/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2004-2020 KiCad Developers, see AUTHORS.txt for contributors. * Copyright (C) 2019 CERN * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include // for KiROUND #include #include #include #include #include #include // Helper function static inline wxPoint twoPointVector( const wxPoint &startPoint, const wxPoint &endPoint ) { return endPoint - startPoint; } LIB_ARC::LIB_ARC( LIB_PART* aParent ) : LIB_ITEM( LIB_ARC_T, aParent ) { m_Radius = 0; m_t1 = 0; m_t2 = 0; m_Width = 0; m_fill = FILL_TYPE::NO_FILL; m_isFillable = true; m_editState = 0; } bool LIB_ARC::HitTest( const wxPoint& aRefPoint, int aAccuracy ) const { int mindist = std::max( aAccuracy + GetPenWidth() / 2, Mils2iu( MINIMUM_SELECTION_DISTANCE ) ); wxPoint relativePosition = aRefPoint; relativePosition.y = -relativePosition.y; // reverse Y axis int distance = KiROUND( GetLineLength( m_Pos, relativePosition ) ); if( abs( distance - m_Radius ) > mindist ) return false; // We are on the circle, ensure we are only on the arc, i.e. between // m_ArcStart and m_ArcEnd wxPoint startEndVector = twoPointVector( m_ArcStart, m_ArcEnd ); wxPoint startRelativePositionVector = twoPointVector( m_ArcStart, relativePosition ); wxPoint centerStartVector = twoPointVector( m_Pos, m_ArcStart ); wxPoint centerEndVector = twoPointVector( m_Pos, m_ArcEnd ); wxPoint centerRelativePositionVector = twoPointVector( m_Pos, relativePosition ); // Compute the cross product to check if the point is in the sector double crossProductStart = CrossProduct( centerStartVector, centerRelativePositionVector ); double crossProductEnd = CrossProduct( centerEndVector, centerRelativePositionVector ); // The cross products need to be exchanged, depending on which side the center point // relative to the start point to end point vector lies if( CrossProduct( startEndVector, startRelativePositionVector ) < 0 ) { std::swap( crossProductStart, crossProductEnd ); } // When the cross products have a different sign, the point lies in sector // also check, if the reference is near start or end point return HitTestPoints( m_ArcStart, relativePosition, MINIMUM_SELECTION_DISTANCE ) || HitTestPoints( m_ArcEnd, relativePosition, MINIMUM_SELECTION_DISTANCE ) || ( crossProductStart <= 0 && crossProductEnd >= 0 ); } bool LIB_ARC::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const { if( m_flags & (STRUCT_DELETED | SKIP_STRUCT ) ) return false; wxPoint center = DefaultTransform.TransformCoordinate( GetPosition() ); int radius = GetRadius(); int lineWidth = GetWidth(); EDA_RECT sel = aRect ; if ( aAccuracy ) sel.Inflate( aAccuracy ); if( aContained ) return sel.Contains( GetBoundingBox() ); EDA_RECT arcRect = GetBoundingBox().Common( sel ); /* All following tests must pass: * 1. Rectangle must intersect arc BoundingBox * 2. Rectangle must cross the outside of the arc */ return arcRect.Intersects( sel ) && arcRect.IntersectsCircleEdge( center, radius, lineWidth ); } EDA_ITEM* LIB_ARC::Clone() const { return new LIB_ARC( *this ); } int LIB_ARC::compare( const LIB_ITEM& aOther, LIB_ITEM::COMPARE_FLAGS aCompareFlags ) const { wxASSERT( aOther.Type() == LIB_ARC_T ); int retv = LIB_ITEM::compare( aOther ); if( retv ) return retv; const LIB_ARC* tmp = ( LIB_ARC* ) &aOther; if( m_Pos.x != tmp->m_Pos.x ) return m_Pos.x - tmp->m_Pos.x; if( m_Pos.y != tmp->m_Pos.y ) return m_Pos.y - tmp->m_Pos.y; if( m_t1 != tmp->m_t1 ) return m_t1 - tmp->m_t1; if( m_t2 != tmp->m_t2 ) return m_t2 - tmp->m_t2; return 0; } void LIB_ARC::Offset( const wxPoint& aOffset ) { m_Pos += aOffset; m_ArcStart += aOffset; m_ArcEnd += aOffset; } void LIB_ARC::MoveTo( const wxPoint& aPosition ) { wxPoint offset = aPosition - m_Pos; m_Pos = aPosition; m_ArcStart += offset; m_ArcEnd += offset; } void LIB_ARC::MirrorHorizontal( const wxPoint& aCenter ) { m_Pos.x -= aCenter.x; m_Pos.x *= -1; m_Pos.x += aCenter.x; m_ArcStart.x -= aCenter.x; m_ArcStart.x *= -1; m_ArcStart.x += aCenter.x; m_ArcEnd.x -= aCenter.x; m_ArcEnd.x *= -1; m_ArcEnd.x += aCenter.x; std::swap( m_ArcStart, m_ArcEnd ); std::swap( m_t1, m_t2 ); m_t1 = 1800 - m_t1; m_t2 = 1800 - m_t2; if( m_t1 > 3600 || m_t2 > 3600 ) { m_t1 -= 3600; m_t2 -= 3600; } else if( m_t1 < -3600 || m_t2 < -3600 ) { m_t1 += 3600; m_t2 += 3600; } } void LIB_ARC::MirrorVertical( const wxPoint& aCenter ) { m_Pos.y -= aCenter.y; m_Pos.y *= -1; m_Pos.y += aCenter.y; m_ArcStart.y -= aCenter.y; m_ArcStart.y *= -1; m_ArcStart.y += aCenter.y; m_ArcEnd.y -= aCenter.y; m_ArcEnd.y *= -1; m_ArcEnd.y += aCenter.y; std::swap( m_ArcStart, m_ArcEnd ); std::swap( m_t1, m_t2 ); m_t1 = - m_t1; m_t2 = - m_t2; if( m_t1 > 3600 || m_t2 > 3600 ) { m_t1 -= 3600; m_t2 -= 3600; } else if( m_t1 < -3600 || m_t2 < -3600 ) { m_t1 += 3600; m_t2 += 3600; } } void LIB_ARC::Rotate( const wxPoint& aCenter, bool aRotateCCW ) { int rot_angle = aRotateCCW ? -900 : 900; RotatePoint( &m_Pos, aCenter, rot_angle ); RotatePoint( &m_ArcStart, aCenter, rot_angle ); RotatePoint( &m_ArcEnd, aCenter, rot_angle ); m_t1 -= rot_angle; m_t2 -= rot_angle; if( m_t1 > 3600 || m_t2 > 3600 ) { m_t1 -= 3600; m_t2 -= 3600; } else if( m_t1 < -3600 || m_t2 < -3600 ) { m_t1 += 3600; m_t2 += 3600; } } void LIB_ARC::Plot( PLOTTER* aPlotter, const wxPoint& aOffset, bool aFill, const TRANSFORM& aTransform ) const { wxASSERT( aPlotter != NULL ); int t1 = m_t1; int t2 = m_t2; wxPoint pos = aTransform.TransformCoordinate( m_Pos ) + aOffset; aTransform.MapAngles( &t1, &t2 ); if( aFill && m_fill == FILL_TYPE::FILLED_WITH_BG_BODYCOLOR ) { aPlotter->SetColor( aPlotter->RenderSettings()->GetLayerColor( LAYER_DEVICE_BACKGROUND ) ); aPlotter->Arc( pos, -t2, -t1, m_Radius, FILL_TYPE::FILLED_WITH_BG_BODYCOLOR, 0 ); } bool already_filled = m_fill == FILL_TYPE::FILLED_WITH_BG_BODYCOLOR; int pen_size = GetPenWidth(); if( !already_filled || pen_size > 0 ) { pen_size = std::max( pen_size, aPlotter->RenderSettings()->GetMinPenWidth() ); aPlotter->SetColor( aPlotter->RenderSettings()->GetLayerColor( LAYER_DEVICE ) ); aPlotter->Arc( pos, -t2, -t1, m_Radius, already_filled ? FILL_TYPE::NO_FILL : m_fill, pen_size ); } } int LIB_ARC::GetPenWidth() const { // Historically 0 meant "default width" and negative numbers meant "don't stroke". if( m_Width < 0 && GetFillMode() != FILL_TYPE::NO_FILL ) return 0; else return std::max( m_Width, 1 ); } void LIB_ARC::print( const RENDER_SETTINGS* aSettings, const wxPoint& aOffset, void* aData, const TRANSFORM& aTransform ) { bool forceNoFill = static_cast( aData ); int penWidth = GetPenWidth(); if( forceNoFill && m_fill != FILL_TYPE::NO_FILL && penWidth == 0 ) return; wxDC* DC = aSettings->GetPrintDC(); wxPoint pos1, pos2, posc; COLOR4D color = aSettings->GetLayerColor( LAYER_DEVICE ); pos1 = aTransform.TransformCoordinate( m_ArcEnd ) + aOffset; pos2 = aTransform.TransformCoordinate( m_ArcStart ) + aOffset; posc = aTransform.TransformCoordinate( m_Pos ) + aOffset; int pt1 = m_t1; int pt2 = m_t2; bool swap = aTransform.MapAngles( &pt1, &pt2 ); if( swap ) { std::swap( pos1.x, pos2.x ); std::swap( pos1.y, pos2.y ); } if( forceNoFill || m_fill == FILL_TYPE::NO_FILL ) { penWidth = std::max( penWidth, aSettings->GetDefaultPenWidth() ); GRArc1( nullptr, DC, pos1.x, pos1.y, pos2.x, pos2.y, posc.x, posc.y, penWidth, color ); } else { if( m_fill == FILL_TYPE::FILLED_WITH_BG_BODYCOLOR ) color = aSettings->GetLayerColor( LAYER_DEVICE_BACKGROUND ); GRFilledArc( nullptr, DC, posc.x, posc.y, pt1, pt2, m_Radius, penWidth, color, color ); } } const EDA_RECT LIB_ARC::GetBoundingBox() const { int minX, minY, maxX, maxY, angleStart, angleEnd; EDA_RECT rect; wxPoint nullPoint, startPos, endPos, centerPos; wxPoint normStart = m_ArcStart - m_Pos; wxPoint normEnd = m_ArcEnd - m_Pos; if( ( normStart == nullPoint ) || ( normEnd == nullPoint ) || ( m_Radius == 0 ) ) return rect; endPos = DefaultTransform.TransformCoordinate( m_ArcEnd ); startPos = DefaultTransform.TransformCoordinate( m_ArcStart ); centerPos = DefaultTransform.TransformCoordinate( m_Pos ); angleStart = m_t1; angleEnd = m_t2; if( DefaultTransform.MapAngles( &angleStart, &angleEnd ) ) { std::swap( endPos.x, startPos.x ); std::swap( endPos.y, startPos.y ); } /* Start with the start and end point of the arc. */ minX = std::min( startPos.x, endPos.x ); minY = std::min( startPos.y, endPos.y ); maxX = std::max( startPos.x, endPos.x ); maxY = std::max( startPos.y, endPos.y ); /* Zero degrees is a special case. */ if( angleStart == 0 ) maxX = centerPos.x + m_Radius; /* Arc end angle wrapped passed 360. */ if( angleStart > angleEnd ) angleEnd += 3600; if( angleStart <= 900 && angleEnd >= 900 ) /* 90 deg */ maxY = centerPos.y + m_Radius; if( angleStart <= 1800 && angleEnd >= 1800 ) /* 180 deg */ minX = centerPos.x - m_Radius; if( angleStart <= 2700 && angleEnd >= 2700 ) /* 270 deg */ minY = centerPos.y - m_Radius; if( angleStart <= 3600 && angleEnd >= 3600 ) /* 0 deg */ maxX = centerPos.x + m_Radius; rect.SetOrigin( minX, minY ); rect.SetEnd( maxX, maxY ); rect.Inflate( ( GetPenWidth() / 2 ) + 1 ); return rect; } void LIB_ARC::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) { wxString msg; EDA_RECT bBox = GetBoundingBox(); LIB_ITEM::GetMsgPanelInfo( aFrame, aList ); msg = MessageTextFromValue( aFrame->GetUserUnits(), m_Width ); aList.emplace_back( _( "Line Width" ), msg ); msg.Printf( wxT( "(%d, %d, %d, %d)" ), bBox.GetOrigin().x, bBox.GetOrigin().y, bBox.GetEnd().x, bBox.GetEnd().y ); aList.emplace_back( _( "Bounding Box" ), msg ); } wxString LIB_ARC::GetSelectMenuText( EDA_UNITS aUnits ) const { return wxString::Format( _( "Arc, radius %s" ), MessageTextFromValue( aUnits, m_Radius ) ); } BITMAPS LIB_ARC::GetMenuImage() const { return BITMAPS::add_arc; } void LIB_ARC::BeginEdit( const wxPoint aPosition ) { m_ArcStart = m_ArcEnd = aPosition; m_editState = 1; } void LIB_ARC::CalcEdit( const wxPoint& aPosition ) { #define sq( x ) pow( x, 2 ) // Edit state 0: drawing: place ArcStart // Edit state 1: drawing: place ArcEnd (center calculated for 90-degree subtended angle) // Edit state 2: point editing: move ArcStart (center calculated for invariant subtended angle) // Edit state 3: point editing: move ArcEnd (center calculated for invariant subtended angle) // Edit state 4: point editing: move center switch( m_editState ) { case 0: m_ArcStart = aPosition; m_ArcEnd = aPosition; m_Pos = aPosition; m_Radius = 0; m_t1 = 0; m_t2 = 0; return; case 1: m_ArcEnd = aPosition; m_Radius = KiROUND( sqrt( pow( GetLineLength( m_ArcStart, m_ArcEnd ), 2 ) / 2.0 ) ); break; case 2: case 3: { wxPoint v = m_ArcStart - m_ArcEnd; double chordBefore = sq( v.x ) + sq( v.y ); if( m_editState == 2 ) m_ArcStart = aPosition; else m_ArcEnd = aPosition; v = m_ArcStart - m_ArcEnd; double chordAfter = sq( v.x ) + sq( v.y ); double ratio = chordAfter / chordBefore; if( ratio > 0 ) { m_Radius = int( sqrt( m_Radius * m_Radius * ratio ) ) + 1; m_Radius = std::max( m_Radius, int( sqrt( chordAfter ) / 2 ) + 1 ); } break; } case 4: { double chordA = GetLineLength( m_ArcStart, aPosition ); double chordB = GetLineLength( m_ArcEnd, aPosition ); m_Radius = int( ( chordA + chordB ) / 2.0 ) + 1; break; } } // Calculate center based on start, end, and radius // // Let 'l' be the length of the chord and 'm' the middle point of the chord double l = GetLineLength( m_ArcStart, m_ArcEnd ); wxPoint m = ( m_ArcStart + m_ArcEnd ) / 2; // Calculate 'd', the vector from the chord midpoint to the center wxPoint d; d.x = KiROUND( sqrt( sq( m_Radius ) - sq( l/2 ) ) * ( m_ArcStart.y - m_ArcEnd.y ) / l ); d.y = KiROUND( sqrt( sq( m_Radius ) - sq( l/2 ) ) * ( m_ArcEnd.x - m_ArcStart.x ) / l ); wxPoint c1 = m + d; wxPoint c2 = m - d; // Solution gives us 2 centers; we need to pick one: switch( m_editState ) { case 1: { // Keep center clockwise from chord while drawing wxPoint chordVector = twoPointVector( m_ArcStart, m_ArcEnd ); double chordAngle = ArcTangente( chordVector.y, chordVector.x ); NORMALIZE_ANGLE_POS( chordAngle ); wxPoint c1Test = c1; RotatePoint( &c1Test, m_ArcStart, -chordAngle ); m_Pos = c1Test.x > 0 ? c2 : c1; } break; case 2: case 3: // Pick the one closer to the old center m_Pos = ( GetLineLength( c1, m_Pos ) < GetLineLength( c2, m_Pos ) ) ? c1 : c2; break; case 4: // Pick the one closer to the mouse position m_Pos = ( GetLineLength( c1, aPosition ) < GetLineLength( c2, aPosition ) ) ? c1 : c2; break; } CalcRadiusAngles(); } void LIB_ARC::CalcRadiusAngles() { wxPoint centerStartVector = twoPointVector( m_Pos, m_ArcStart ); wxPoint centerEndVector = twoPointVector( m_Pos, m_ArcEnd ); m_Radius = KiROUND( EuclideanNorm( centerStartVector ) ); // Angles in eeschema are still integers m_t1 = KiROUND( ArcTangente( centerStartVector.y, centerStartVector.x ) ); m_t2 = KiROUND( ArcTangente( centerEndVector.y, centerEndVector.x ) ); NORMALIZE_ANGLE_POS( m_t1 ); NORMALIZE_ANGLE_POS( m_t2 ); // angles = 0 .. 3600 // Restrict angle to less than 180 to avoid PBS display mirror Trace because it is // assumed that the arc is less than 180 deg to find orientation after rotate or mirror. if( (m_t2 - m_t1) > 1800 ) m_t2 -= 3600; else if( (m_t2 - m_t1) <= -1800 ) m_t2 += 3600; while( (m_t2 - m_t1) >= 1800 ) { m_t2--; m_t1++; } while( (m_t1 - m_t2) >= 1800 ) { m_t2++; m_t1--; } NORMALIZE_ANGLE_POS( m_t1 ); if( !IsMoving() ) NORMALIZE_ANGLE_POS( m_t2 ); } VECTOR2I LIB_ARC::CalcMidPoint() const { VECTOR2D midPoint; double startAngle = static_cast( m_t1 ) / 10.0; double endAngle = static_cast( m_t2 ) / 10.0; if( endAngle < startAngle ) endAngle -= 360.0; double midPointAngle = ( ( endAngle - startAngle ) / 2.0 ) + startAngle; double x = cos( DEG2RAD( midPointAngle ) ) * m_Radius; double y = sin( DEG2RAD( midPointAngle ) ) * m_Radius; midPoint.x = KiROUND( x ) + m_Pos.x; midPoint.y = KiROUND( y ) + m_Pos.y; return midPoint; }