end %s %s) (layer %s) (width %s))\n", Double2Str( MapToPcbUnits(seg_start.x) ).c_str(), Double2Str( MapToPcbUnits(seg_start.y) ).c_str(), Double2Str( MapToPcbUnits(seg_end.x) ).c_str(), Double2Str( MapToPcbUnits(seg_end.y) ).c_str(), TO_UTF8( GetPCBDefaultLayerName( aLayer ) ), Double2Str( MapToPcbUnits( aGbrItem->m_Size.x ) ).c_str() ); } else { fprintf( m_fp, "(gr_arc (start %s %s) (end %s %s) (angle %s) (layer %s) (width %s))\n", Double2Str( MapToPcbUnits(seg_start.x) ).c_str(), Double2Str( MapToPcbUnits(seg_start.y) ).c_str(), Double2Str( MapToPcbUnits(seg_end.x) ).c_str(), Double2Str( MapToPcbUnits(seg_end.y) ).c_str(), Double2Str( angle ).c_str(), TO_UTF8( GetPCBDefaultLayerName( aLayer ) ), Double2Str( MapToPcbUnits( aGbrItem->m_Size.x ) ).c_str() ); } } break; case GBR_CIRCLE: // Reverse Y axis: seg_start.y = -seg_start.y; seg_end.y = -seg_end.y; fprintf( m_fp, "(gr_circle (start %s %s) (end %s %s) (layer %s) (width %s))\n", Double2Str( MapToPcbUnits( seg_start.x ) ).c_str(), Double2Str( MapToPcbUnits( seg_start.y ) ).c_str(), Double2Str( MapToPcbUnits( seg_end.x ) ).c_str(), Double2Str( MapToPcbUnits( seg_end.y ) ).c_str(), TO_UTF8( GetPCBDefaultLayerName( aLayer ) ), Double2Str( MapToPcbUnits( aGbrItem->m_Size.x ) ).c_str() ); break; case GBR_SEGMENT: // Reverse Y axis: seg_start.y = -seg_start.y; seg_end.y = -seg_end.y; fprintf( m_fp, "(gr_line (start %s %s) (end %s %s) (layer %s) (width %s))\n", Double2Str( MapToPcbUnits( seg_start.x ) ).c_str(), Double2Str( MapToPcbUnits( seg_start.y ) ).c_str(), Double2Str( MapToPcbUnits( seg_end.x ) ).c_str(), Double2Str( MapToPcbUnits( seg_end.y ) ).c_str(), TO_UTF8( GetPCBDefaultLayerName( aLayer ) ), Double2Str( MapToPcbUnits( aGbrItem->m_Size.x ) ).c_str() ); break; } } /* * Many holes will be pads, but we have no way to create those without footprints, and creating * a footprint per pad is not really viable. * * So we use vias to mimic holes, with the loss of any hole shape (as we only have round holes * in vias at present). * * We start out with a via size minimally larger than the hole. We'll leave it this way if * the pad gets drawn as a copper polygon, or increase it to the proper size if it has a * circular, concentric copper flashing. */ void GBR_TO_PCB_EXPORTER::collect_hole( const GERBER_DRAW_ITEM* aGbrItem ) { int size = std::min( aGbrItem->m_Size.x, aGbrItem->m_Size.y ); m_vias.emplace_back( aGbrItem->m_Start, size + 1, size ); } void GBR_TO_PCB_EXPORTER::export_via( const EXPORT_VIA& aVia ) { wxPoint via_pos = aVia.m_Pos; // Reverse Y axis: via_pos.y = -via_pos.y; // Layers are Front to Back fprintf( m_fp, " (via (at %s %s) (size %s) (drill %s)", Double2Str( MapToPcbUnits( via_pos.x ) ).c_str(), Double2Str( MapToPcbUnits( via_pos.y ) ).c_str(), Double2Str( MapToPcbUnits( aVia.m_Size ) ).c_str(), Double2Str( MapToPcbUnits( aVia.m_Drill ) ).c_str() ); fprintf( m_fp, " (layers %s %s))\n", TO_UTF8( GetPCBDefaultLayerName( F_Cu ) ), TO_UTF8( GetPCBDefaultLayerName( B_Cu ) ) ); } void GBR_TO_PCB_EXPORTER::export_copper_item( const GERBER_DRAW_ITEM* aGbrItem, LAYER_NUM aLayer ) { switch( aGbrItem->m_Shape ) { case GBR_SPOT_CIRCLE: case GBR_SPOT_RECT: case GBR_SPOT_OVAL: export_flashed_copper_item( aGbrItem, aLayer ); break; case GBR_ARC: export_segarc_copper_item( aGbrItem, aLayer ); break; case GBR_POLYGON: // One can use a polygon or a zone to output a Gerber region. // none are perfect. // The current way is use a polygon, as the zone export // is experimental and only for tests. #if 1 writePcbPolygon( aGbrItem->m_Polygon, aLayer ); #else // Only for tests: writePcbZoneItem( aGbrItem, aLayer ); #endif break; default: export_segline_copper_item( aGbrItem, aLayer ); break; } } void GBR_TO_PCB_EXPORTER::export_segline_copper_item( const GERBER_DRAW_ITEM* aGbrItem, LAYER_NUM aLayer ) { wxPoint seg_start, seg_end; seg_start = aGbrItem->m_Start; seg_end = aGbrItem->m_End; // Reverse Y axis: seg_start.y = -seg_start.y; seg_end.y = -seg_end.y; writeCopperLineItem( seg_start, seg_end, aGbrItem->m_Size.x, aLayer ); } void GBR_TO_PCB_EXPORTER::writeCopperLineItem( const wxPoint& aStart, const wxPoint& aEnd, int aWidth, LAYER_NUM aLayer ) { fprintf( m_fp, "(segment (start %s %s) (end %s %s) (width %s) (layer %s) (net 0))\n", Double2Str( MapToPcbUnits(aStart.x) ).c_str(), Double2Str( MapToPcbUnits(aStart.y) ).c_str(), Double2Str( MapToPcbUnits(aEnd.x) ).c_str(), Double2Str( MapToPcbUnits(aEnd.y) ).c_str(), Double2Str( MapToPcbUnits( aWidth ) ).c_str(), TO_UTF8( GetPCBDefaultLayerName( aLayer ) ) ); } void GBR_TO_PCB_EXPORTER::export_segarc_copper_item( const GERBER_DRAW_ITEM* aGbrItem, LAYER_NUM aLayer ) { double a = atan2( (double) ( aGbrItem->m_Start.y - aGbrItem->m_ArcCentre.y ), (double) ( aGbrItem->m_Start.x - aGbrItem->m_ArcCentre.x ) ); double b = atan2( (double) ( aGbrItem->m_End.y - aGbrItem->m_ArcCentre.y ), (double) ( aGbrItem->m_End.x - aGbrItem->m_ArcCentre.x ) ); wxPoint start = aGbrItem->m_Start; wxPoint end = aGbrItem->m_End; /* Because Pcbnew does not know arcs in tracks, * approximate arc by segments (SEG_COUNT__CIRCLE segment per 360 deg) * The arc is drawn anticlockwise from the start point to the end point. */ #define SEG_COUNT_CIRCLE 16 #define DELTA_ANGLE 2 * M_PI / SEG_COUNT_CIRCLE // calculate the number of segments from a to b. // we want CNT_PER_360 segments fo a circle if( a > b ) b += 2 * M_PI; wxPoint curr_start = start; wxPoint seg_start, seg_end; int ii = 1; for( double rot = a; rot < (b - DELTA_ANGLE); rot += DELTA_ANGLE, ii++ ) { seg_start = curr_start; wxPoint curr_end = start; RotatePoint( &curr_end, aGbrItem->m_ArcCentre, -RAD2DECIDEG( DELTA_ANGLE * ii ) ); seg_end = curr_end; // Reverse Y axis: seg_start.y = -seg_start.y; seg_end.y = -seg_end.y; writeCopperLineItem( seg_start, seg_end, aGbrItem->m_Size.x, aLayer ); curr_start = curr_end; } if( end != curr_start ) { seg_start = curr_start; seg_end = end; // Reverse Y axis: seg_start.y = -seg_start.y; seg_end.y = -seg_end.y; writeCopperLineItem( seg_start, seg_end, aGbrItem->m_Size.x, aLayer ); } } /* * Flashed items are usually pads or vias. Pads are problematic because we have no way to * represent one in Pcbnew outside of a footprint (and creating a footprint per pad isn't really * viable). * If we've already created a via from a hole, and the flashed copper item is a simple circle * then we'll enlarge the via to the proper size. Otherwise we create a copper polygon to * represent the flashed item (which is presumably a pad). */ void GBR_TO_PCB_EXPORTER::export_flashed_copper_item( const GERBER_DRAW_ITEM* aGbrItem, LAYER_NUM aLayer ) { static D_CODE flashed_item_D_CODE( 0 ); D_CODE* d_codeDescr = aGbrItem->GetDcodeDescr(); SHAPE_POLY_SET polygon; if( d_codeDescr == NULL ) d_codeDescr = &flashed_item_D_CODE; if( aGbrItem->m_Shape == GBR_SPOT_CIRCLE ) { // See if there's a via that we can enlarge to fit this flashed item for( EXPORT_VIA& via : m_vias ) { if( via.m_Pos == aGbrItem->m_Start ) { via.m_Size = std::max( via.m_Size, aGbrItem->m_Size.x ); return; } } } wxPoint offset = aGbrItem->GetABPosition( aGbrItem->m_Start ); if( aGbrItem->m_Shape == GBR_SPOT_CIRCLE ) // export it as filled circle { VECTOR2I center = offset; int radius = d_codeDescr->m_Size.x / 2; writePcbFilledCircle( center, radius, aLayer ); return; } d_codeDescr->ConvertShapeToPolygon(); writePcbPolygon( d_codeDescr->m_Polygon, aLayer, offset ); } void GBR_TO_PCB_EXPORTER::writePcbFilledCircle( const VECTOR2I& aCenterPosition, int aRadius, LAYER_NUM aLayer ) { fprintf( m_fp, "(gr_circle (center %s %s) (end %s %s)", Double2Str( MapToPcbUnits( aCenterPosition.x ) ).c_str(), Double2Str( MapToPcbUnits( aCenterPosition.y ) ).c_str(), Double2Str( MapToPcbUnits( aCenterPosition.x + aRadius ) ).c_str(), Double2Str( MapToPcbUnits( aCenterPosition.y ) ).c_str() ); fprintf( m_fp, "(layer %s) (width 0) (fill solid) )\n", TO_UTF8( GetPCBDefaultLayerName( aLayer ) ) ); } void GBR_TO_PCB_EXPORTER::writePcbHeader( const LAYER_NUM* aLayerLookUpTable ) { fprintf( m_fp, "(kicad_pcb (version 4) (generator gerbview)\n\n" ); // Write layers section fprintf( m_fp, " (layers \n" ); for( int ii = 0; ii < m_pcbCopperLayersCount; ii++ ) { int id = ii; if( ii == m_pcbCopperLayersCount-1) id = B_Cu; fprintf( m_fp, " (%d %s signal)\n", id, TO_UTF8( GetPCBDefaultLayerName( id ) ) ); } for( int ii = B_Adhes; ii < PCB_LAYER_ID_COUNT; ii++ ) { if( GetPCBDefaultLayerName( ii ).IsEmpty() ) // Layer not available for export continue; fprintf( m_fp, " (%d %s user)\n", ii, TO_UTF8( GetPCBDefaultLayerName( ii ) ) ); } fprintf( m_fp, " )\n\n" ); } void GBR_TO_PCB_EXPORTER::writePcbPolygon( const SHAPE_POLY_SET& aPolys, LAYER_NUM aLayer, const wxPoint& aOffset ) { SHAPE_POLY_SET polys = aPolys; // Cleanup the polygon polys.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); // Ensure the polygon is valid: if( polys.OutlineCount() == 0 ) return; polys.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); SHAPE_LINE_CHAIN& poly = polys.Outline( 0 ); fprintf( m_fp, "(gr_poly (pts " ); #define MAX_COORD_CNT 4 int jj = MAX_COORD_CNT; int cnt_max = poly.PointCount() -1; // Do not generate last corner, if it is the same point as the first point: if( poly.CPoint( 0 ) == poly.CPoint( cnt_max ) ) cnt_max--; for( int ii = 0; ii <= cnt_max; ii++ ) { if( --jj == 0 ) { jj = MAX_COORD_CNT; fprintf( m_fp, "\n" ); } fprintf( m_fp, " (xy %s %s)", Double2Str( MapToPcbUnits( poly.CPoint( ii ).x + aOffset.x ) ).c_str(), Double2Str( MapToPcbUnits( -poly.CPoint( ii ).y + aOffset.y ) ).c_str() ); } fprintf( m_fp, ")" ); if( jj != MAX_COORD_CNT ) fprintf( m_fp, "\n" ); fprintf( m_fp, "(layer %s) (width 0) )\n", TO_UTF8( GetPCBDefaultLayerName( aLayer ) ) ); } void GBR_TO_PCB_EXPORTER::writePcbZoneItem( const GERBER_DRAW_ITEM* aGbrItem, LAYER_NUM aLayer ) { SHAPE_POLY_SET polys = aGbrItem->m_Polygon; polys.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); if( polys.OutlineCount() == 0 ) return; fprintf( m_fp, "(zone (net 0) (net_name \"\") (layer %s) (tstamp 0000000) (hatch edge 0.508)\n", TO_UTF8( GetPCBDefaultLayerName( aLayer ) ) ); fprintf( m_fp, " (connect_pads (clearance 0.0))\n" ); fprintf( m_fp, " (min_thickness 0.1) (filled_areas_thickness no)\n" " (fill (thermal_gap 0.3) (thermal_bridge_width 0.3))\n" ); // Now, write the zone outlines with holes. // first polygon is the main outline, next are holes // One cannot know the initial zone outline. // However most of (if not all) holes are just items with clearance, // not really a hole in the initial zone outline. // So we build a zone outline only with no hole. fprintf( m_fp, " (polygon\n (pts" ); SHAPE_LINE_CHAIN& poly = polys.Outline( 0 ); #define MAX_COORD_CNT 4 int jj = MAX_COORD_CNT; int cnt_max = poly.PointCount() -1; // Do not generate last corner, if it is the same point as the first point: if( poly.CPoint( 0 ) == poly.CPoint( cnt_max ) ) cnt_max--; for( int ii = 0; ii <= cnt_max; ii++ ) { if( --jj == 0 ) { jj = MAX_COORD_CNT; fprintf( m_fp, "\n " ); } fprintf( m_fp, " (xy %s %s)", Double2Str( MapToPcbUnits( poly.CPoint( ii ).x ) ).c_str(), Double2Str( MapToPcbUnits( -poly.CPoint( ii ).y ) ).c_str() ); } fprintf( m_fp, ")\n" ); fprintf( m_fp, " )\n)\n" ); }