/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018-2021 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifndef TRIGO_H #define TRIGO_H /** * @file trigo.h */ #include #include #include // For wxPoint /** * Test if \a aTestPoint is on line defined by \a aSegStart and \a aSegEnd. * * This function is faster than #TestSegmentHit() because \a aTestPoint should be exactly on * the line. This works fine only for H, V and 45 degree line segments. * * @param aSegStart The first point of the line segment. * @param aSegEnd The second point of the line segment. * @param aTestPoint The point to test. * * @return true if the point is on the line segment. */ bool IsPointOnSegment( const wxPoint& aSegStart, const wxPoint& aSegEnd, const wxPoint& aTestPoint ); /** * Test if two lines intersect. * * @param a_p1_l1 The first point of the first line. * @param a_p2_l1 The second point of the first line. * @param a_p1_l2 The first point of the second line. * @param a_p2_l2 The second point of the second line. * @param aIntersectionPoint is filled with the intersection point if it exists * @return bool - true if the two segments defined by four points intersect. * (i.e. if the 2 segments have at least a common point) */ bool SegmentIntersectsSegment( const wxPoint& a_p1_l1, const wxPoint& a_p2_l1, const wxPoint& a_p1_l2, const wxPoint& a_p2_l2, wxPoint* aIntersectionPoint = nullptr ); /* * Calculate the new point of coord coord pX, pY, * for a rotation center 0, 0, and angle in (1 / 10 degree) */ void RotatePoint( int *pX, int *pY, double angle ); /* * Calculate the new point of coord coord pX, pY, * for a rotation center cx, cy, and angle in (1 / 10 degree) */ void RotatePoint( int *pX, int *pY, int cx, int cy, double angle ); /* * Calculate the new coord point point for a rotation angle in (1 / 10 degree). */ inline void RotatePoint( wxPoint* point, double angle ) { RotatePoint( &point->x, &point->y, angle ); } inline void RotatePoint( VECTOR2I& point, double angle ) { RotatePoint( &point.x, &point.y, angle ); } void RotatePoint( VECTOR2I& point, const VECTOR2I& centre, double angle ); /* * Calculate the new coord point point for a center rotation center and angle in (1 / 10 degree). */ void RotatePoint( wxPoint *point, const wxPoint & centre, double angle ); void RotatePoint( double *pX, double *pY, double angle ); void RotatePoint( double *pX, double *pY, double cx, double cy, double angle ); /** * Determine the center of an arc or circle given three points on its circumference. * * @param aStart The starting point of the circle (equivalent to aEnd) * @param aMid The point on the arc, half-way between aStart and aEnd * @param aEnd The ending point of the circle (equivalent to aStart) * @return The center of the circle */ const VECTOR2I CalcArcCenter( const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd ); const VECTOR2D CalcArcCenter( const VECTOR2D& aStart, const VECTOR2D& aMid, const VECTOR2D& aEnd ); const wxPoint CalcArcCenter( const wxPoint& aStart, const wxPoint& aMid, const wxPoint& aEnd ); const VECTOR2D CalcArcCenter( const VECTOR2D& aStart, const VECTOR2D& aEnd, double aAngle ); /** * Return the subtended angle for a given arc. */ double CalcArcAngle( const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd ); /** * Return the middle point of an arc, half-way between aStart and aEnd. There are two possible * solutions which can be found by toggling aMinArcAngle. The behaviour is undefined for * semicircles (i.e. 180 degree arcs). * * @param aStart The starting point of the arc (for calculating the radius) * @param aEnd The end point of the arc (for determining the arc angle) * @param aCenter The center point of the arc * @param aMinArcAngle If true, returns the point that results in the smallest arc angle. * @return The middle point of the arc */ const VECTOR2I CalcArcMid( const VECTOR2I& aStart, const VECTOR2I& aEnd, const VECTOR2I& aCenter, bool aMinArcAngle = true ); /* Return the arc tangent of 0.1 degrees coord vector dx, dy * between -1800 and 1800 * Equivalent to atan2 (but faster for calculations if * the angle is 0 to -1800, or + - 900) * Lorenzo: In fact usually atan2 already has to do these optimizations * (due to the discontinuity in tan) but this function also returns * in decidegrees instead of radians, so it's handier */ double ArcTangente( int dy, int dx ); //! @brief Euclidean norm of a 2D vector //! @param vector Two-dimensional vector //! @return Euclidean norm of the vector inline double EuclideanNorm( const wxPoint &vector ) { // this is working with doubles return hypot( vector.x, vector.y ); } inline double EuclideanNorm( const wxSize &vector ) { // this is working with doubles, too return hypot( vector.x, vector.y ); } //! @brief Compute the distance between a line and a reference point //! Reference: http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html //! @param linePointA Point on line //! @param linePointB Point on line //! @param referencePoint Reference point inline double DistanceLinePoint( const wxPoint& linePointA, const wxPoint& linePointB, const wxPoint& referencePoint ) { // Some of the multiple double casts are redundant. However in the previous // definition the cast was (implicitly) done too late, just before // the division (EuclideanNorm gives a double so from int it would // be promoted); that means that the whole expression were // vulnerable to overflow during int multiplications return fabs( ( static_cast( linePointB.x - linePointA.x ) * static_cast( linePointA.y - referencePoint.y ) - static_cast( linePointA.x - referencePoint.x ) * static_cast( linePointB.y - linePointA.y) ) / EuclideanNorm( linePointB - linePointA ) ); } //! @brief Test, if two points are near each other //! @param pointA First point //! @param pointB Second point //! @param threshold The maximum distance //! @return True or false inline bool HitTestPoints( const wxPoint& pointA, const wxPoint& pointB, double threshold ) { wxPoint vectorAB = pointB - pointA; // Compare the distances squared. The double is needed to avoid // overflow during int multiplication double sqdistance = (double)vectorAB.x * vectorAB.x + (double)vectorAB.y * vectorAB.y; return sqdistance < threshold * threshold; } //! @brief Determine the cross product //! @param vectorA Two-dimensional vector //! @param vectorB Two-dimensional vector inline double CrossProduct( const wxPoint& vectorA, const wxPoint& vectorB ) { // As before the cast is to avoid int overflow return (double)vectorA.x * vectorB.y - (double)vectorA.y * vectorB.x; } /** * Test if \a aRefPoint is with \a aDistance on the line defined by \a aStart and \a aEnd.. * * @param aRefPoint = reference point to test * @param aStart is the first end-point of the line segment * @param aEnd is the second end-point of the line segment * @param aDist = maximum distance for hit */ bool TestSegmentHit( const wxPoint& aRefPoint, const wxPoint& aStart, const wxPoint& aEnd, int aDist ); /** * Return the length of a line segment defined by \a aPointA and \a aPointB. * * See also EuclideanNorm and Distance for the single vector or four scalar versions. * * @return Length of a line (as double) */ inline double GetLineLength( const wxPoint& aPointA, const wxPoint& aPointB ) { // Implicitly casted to double return hypot( aPointA.x - aPointB.x, aPointA.y - aPointB.y ); } // These are the usual degrees <-> radians conversion routines inline double DEG2RAD( double deg ) { return deg * M_PI / 180.0; } inline double RAD2DEG( double rad ) { return rad * 180.0 / M_PI; } // These are the same *but* work with the internal 'decidegrees' unit inline double DECIDEG2RAD( double deg ) { return deg * M_PI / 1800.0; } inline double RAD2DECIDEG( double rad ) { return rad * 1800.0 / M_PI; } /* These are templated over T (and not simply double) because Eeschema is still using int for angles in some place */ /// Normalize angle to be >=-360.0 and <= 360.0 /// Angle can be equal to -360 or +360 template inline T NormalizeAngle360Max( T Angle ) { while( Angle < -3600 ) Angle += 3600; while( Angle > 3600 ) Angle -= 3600; return Angle; } /// Normalize angle to be > -360.0 and < 360.0 /// Angle equal to -360 or +360 are set to 0 template inline T NormalizeAngle360Min( T Angle ) { while( Angle <= -3600 ) Angle += 3600; while( Angle >= 3600 ) Angle -= 3600; return Angle; } /// Normalize angle to be in the 0.0 .. -360.0 range: angle is in 1/10 degrees. template inline T NormalizeAngleNeg( T Angle ) { while( Angle <= -3600 ) Angle += 3600; while( Angle > 0 ) Angle -= 3600; return Angle; } /// Normalize angle to be in the 0.0 .. 360.0 range: angle is in 1/10 degrees. template inline T NormalizeAnglePos( T Angle ) { while( Angle < 0 ) Angle += 3600; while( Angle >= 3600 ) Angle -= 3600; return Angle; } template inline void NORMALIZE_ANGLE_POS( T& Angle ) { Angle = NormalizeAnglePos( Angle ); } /// Normalize angle to be in the 0.0 .. 360.0 range: angle is in degrees. inline double NormalizeAngleDegreesPos( double Angle ) { while( Angle < 0 ) Angle += 360.0; while( Angle >= 360.0 ) Angle -= 360.0; return Angle; } inline void NORMALIZE_ANGLE_DEGREES_POS( double& Angle ) { Angle = NormalizeAngleDegreesPos( Angle ); } inline double NormalizeAngleRadiansPos( double Angle ) { while( Angle < 0 ) Angle += (2 * M_PI ); while( Angle >= ( 2 * M_PI ) ) Angle -= ( 2 * M_PI ); return Angle; } /// Normalize angle to be aMin < angle <= aMax angle is in degrees. inline double NormalizeAngleDegrees( double Angle, double aMin, double aMax ) { while( Angle < aMin ) Angle += 360.0; while( Angle >= aMax ) Angle -= 360.0; return Angle; } /// Add two angles (keeping the result normalized). T2 is here // because most of the time it's an int (and templates don't promote in // that way) template inline T AddAngles( T a1, T2 a2 ) { a1 += a2; NORMALIZE_ANGLE_POS( a1 ); return a1; } template inline T NegateAndNormalizeAnglePos( T Angle ) { Angle = -Angle; while( Angle < 0 ) Angle += 3600; while( Angle >= 3600 ) Angle -= 3600; return Angle; } template inline void NEGATE_AND_NORMALIZE_ANGLE_POS( T& Angle ) { Angle = NegateAndNormalizeAnglePos( Angle ); } /// Normalize angle to be in the -90.0 .. 90.0 range template inline T NormalizeAngle90( T Angle ) { while( Angle < -900 ) Angle += 1800; while( Angle > 900 ) Angle -= 1800; return Angle; } template inline void NORMALIZE_ANGLE_90( T& Angle ) { Angle = NormalizeAngle90( Angle ); } /// Normalize angle to be in the -180.0 .. 180.0 range template inline T NormalizeAngle180( T Angle ) { while( Angle <= -1800 ) Angle += 3600; while( Angle > 1800 ) Angle -= 3600; return Angle; } template inline void NORMALIZE_ANGLE_180( T& Angle ) { Angle = NormalizeAngle180( Angle ); } /** * Test if an arc from \a aStartAngle to \a aEndAngle crosses the positive X axis (0 degrees). * * Testing is performed in the quadrant 1 to quadrant 4 direction (counter-clockwise). * * @param aStartAngle The arc start angle in degrees. * @param aEndAngle The arc end angle in degrees. */ inline bool InterceptsPositiveX( double aStartAngle, double aEndAngle ) { double end = aEndAngle; if( aStartAngle > aEndAngle ) end += 360.0; return aStartAngle < 360.0 && end > 360.0; } /** * Test if an arc from \a aStartAngle to \a aEndAngle crosses the negative X axis (180 degrees). * * Testing is performed in the quadrant 1 to quadrant 4 direction (counter-clockwise). * * @param aStartAngle The arc start angle in degrees. * @param aEndAngle The arc end angle in degrees. */ inline bool InterceptsNegativeX( double aStartAngle, double aEndAngle ) { double end = aEndAngle; if( aStartAngle > aEndAngle ) end += 360.0; return aStartAngle < 180.0 && end > 180.0; } /** * Circle generation utility: computes r * sin(a) * Where a is in decidegrees, not in radians. */ inline double sindecideg( double r, double a ) { return r * sin( DECIDEG2RAD( a ) ); } /** * Circle generation utility: computes r * cos(a) * Where a is in decidegrees, not in radians. */ inline double cosdecideg( double r, double a ) { return r * cos( DECIDEG2RAD( a ) ); } #endif